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20-0: Indexing

Operations:

Add an element

Remove an element

Find an element, using a key

Find all elements in a range of key values



20-1: Indexing

Sorted List

Find / Find in Range fast

Add / Remove slow

Unsorted List / Hash Table

Add, Find, Remove fast (hash)

Find in Range slow

Binary Search Tree

All operations are fast (O(lg n))

if the tree is balanced



20-2: Indexing

Generalized Binary Search Trees

Each node can store several keys, instead of
just one

Values in subtrees between values in
surrounding keys

For non leaves, # of children = # of keys + 1

2  6

1 3 4 7



20-3: 2-3 Trees

Generalized Binary Search Tree

Each node has 1 or 2 keys

Each (non-leaf) node has 2-3 children
hence the name, 2-3 Trees

All leaves are at the same depth



20-4: Example 2-3 Tree

6  16

3 8  13 18

7 11  12 14 17 202 5



20-5: Finding in 2-3 Trees

How can we find an element in a 2-3 tree?



20-6: Finding in 2-3 Trees

How can we find an element in a 2-3 tree?

If the tree is empty, return false

If the element is stored at the root, return true

Otherwise, recursively find in the appropriate
subtree



20-7: Inserting into 2-3 Trees

Always insert at the leaves

To insert an element:

Find the leaf where the element would live, if it
was in the tree

Add the element to that leaf



20-8: Inserting into 2-3 Trees

Always insert at the leaves

To insert an element:

Find the leaf where the element would live, if it
was in the tree

Add the element to that leaf
What if the leaf already has 2 elements?



20-9: Inserting into 2-3 Trees

Always insert at the leaves

To insert an element:

Find the leaf where the element would live, if it
was in the tree

Add the element to that leaf
What if the leaf already has 2 elements?
Split!



20-10: Splitting Nodes

5  6  7

75

6



20-11: Splitting Nodes

4

1  2 5  6  7
Too many
elements



20-12: Splitting Nodes

4

1  2 5  6  7

Promote to parent

Left child
of 6

Right child
of 6



20-13: Splitting Nodes

4    6

1  2 5 7



20-14: Splitting Root

When we split the root:

Create a new root

Tree grows in height by 1



20-15: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1



20-16: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 2



20-17: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split



20-18: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3



20-19: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4



20-20: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4 5

Too many keys,
need to split



20-21: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5



20-22: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5 6



20-23: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5 6 7

Too many keys
need to split



20-24: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4  6

3 5 7

Too many keys
need to split



20-25: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7

4

2 6



20-26: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8

4

2 6



20-27: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8 9

4

2 6

Too many keys
need to split



20-28: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5

4

2 6  8

7 9



20-29: Deleting from 2-3 Tree

As with BSTs, we will have 2 cases:

Deleting a key from a leaf

Deleting a key from an internal node



20-30: Deleting Leaves

If leaf contains 2 keys

Can safely remove a key



20-31: Deleting Leaves

4  8

3 5   7 11

Deleting 7



20-32: Deleting Leaves

4  8

3 5   11

Deleting 7



20-33: Deleting Leaves

If leaf contains 1 key

Cannot remove key without making leaf empty

Try to steal extra key from sibling



20-34: Deleting Leaves

4  8

3 5   7 11

Deleting 3 – we can steal the 5



20-35: Deleting Leaves

4  8

5    7 11

Not a 2-3 tree. What can we do?



20-36: Deleting Leaves

4  8

 5  7 11

Steal key from sibling through parent



20-37: Deleting Leaves

5  8

    7 114

Steal key from sibling through parent



20-38: Deleting Leaves

If leaf contains 1 key, and no sibling contains extra
keys

Cannot remove key without making leaf empty

Cannot steal a key from a sibling

Merge with sibling
split in reverse



20-39: Merging Nodes

5  8

7 114

Removing the 4



20-40: Merging Nodes

5  8

7 11

Removing the 4

Combine 5, 7 into one node



20-41: Merging Nodes

8

5  7 11



20-42: Merging Nodes

Merge decreases the number of keys in the parent

May cause parent to have too few keys

Parent can steal a key, or merge again



20-43: Merging Nodes

1 3 5

4

2 6  8

7 9

Deleting the 3 – cause a merge



20-44: Merging Nodes

1 2 5

4

6  8

7 9

Deleting the 3 – cause a merge

Not enough keys in parent



20-45: Merging Nodes

1 2 5

4

6  8

7 9

Steal key from sibling



20-46: Merging Nodes

1 2 5

6

   8

7 9

4

Steal key from sibling



20-47: Merging Nodes

1 2 5

6

   8

7 9

4

When we steal a key from an internal node, steal
nearest subtree as well



20-48: Merging Nodes

1 2 5

6

   8

7 9

4

When we steal a key from an internal node, steal
nearest subtree as well



20-49: Merging Nodes

1 2 5

6

   8

7 9

4

Deleting the 7 – cause a merge



20-50: Merging Nodes

1 2 5

6

8  9

4

Parent has too few keys – merge again



20-51: Merging Nodes

1 2 5 8  9

4  6  

Root has no keys – delete



20-52: Merging Nodes

1 2 5 8  9

4  6  



20-53: Deleting Interior Keys

How can we delete keys from non-leaf nodes?

HINT: How did we delete non-leaf nodes in
standard BSTs?



20-54: Deleting Interior Keys

How can we delete keys from non-leaf nodes?

Replace key with smallest element subtree to
right of key

Recursivly delete smallest element from
subtree to right of key

(can also use largest element in subtree to left of
key)



20-55: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

Deleting the 4



20-56: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

Deleting the 4

Replace 4 with smallest element in tree to right of 4



20-57: Deleting Interior Keys

1 3   6 8 9

5

2 7



20-58: Deleting Interior Keys

1 3  6 8 9

5

2 7

Deleting the 5



20-59: Deleting Interior Keys

1 3  6 8 9

5

2 7

Deleting the 5

Replace the 5 with the smallest element in tree to
right of 5



20-60: Deleting Interior Keys

1 3 8 9

6

2 7

Deleting the 5

Replace the 5 with the smallest element in tree to
right of 5

Node with two few keys



20-61: Deleting Interior Keys

1 3 8 9

6

2 7

Node with two few keys

Steal a key from a sibling



20-62: Deleting Interior Keys

1 3   9

6

2 8

7



20-63: Deleting Interior Keys

1 3   9

6  10

2 8

7  13

11

12

Removing the 6



20-64: Deleting Interior Keys

1 3   9

6  10

2 8

7  13

11

12

Removing the 6

Replace the 6 with the smallest element in the tree
to the right of the 6



20-65: Deleting Interior Keys

1 3   9

7  10

2 8

 13

11

12

Node with too few keys

Can’t steal key from sibling

Merge with sibling



20-66: Deleting Interior Keys

1 3 8 9

7  10

2

 13

11

12

Node with too few keys

Can’t steal key from sibling

Merge with sibling

(arbitrarily pick right sibling to merge with)



20-67: Deleting Interior Keys

1 3 8 9

7  

2

 13

10  11

12



20-68: Generalizing 2-3 Trees

In 2-3 Trees:

Each node has 1 or 2 keys

Each interior node has 2 or 3 children

We can generalize 2-3 trees to allow more keys /
node



20-69: B-Trees

A B-Tree of maximum degree k:

All interior nodes have ⌈k/2⌉ . . . k children

All nodes have ⌈k/2⌉ − 1 . . . k − 1 keys

2-3 Tree is a B-Tree of maximum degree 3



20-70: B-Trees

5   11   16   19

1   3 7  8  9 12  15 17  18 22   23

B-Tree with maximum degree 5

Interior nodes have 3 – 5 children

All nodes have 2-4 keys



20-71: B-Trees

Inserting into a B-Tree

Find the leaf where the element would go

If the leaf is not full, insert the element into the
leaf

Otherwise, split the leaf (which may cause
further splits up the tree), and insert the
element



20-72: B-Trees

5   11   16   19

1   3 7  8  9 12  15 17  18 22   23

Inserting a 6 ..



20-73: B-Trees

5   11   16   19

1   3 6  7  8  9 12  15 17  18 22   23



20-74: B-Trees

5   11   16   19

1   3 6  7  8  9 12  15 17  18 22   23

Inserting a 10 ..



20-75: B-Trees

5   11   16   19

1   3 6  7  8  9  10 12  15 17  18 22   23

Too many keys
need to split

Promote 8 to parent (between 5 and 11)

Make nodes out of (6, 7) and (9, 10)



20-76: B-Trees

5   8   11   16   19

1   3 9  10 12  15 17  18 22   236  7

Too many keys
need to split

Promote 11 to parent (new root)

Make nodes out of (5, 8) and (6, 19)



20-77: B-Trees

16   19

1   3 9  10 12  15 17  18 22   236  7

5   8

11

Note that the root only has 1 key, 2 children

All nodes in B-Trees with maximum degree 5
should have at least 2 keys

The root is an exception – it may have as few as
one key and two children for any maximum degree



20-78: B-Trees

B-Tree of maximum degree k

Generalized BST

All leaves are at the same depth

All nodes (other than the root) have
⌈k/2⌉ − 1 . . . k − 1 keys

All interior nodes (other than the root) have
⌈k/2⌉ . . . k children



20-79: B-Trees

B-Tree of maximum degree k

Generalized BST

All leaves are at the same depth

All nodes (other than the root) have
⌈k/2⌉ − 1 . . . k − 1 keys

All interior nodes (other than the root) have
⌈k/2⌉ . . . k children

Why do we need to make exceptions for the root?



20-80: B-Trees

Why do we need to make exceptions for the root?

Consider a B-Tree of maximum degree 5 with
only one element



20-81: B-Trees

Why do we need to make exceptions for the root?

Consider a B-Tree of maximum degree 5 with
only one element

Consider a B-Tree of maximum degree 5 with 5
elements



20-82: B-Trees

Why do we need to make exceptions for the root?

Consider a B-Tree of maximum degree 5 with
only one element

Consider a B-Tree of maximum degree 5 with 5
elements

Even when a B-Tree could be created for a
specific number of elements, creating an
exception for the root allows our split/merge
algorithm to work correctly.



20-83: B-Trees

Deleting from a B-Tree (Key is in a leaf)

Remove key from leaf

Steal / Split as necessary

May need to split up tree as far as root



20-84: B-Trees

5   11   16   19

1   3 7  8  9 12  15 17  18 22   23

Deleting the 15



20-85: B-Trees

5   11   16   19

1   3 7  8  9 12  17  18 22   23

Too few keys



20-86: B-Trees

5   11   16   19

1   3 7  8  9 12  17  18 22   23

Steal a key from sibling



20-87: B-Trees

5   9    16   19

1   3 7  8 11  12  17  18 22   23



20-88: B-Trees

5   9    16   19

1   3 7  8 11  12  17  18 22   23

Delete the 11



20-89: B-Trees

5   9    16   19

1   3 7  8   12  17  18 22   23

Too few keys



20-90: B-Trees

5   9    16   19

1   3 7  8   12  17  18 22   23

Combine into 1 node

Merge with a sibling (pick the left sibling arbitrarily)



20-91: B-Trees

5        16   19

1   3 7  8  9  12 17  18 22   23



20-92: B-Trees

Deleting from a B-Tree (Key in internal node)

Replace key with largest key in right subtree

Remove largest key from right subtree

(May force steal / merge)



20-93: B-Trees

5        16   19

1   3 7  8  9  12 17  18 22   23

Remove the 5



20-94: B-Trees

5        16   19

1   3 7  8  9  12 17  18 22   23

Remove the 5



20-95: B-Trees

7        16   19

1   3    8  9  12 17  18 22   23



20-96: B-Trees

7        16   19

1   3    8  9  12 17  18 22   23

Remove the 19



20-97: B-Trees

7        16   19

1   3    8  9  12 17  18 22   23

Remove the 19



20-98: B-Trees

7        16   22

1   3    8  9  12 17  18      23

Too few keys



20-99: B-Trees

7        16   22

1   3    8  9  12 17  18      23

Merge with left sibling



20-100: B-Trees

7        16   

1   3    8  9  12 17  18  22  23



20-101: B-Trees

Almost all databases that are large enough to
require storage on disk use B-Trees

Disk accesses are very slow

Accessing a byte from disk is 10,000 – 100,000
times as slow as accessing from main memory

Recently, this gap has been getting even bigger

Compared to disk accesses, all other operations
are essentially free

Most efficient algorithm minimizes disk accesses
as much as possible



20-102: B-Trees

Disk accesses are slow – want to minimize them

Single disk read will read an entire sector of the
disk

Pick a maximum degree k such that a node of the
B-Tree takes up exactly one disk block

Typically on the order of 100 children / node



20-103: B-Trees

With a maximum degree around 100, B-Trees are
very shallow

Very few disk reads are required to access any
piece of data

Can improve matters even more by keeping the
first few levels of the tree in main memory

For large databases, we can’t store the entire
tree in main memory – but we can limit the
number of disk accesses for each operation to
only 1 or 2
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