Data Structures and Algorithms
CS245-20175-23

NP-Completeness and Undecidablity

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

23-0: Hard Problems

® Some algorithms take exponential time
e Simple version of Fibonacci
* Faster versions of Fibonacci that take linear
time
® Some Problems take exponential time

» Allalgorithms that solve the problem take
exponential time

e Towers of Hanol

23-1: Jowers of Hanoi

. _

® Move one disk at a time
® Never place a larger disk on a smaller disk

23-2: Jowers of Hanoi

ﬂ _

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 1

23-3: Jlowers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 2

23-4: Towers of Hanoi

H _

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 3

23-5: Jlowers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 4

23-6: lowers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves =5

23-7: Towers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 6

23-8: lowers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 7

23-9: Jlowers of Hanoi

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 8

23-10: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 9

23-11: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 10

23-12: Towers of Hanol

H _

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 11

23-13: Towers of Hanol

H _

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 12

23-14: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 13

23-15: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 14

23-16: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 15

23-17: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 15

® Moving n disks requires 2" — 1 moves

23-18: Towers of Hanol

® Move one disk at a time
® Never place a larger disk on a smaller disk

Moves = 15

® Moving n disks requires 2" — 1 moves
® Completely impractical for large values of n

23-19: Reductions

® A reduction from Problem 1 to Problem 2 allows us
to solve Problem 1 in terms of Problem 2

e Given an instance of Problem 1, create an
Instance of Problem 2

e Solve the instance of Problem 2

e Use the solution of Problem 2 to create a
solution to Problem 1

23-20: Reductions

® Example Problem: Pairing
e Given two lists of integers of size n
 Match the smallest element of each list together

e Match the second smallest element of each list
together

* .. etc.

23-21: Reductions

13 30
21 14
3} 26
47 19
93 87
25 54
14 23
6 11
12 8

List 1 Li st 2

23-22: Reductions

13
21
3}

47
93
25

14
5 <

12}

List 1

23-23: Reductions

® Reduction from Pairing to Sorting

e Can we reduce the pairing problem to a sorting
problem

e Thatis, how can we use the sorting problem to
solve the pairing problem?

23-24: Reductions

® Reduction from Pairing to Sorting

e Lets us solve the Pairing problem by solving
Sorting problem

e Given any two lists L1 and L2 that we wish to
pair:
- Sort L1 and L2
- Pair L1[i] with L2[i] for all i

23-25: Reductions

® Reduction from Pairing to Sorting
* Reduction takes very little time

e Time to solve Pairing (using this reduction) is
the time to solve Sorting

e We can solve Pairing in time O(nlgn) using
sorting.

23-26: Reductions

® Reduction from Sorting to Pairing

e Given an instance of Sorting, create an
iInstance of pairing problem

e Solve the paring problem

* Use the solution of pairing problem to solve the
sorting problem

23-27: Reductions

® Given an list L1:
e Create a new list L2, such that L2[i] = i
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired
element from L2 as the key

23-28: Reductions

® Given an list L1:
e Create a new list L2, such that L2[i] = i
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired
element from L2 as the key

How long does this take?

23-29: Reductions

® Given an list L1:
e Create a new list L2, such that L2[i] = i
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired
element from L2 as the key

How long does this take?

® O(n + time to do pairing)

23-30: Reductions

® We can reduce Sorting to Pairing, such that:
* Time to do Sorting takes O(n + time to do
pairing)
® Sorting takes 2(nlgn) time
® Thus, the pairing problem must take at least
Q(nlgn) time as well

23-31: Reductions

® We can use a Reduction to compare problems

® |f there is a reduction from problem A to problem B
that can be done quickly

® Problem A is known to be hard (cannot be solved
quickly)

® Problem 5 cannot be solved quickly, either

23-32: NP Problems

® A problem is NP if a solution can be verified easily

e Given a potential solution to the problem, verify
that the solution does solve the problem

* Verification takes polynomial (not exponential!)
time
* (Pretty low bar for “easily”)

23-33: NP Problems

® A problem is NP if a solution can be verified easily

e Traveling Salesman Problem (TSP)
- Given a graph with weighted vertices, and a
cost bound &
- |s there a cycle that contains all vertices Iin
the graph, that has a total cost less than £?

* Given any potential solution to the TSP, we can
easily verify that the solution is correct

23-3: NP Problems

® A problem is NP if a solution can be verified easily

e Graph Coloring
- Given a graph and a number of colors k
- Can we color every vertex using no more
than k colors, such that all adjacent vertices
have different colors?

e Given any potential solution to the Graph
Coloring problem, we can easily verify that the
solution is correct

23-35: NP Problems

® A problem is NP if a solution can be verified easily
e Satisfiability

- Given a boolean formula over a set of
boolean variables a; . . . a,
(a1||las)&&(asl|as||lal)&ée . . .

- Can we give a truth value to all variables
a; ...a, So that the value of the formula is
true?

e Given any potential solution to the Satisfiability
problem, we can easily verify that the solution is
correct

23-36: NP Problems

® A problem is NP if a solution can be verified easily
e Sorting
- Given a list of elements L and an ordering of
the elements <
- Create a permutation of L such that
Lii) < Ljt + 1]
e Given any potential solution to the Sorting
problem, we can easily verify that the solution is
correct

23-37: NP Problems

® |f we can guess an answer, we can verify it quickly

® NP stands for Non-Deterministic Polynomial
* Non-Deterministic = we can guess
* Polynomial = “quickly”
® NP problem: If we could guess an answer, we
could verify it in polynomial (n, n*, n° — not
exponential) time

23-38: Non-Deterministic Machine

® Two Definitions of Non-Deterministic Machines:

e “Oracle” — allows machine to magically make a
correct guess

 Massively parallel — simultaneously try to verity

all possible solutions

- Try all permutations of vertices in a graph,
see if any form a cycle with cost < £

- Try all colorings of a graph with up to &
colors, see if any are legal

- Try all permutations of a list, see if any are
sorted

23-39: NP vs. P

® A problem is NP if a non-deterministic machine
can solve it in polynomial time

e Of course, we have no real non-deterministic

machines
® A problem is in P (Polynomial), if a deterministic
machine can solve it in polynomial time

e Sorting is in P — can sort a list in polynomial
time

e All problems in P are also in NP
- Ignore the oracle

23-40: NP-Complete

® An NP problem is “NP-Complete” if there is a
reduction from any NP problem to that problem

® For example, Traveling Salesman (TSP) is
NP-Complete
* We can reduce any NP problem to TSP
* |f we could solve TSP in polynomial time, we
could solve all NP problems in polynomial time

® |s TSP unique in this way?

23-41: NP-Complete

® There are many NP-Complete problems
e TSP
e Graph Coloring
e Satisfiability
e .. Many, many more

® |f we could solve any of these problems quickly, we
could solve all of them quickly

® All known solutions take exponential time

23-42. NP-Complete

® |f a problem is NP-Complete, it almost certainly
cannot be solved quickly (polynomial time)

e If it could, then all NP problems could be solved
quickly
 Many people have tried for many years to find

polynomial solutions for NP complete problems,
all have failed

® However, no proof that NP-Complete problems
require exponential time — open problem

23-43: NP =? P

® |f we could solve any NP-Complete problem
quickly (polynomial time), we could solve all NP
problems quickly

® |f that is the case, then NP=P
* P is set of problems that can be solved by a
standard machine in polynomial time

® Most everyone believes that NP # P, and all
NP-Complete problems require exponential time
on standard computers — not yet been proven

23-42: NP-Completeness

® Why is NP-Completeness important?
 |f a problem is NP-Complete, no point in trying
to come up with an algorithm to solve it

 What can we do, if we need to solve a problem
that is NP-Complete?

23-45: NP-Completeness

® \What can we do, if we need to solve a problem that
Is NP-Complete?
* |f the problem we need to solve is very small (<
20), an exponential solution might be OK

 We can solve an approximation of the problem
- Color a graph using an non-optimal number
of colors
- Find a Traveling Salesman tour that is not
optimal

23.46: Impossible Problems

® Some problems are “easy” — require a fairly small
amount of time to solve

e Sorting
® Some problems are “probably hard” — believed to
require exponential time to solve
TSP, Graph Coloring, etc
® Some problems are “hard” — known to require an
exponential amount of time to solve
* Towers of Hanol

® Some problems are impossible — cannot be solved

23-47: Halting Problem

® Program is running — seems to be taking a long
time

® We'd like to know if the program will eventually
finish, or if it is In an infinite loop

® (GGreat debugging tool:

* Takes as input the source code to a program p,
and an input ¢

e Determines if p will run forever when run on ¢

23-48: Halting Problem

® Program is running — seems to be taking a long
time

® We'd like to know if the program will eventually
finish, or if it is In an infinite loop

® (Great debugging tool:

* Takes as input the source code to a program p,
and an input ¢

e Determines if p will run forever when run on ¢
® No such tool can exist!

23-49: Halting Problem

® We will prove that the halting problem is unsolvable
by contradiction

* Assume that we have a solution to the halting
problem

e Derive a contradiction

e Qur original assumption (that the halting
problem has a solution) must be false

23-50: Halting Problem

boolean halt(char [] program, char [] input) {

/* code to determine if the program
halts when run on the input */

if (program halts on input)
return true;

else
return false;

23-51: Halting Problem

boolean selfhalt(char [] program) A
if (halt(program, program))
return true,;
else
return false;

23-52: Halting Problem

boolean selfhalt(char [] program) A
if (halt(program, program))
return true,;
else
return false;

¥

void contrary(char [] program) A
if (selfhalt(program)
while(true); /* infinite loop */

23-53: Halting Problem

boolean selfhalt(char [] program) A
if (halt(program, program))
return true;
else
return false;

¥

void contrary(char [] program) A
if (selfhalt(program)
while(true); /* infinite loop */

® what happens when we call contrary, passing in its
own source code as input?

23.54: Reduction Example

® Hamiltonian Cycle:

e Given an unweighted, undirected graph G, is
there a cycle that includes every vertex exactly
once?

® Traveling Salesman Problem (TSP)

e Given a complete, weighed, undirected graph G
and a cost bound £, is there a cycle that incldes
every vertex in GG, with a cost < k?

23.55: Reduction Example

® |f we could solve the Traveling Salesman problem
In polynomial time, we could solve the Hamiltonian
Cycle problem in polynomial time
e Given any graph G, we can create a new graph
G’ and limit k, such that there is a Hamiltonian
Circuit in GG if and only if there is a Traveling
Salesman tour in G' with cost less than &
e \ertices in GG’ are the same as the vertices in G

* For each pair of vertices x; and z; in G, if the
edge (z;, x;) is in G, add the edge (z;,z;) to G
with the cost 1. Otherwise, add the edge
(x;, ;) to G’ with the cost 2.

e Set the limit £ = # of vertices in &G

23.56: Reduction Example

® O ® 2 ®
® O O

23.57: Reduction Example

® |f we could solve TSP in polynomial time, we could
solve Hamiltonian Cycle problem in polynomial
time
e Start with an instance of Hamiltonian Cycle
e Create instance of TSP
* Feed instance of TSP into TSP solver

e Use result to find solution to Hamiltonian Cycle

23.58: Reduction Example #2

® Given any instance of the Hamiltonian Cycle
Problem:

 We can (in polynomial time) create an instance
of Satisfiability

 That is, given any graph G, we can create a
boolean formula f, such that f is satisfiable if
and only if there is a Hamiltonian Cycle in G

® |f we could solve Satisfiability in Polynomial Time,
we could solve the Hamiltonian Cycle problem in
Polynomial Time

23.50: Reduction Example #2

® Given a graph GG with n vertices, we will create a
formula with n* variables:

® T11,%12, 13y ... T1p
X211, L22y L23, ... Loy
:Enlv :En27 ajn?n .« oo Lnpn

® Design our formula such that z;; will be true if and

only if the ith element in a Hamiltonian Circuit of G
IS vertex # 9

23.60: Reduction Example #2

® For our set of n* variables x;;, we need to write a
formula that ensures that:

* For each ¢, there is exactly one j such that z;; =
true

* For each j, there is exactly one ¢ such that x;; =
true

* If z;; and x(;+1), are both true, then there must
be a link from v; to vy in the graph G

23.61: Reduction Example #2

® For each i, there is exactly one j such that x;; =
frue

e Foreachzin1...n, add the rules:
s (Tal|zal| . - ||Tim)
® This ensures that for each i, there is at least one
such that x;; = true

® (This adds n clauses to the formula)

23.62. Reduction Example #2

® For each i, there is exactly one j such that x;; =
frue

foreachzinl...n
foreachjinl...n
foreachkinl...n j#k

® This ensures that for each i, there is at most one)
such that x;; = true

® (this adds a total of n° clauses to the formula)

23.63: Reduction Example #2

® If x;; and x(;+1), are both true, then there must be a
link from v, to v;, in the graph G

foreach¢inl...(n—1)
foreachjinl...n
foreachkinl...n
if edge (v;, v.) is notin the graph:
Add rule (':EZ]H':E(Z—I—l)k)

® (This adds no more than »* clauses to the formula)

23-64: Reduction Example #2

® |f z,, and z(are both true, then there must be a
link from v; to v, in the graph G (looping back to
finish cycle)

foreachjinl...n
foreachkinl...n
if edge (v,, vy) is notin the graph:
Add rule (1z,;||!zox)

® (This adds no more than n* clauses to the formula)

23.65: Reduction Example #2

® |n order for this formula to be satisfied:

* For each ¢, there is exactly one j such that x;;
IS true

* For each j, there is exactly one ¢ such that z;;
IS true

* if z;; is true, and x ;.1 IS true, then there is an
arc from v, to v, in the graph GG

® Thus, the formula can only be satisfied if there is a
Hamiltonian Cycle of the graph

23-66: Mlore NP-Complete Problems

® Exact Cover Problem
e Set of elements A
e ' C 24, family of subsets

e |s there a subset of F' such that each element
of A appears exactly once?

23-67: More NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

e I'={{a,b,c},{d,e, f},{b, f,9},{g}}

e Exact cover exists:

{a7 b7 C}7 {d7 67 f}7 {g}

23-68: Mlore NP-Complete Problems

® Exact Cover Problem
¢ A — {CL?b?C?d?e?f?g}

* F'={{a,bc},{c.d e f}{a, f g} {c}}

e No exact cover exists

23-69: More NP-Complete Problems

® Exact Cover is NP-Complete
* Reduction from Satisfiability

e Given any instance of Satisfiability, create (in
polynomial time) an instance of Exact Cover

e Solution to Exact Cover problem tells us
solution to Satisfiability problem

e Satisfiability is NP-Complete => Exact Cover is
NP-Complete

23.70: EXact Cover is NP-Complete

® Given an instance of SAT:

® Formula: Cl A\ OQ N\ 03 N\ 04

® Create an instance of Exact Cover

e Define a set A and family of subsets F' such
that there is an exact cover of A in F'if and only
If the formula is satisfiable

23.71: EXact Cover is NP-Complete

01 — (331 \/SC_Q) 02: (56_1\/332\/1’3) 03: (CL’Q) 04: (SIZ‘Q\/SIZ‘g)

A = {x1,29,73,C1, Cy, Cs,Cy, p11, P12, D21, P22, P23, D31, Pa1, Pa2 }
F = {{1011}7{]?12},{p21},{p22},{p23},{p31},{p41},{p42},
Xy, f =A{%1,pui}

Xi,t ={x1,pa1}

Xo, f = {$2,p22,p31}

Xo,t = {22, P12, Pa1 }

X3, | = {$37p23}

X3, t = {23, pa2}

{0171?11}, {0171912}7 {0271921}7 {C2ap22}7 {0271923}7 {0371931}7
{04,]741}, {04,]7422}}

23.72: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

N
AN

O

<

23.73: Directed Hamiltonian Cycle

® Given any directed graph G, determine if G has a a
Hamiltonian Cycle

e Cycle that includes every node in the graph
exactly once, following the direction of the
arrows

N4
AN

O

<

23.74: Directed Hamiltonian Cycle

® The Directed Hamiltonian Cycle problem is
NP-Complete
® Reduce Exact Cover to Directed Hamiltonian Cycle
e Given any set A, and family of subsets F':

e Create a graph G that has a hamiltonian cycle if
and only if there is an exact cover of A in F’

23.75: Directed Hamiltonian Cycle

® Widgets:
e Consider the following graph segment:
a b

N v
SN

* |f a graph containing this subgraph has a
Hamiltonian cycle, then the cycle must contain
eithera - u —v — w — bor
c — w — v — u — d—but not both (why)?

d

23.76: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle
a b

23.77: Directed Hamiltonian Cycle

® Widgets:
e XOR edges: Exactly one of the edges must be
used in a Hamiltonian Cycle

23.78: Directed Hamiltonian Cycle

® Add a vertex for every variable in A (+ 1 extra)

A © F={a.&}
Fo= {&}
F3= {& . &}

a, O

a, O

23.79: Directed Hamiltonian Cycle

® Add a vertex for every subset F' (+ 1 extra)

a; O O Fy

F.={a . &}
Fo= {a&}
Fs= {a& ., &}
a, O o H
a, O o F

23-.80: Directed Hamiltonian Cycle

® Add an edge from the last variable to the Oth
subset, and from the last subset to the 0th variable

a3 @ » O FO F1: {al,%}
Fo= {a&}
Fs= {&,&}

a, O o Fk

a, O o P

a, O- o F3

23-.81: Directed Hamiltonian Cycle

® Add 2 edges from F; to F; ;. One edge will be a
“short edge”, and one will be a “long edge”.

a; O » O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
a, O <o> Fy
a, O o P
<> =

a, O O

23.82: Directed Hamiltonian Cycle

® Add an edge from a,_; to a; for each subset q;
appears in.

a; O > O, Fy

F={a .58}
Fo= {a}
Fs={&, &}
ay o ki
< F,

O

;

a, O O

aq

23.83: Directed Hamiltonian Cycle

® Each edge (a;_1, a;) corresponds to some subset
that contains a,. Add an XOR link between this
edge and the long edge of the corresponding

subset
a; O »0O Fy Elf %aljag}
(@ > = {},a}
3 2 3
a, o ki

23-.84: Directed Hamiltonian Cycle

ds

do

aq

dg

Q ¥

OR

T1 . T1 Tl

w N

o
e L
o PP O
-
w® P
T

XOR edge

23.85: Directed Hamiltonian Cycle

B2 72Nk A= {3,)
——> _

Fo={a&,a}
F3={a , &}

az O S o, F F,= {&}

Q >
A , O> R XOR edge
\ 4
a, Q £ O Fs
dg) F

	{small lecturenumber -	heblocknumber :} Hard Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Towers of Hanoiaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reductionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Non-Deterministic Machineaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP vs. Paddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP =? Paddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completenessaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} NP-Completenessaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Impossible Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Halting Problemaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reduction Example #2addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} More NP-Complete Problemsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exact Cover is NP-Completeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Directed Hamiltonian Cycleaddtocounter {blocknumber}{1}

