
CS245-2017S-23 NP-Completeness and Undecidablity 1

23-0: Hard Problems

• Some algorithms take exponential time

• Simple version of Fibonacci

• Faster versions of Fibonacci that take linear time

• Some Problems take exponential time

• All algorithms that solve the problem take exponential time

• Towers of Hanoi

23-1: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

23-2: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 1

23-3: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

CS245-2017S-23 NP-Completeness and Undecidablity 2

Moves = 2

23-4: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 3

23-5: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 4

23-6: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 5

23-7: Towers of Hanoi

• Move one disk at a time

CS245-2017S-23 NP-Completeness and Undecidablity 3

• Never place a larger disk on a smaller disk

Moves = 6

23-8: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 7

23-9: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 8

23-10: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 9

23-11: Towers of Hanoi

• Move one disk at a time

CS245-2017S-23 NP-Completeness and Undecidablity 4

• Never place a larger disk on a smaller disk

Moves = 10

23-12: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 11

23-13: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 12

23-14: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 13

23-15: Towers of Hanoi

• Move one disk at a time

CS245-2017S-23 NP-Completeness and Undecidablity 5

• Never place a larger disk on a smaller disk

Moves = 14

23-16: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 15

23-17: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 15

• Moving n disks requires 2n − 1 moves

23-18: Towers of Hanoi

• Move one disk at a time

• Never place a larger disk on a smaller disk

Moves = 15

• Moving n disks requires 2n − 1 moves

• Completely impractical for large values of n

23-19: Reductions

• A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2

CS245-2017S-23 NP-Completeness and Undecidablity 6

• Given an instance of Problem 1, create an instance of Problem 2

• Solve the instance of Problem 2

• Use the solution of Problem 2 to create a solution to Problem 1

23-20: Reductions

• Example Problem: Pairing

• Given two lists of integers of size n

• Match the smallest element of each list together

• Match the second smallest element of each list together

• .. etc.

23-21: Reductions

13
21
5
47
93
25
14
6
12

List 1

30
14
26
19
87
54
23
11
8

List 2

23-22: Reductions

13
21
5
47
93
25
14
6
12

List 1

30
14
26
19
87
54
23
11
8

List 2

23-23: Reductions

• Reduction from Pairing to Sorting

• Can we reduce the pairing problem to a sorting problem

• That is, how can we use the sorting problem to solve the pairing problem?

23-24: Reductions

• Reduction from Pairing to Sorting

• Lets us solve the Pairing problem by solving Sorting problem

CS245-2017S-23 NP-Completeness and Undecidablity 7

• Given any two lists L1 and L2 that we wish to pair:

• Sort L1 and L2

• Pair L1[i] with L2[i] for all i

23-25: Reductions

• Reduction from Pairing to Sorting

• Reduction takes very little time

• Time to solve Pairing (using this reduction) is the time to solve Sorting

• We can solve Pairing in time O(n lg n) using sorting.

23-26: Reductions

• Reduction from Sorting to Pairing

• Given an instance of Sorting, create an instance of pairing problem

• Solve the paring problem

• Use the solution of pairing problem to solve the sorting problem

23-27: Reductions

• Given an list L1:

• Create a new list L2, such that L2[i] = i

• Solve the paring problem, pairing L1 and L2

• Use counting sort to sort L1, using the paired element from L2 as the key

23-28: Reductions

• Given an list L1:

• Create a new list L2, such that L2[i] = i

• Solve the paring problem, pairing L1 and L2

• Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take? 23-29: Reductions

• Given an list L1:

• Create a new list L2, such that L2[i] = i

• Solve the paring problem, pairing L1 and L2

• Use counting sort to sort L1, using the paired element from L2 as the key

How long does this take?

• O(n + time to do pairing)

23-30: Reductions

• We can reduce Sorting to Pairing, such that:

CS245-2017S-23 NP-Completeness and Undecidablity 8

• Time to do Sorting takes O(n + time to do pairing)

• Sorting takes Ω(n lg n) time

• Thus, the pairing problem must take at least Ω(n lgn) time as well

23-31: Reductions

• We can use a Reduction to compare problems

• If there is a reduction from problem A to problem B that can be done quickly

• Problem A is known to be hard (cannot be solved quickly)

• Problem B cannot be solved quickly, either

23-32: NP Problems

• A problem is NP if a solution can be verified easily

• Given a potential solution to the problem, verify that the solution does solve the problem

• Verification takes polynomial (not exponential!) time

• (Pretty low bar for “easily”)

23-33: NP Problems

• A problem is NP if a solution can be verified easily

• Traveling Salesman Problem (TSP)

• Given a graph with weighted vertices, and a cost bound k

• Is there a cycle that contains all vertices in the graph, that has a total cost less than k?

• Given any potential solution to the TSP, we can easily verify that the solution is correct

23-34: NP Problems

• A problem is NP if a solution can be verified easily

• Graph Coloring

• Given a graph and a number of colors k

• Can we color every vertex using no more than k colors, such that all adjacent vertices have different

colors?

• Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct

23-35: NP Problems

• A problem is NP if a solution can be verified easily

• Satisfiability

• Given a boolean formula over a set of boolean variables a1 . . . an
(a1‖!a2)&&(a2‖a5‖!a1)&& . . .

• Can we give a truth value to all variables a1 . . . an so that the value of the formula is true?

• Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct

CS245-2017S-23 NP-Completeness and Undecidablity 9

23-36: NP Problems

• A problem is NP if a solution can be verified easily

• Sorting

• Given a list of elements L and an ordering of the elements ≤

• Create a permutation of L such that L[i] ≤ L[i+ 1]

• Given any potential solution to the Sorting problem, we can easily verify that the solution is correct

23-37: NP Problems

• If we can guess an answer, we can verify it quickly

• NP stands for Non-Deterministic Polynomial

• Non-Deterministic = we can guess

• Polynomial = “quickly”

• NP problem: If we could guess an answer, we could verify it in polynomial (n, n2, n5 – not exponential) time

23-38: Non-Deterministic Machine

• Two Definitions of Non-Deterministic Machines:

• “Oracle” – allows machine to magically make a correct guess

• Massively parallel – simultaneously try to verify all possible solutions

• Try all permutations of vertices in a graph, see if any form a cycle with cost ¡ k

• Try all colorings of a graph with up to k colors, see if any are legal

• Try all permutations of a list, see if any are sorted

23-39: NP vs. P

• A problem is NP if a non-deterministic machine can solve it in polynomial time

• Of course, we have no real non-deterministic machines

• A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time

• Sorting is in P – can sort a list in polynomial time

• All problems in P are also in NP

• Ignore the oracle

23-40: NP-Complete

• An NP problem is “NP-Complete” if there is a reduction from any NP problem to that problem

• For example, Traveling Salesman (TSP) is NP-Complete

• We can reduce any NP problem to TSP

• If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time

• Is TSP unique in this way?

CS245-2017S-23 NP-Completeness and Undecidablity 10

23-41: NP-Complete

• There are many NP-Complete problems

• TSP

• Graph Coloring

• Satisfiability

• .. many, many more

• If we could solve any of these problems quickly, we could solve all of them quickly

• All known solutions take exponential time

23-42: NP-Complete

• If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)

• If it could, then all NP problems could be solved quickly

• Many people have tried for many years to find polynomial solutions for NP complete problems, all have

failed

• However, no proof that NP-Complete problems require exponential time – open problem

23-43: NP =? P

• If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly

• If that is the case, then NP=P

• P is set of problems that can be solved by a standard machine in polynomial time

• Most everyone believes that NP 6= P, and all NP-Complete problems require exponential time on standard

computers – not yet been proven

23-44: NP-Completeness

• Why is NP-Completeness important?

• If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it

• What can we do, if we need to solve a problem that is NP-Complete?

23-45: NP-Completeness

• What can we do, if we need to solve a problem that is NP-Complete?

• If the problem we need to solve is very small (¡ 20), an exponential solution might be OK

• We can solve an approximation of the problem

• Color a graph using an non-optimal number of colors

• Find a Traveling Salesman tour that is not optimal

23-46: Impossible Problems

• Some problems are “easy” – require a fairly small amount of time to solve

CS245-2017S-23 NP-Completeness and Undecidablity 11

• Sorting

• Some problems are “probably hard” – believed to require exponential time to solve

• TSP, Graph Coloring, etc

• Some problems are “hard” – known to require an exponential amount of time to solve

• Towers of Hanoi

• Some problems are impossible – cannot be solved

23-47: Halting Problem

• Program is running – seems to be taking a long time

• We’d like to know if the program will eventually finish, or if it is in an infinite loop

• Great debugging tool:

• Takes as input the source code to a program p, and an input i

• Determines if p will run forever when run on i

23-48: Halting Problem

• Program is running – seems to be taking a long time

• We’d like to know if the program will eventually finish, or if it is in an infinite loop

• Great debugging tool:

• Takes as input the source code to a program p, and an input i

• Determines if p will run forever when run on i

• No such tool can exist!

23-49: Halting Problem

• We will prove that the halting problem is unsolvable by contradiction

• Assume that we have a solution to the halting problem

• Derive a contradiction

• Our original assumption (that the halting problem has a solution) must be false

23-50: Halting Problem

boolean halt(char [] program, char [] input) {

/* code to determine if the program

halts when run on the input */

if (program halts on input)

return true;

else

return false;

}

CS245-2017S-23 NP-Completeness and Undecidablity 12

23-51: Halting Problem

boolean selfhalt(char [] program) {

if (halt(program, program))

return true;

else

return false;

}

23-52: Halting Problem

boolean selfhalt(char [] program) {

if (halt(program, program))

return true;

else

return false;

}

void contrary(char [] program) {

if (selfhalt(program)

while(true); /* infinite loop */

}

23-53: Halting Problem

boolean selfhalt(char [] program) {

if (halt(program, program))

return true;

else

return false;

}

void contrary(char [] program) {

if (selfhalt(program)

while(true); /* infinite loop */

}

• what happens when we call contrary, passing in its own source code as input?

23-54: Reduction Example

• Hamiltonian Cycle:

• Given an unweighted, undirected graph G, is there a cycle that includes every vertex exactly once?

• Traveling Salesman Problem (TSP)

• Given a complete, weighed, undirected graph G and a cost bound k, is there a cycle that incldes every

vertex in G, with a cost < k?

23-55: Reduction Example

• If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle

problem in polynomial time

CS245-2017S-23 NP-Completeness and Undecidablity 13

• Given any graph G, we can create a new graph G′ and limit k, such that there is a Hamiltonian Circuit in

G if and only if there is a Traveling Salesman tour in G′ with cost less than k

• Vertices in G′ are the same as the vertices in G

• For each pair of vertices xi and xj in G, if the edge (xi, xj) is in G, add the edge (xi, xj) to G′ with the

cost 1. Otherwise, add the edge (xi, xj) to G′ with the cost 2.

• Set the limit k = # of vertices in G

23-56: Reduction Example

2 2

1

1

1

1

Limit = 4

23-57: Reduction Example

• If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time

• Start with an instance of Hamiltonian Cycle

• Create instance of TSP

• Feed instance of TSP into TSP solver

• Use result to find solution to Hamiltonian Cycle

23-58: Reduction Example #2

• Given any instance of the Hamiltonian Cycle Problem:

• We can (in polynomial time) create an instance of Satisfiability

• That is, given any graph G, we can create a boolean formula f , such that f is satisfiable if and only if there

is a Hamiltonian Cycle in G

• If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polyno-

mial Time

23-59: Reduction Example #2

• Given a graph G with n vertices, we will create a formula with n2 variables:

• x11, x12, x13, . . . x1n

x21, x22, x23, . . . x2n

. . .

xn1, xn2, xn3, . . . xnn

• Design our formula such that xij will be true if and only if the ith element in a Hamiltonian Circuit of G is

vertex # j

23-60: Reduction Example #2

CS245-2017S-23 NP-Completeness and Undecidablity 14

• For our set of n2 variables xij , we need to write a formula that ensures that:

• For each i, there is exactly one j such that xij = true

• For each j, there is exactly one i such that xij = true

• If xij and x(i+1)k are both true, then there must be a link from vj to vk in the graph G

23-61: Reduction Example #2

• For each i, there is exactly one j such that xij = true

• For each i in 1 . . . n, add the rules:

• (xi1||xi2|| . . . ||xin)

• This ensures that for each i, there is at least one j such that xij = true

• (This adds n clauses to the formula)

23-62: Reduction Example #2

• For each i, there is exactly one j such that xij = true

for each i in 1 . . . n
for each j in 1 . . . n

for each k in 1 . . . n j 6= k

Add rule (!xij ||!xik)

• This ensures that for each i, there is at most one j such that xij = true

• (this adds a total of n3 clauses to the formula)

23-63: Reduction Example #2

• If xij and x(i+1)k are both true, then there must be a link from vi to vk in the graph G

for each i in 1 . . . (n− 1)
for each j in 1 . . . n

for each k in 1 . . . n
if edge (vj , vk) is not in the graph:

Add rule (!xij ||!x(i+1)k)

• (This adds no more than n3 clauses to the formula)

23-64: Reduction Example #2

• If xnj and x0k are both true, then there must be a link from vi to vk in the graph G (looping back to finish cycle)

for each j in 1 . . . n
for each k in 1 . . . n

if edge (vn, v0) is not in the graph:

Add rule (!xnj ||!x0k)

CS245-2017S-23 NP-Completeness and Undecidablity 15

• (This adds no more than n2 clauses to the formula)

23-65: Reduction Example #2

• In order for this formula to be satisfied:

• For each i, there is exactly one j such that xij is true

• For each j, there is exactly one i such that xji is true

• if xij is true, and x(i+1)k is true, then there is an arc from vj to vk in the graph G

• Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

• Exact Cover Problem

• Set of elements A

• F ⊂ 2A, family of subsets

• Is there a subset of F such that each element of A appears exactly once?

23-67: More NP-Complete Problems

• Exact Cover Problem

• A = {a, b, c, d, e, f, g}

• F = {{a, b, c}, {d, e, f}, {b, f, g}, {g}}

• Exact cover exists:

{a, b, c}, {d, e, f}, {g}

23-68: More NP-Complete Problems

• Exact Cover Problem

• A = {a, b, c, d, e, f, g}

• F = {{a, b, c}, {c, d, e, f}, {a, f, g}, {c}}

• No exact cover exists

23-69: More NP-Complete Problems

• Exact Cover is NP-Complete

• Reduction from Satisfiability

• Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

• Solution to Exact Cover problem tells us solution to Satisfiability problem

• Satisfiability is NP-Complete =¿ Exact Cover is NP-Complete

23-70: Exact Cover is NP-Complete

• Given an instance of SAT:

• C1 = (x1 ∨ x2)

• C2 = (x1 ∨ x2 ∨ x3)

CS245-2017S-23 NP-Completeness and Undecidablity 16

• C3 = (x2)

• C4 = (x2 ∨ x3)

• Formula: C1 ∧C2 ∧ C3 ∧ C4

• Create an instance of Exact Cover

• Define a set A and family of subsets F such that there is an exact cover of A in F if and only if the formula

is satisfiable

23-71: Exact Cover is NP-Complete

C1 = (x1 ∨ x2) C2 = (x1 ∨ x2 ∨ x3) C3 = (x2) C4 = (x2 ∨ x3)

A = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31, p41, p42}
F = {{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42},
X1, f = {x1, p11}
X1, t = {x1, p21}
X2, f = {x2, p22, p31}
X2, t = {x2, p12, p41}
X3, f = {x3, p23}
X3, t = {x3, p42}

{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23}, {C3, p31}, {C4, p41}, {C4, p422}} 23-72: Directed Hamilto-

nian Cycle

• Given any directed graph G, determine if G has a a Hamiltonian Cycle

• Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-73: Directed Hamiltonian Cycle

• Given any directed graph G, determine if G has a a Hamiltonian Cycle

• Cycle that includes every node in the graph exactly once, following the direction of the arrows

23-74: Directed Hamiltonian Cycle

• The Directed Hamiltonian Cycle problem is NP-Complete

• Reduce Exact Cover to Directed Hamiltonian Cycle

• Given any set A, and family of subsets F :

• Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F

CS245-2017S-23 NP-Completeness and Undecidablity 17

23-75: Directed Hamiltonian Cycle

• Widgets:

• Consider the following graph segment:

a

d

b

c

u v w

• If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either a → u →
v → w → b or c → w → v → u → d – but not both (why)?

23-76: Directed Hamiltonian Cycle

• Widgets:

• XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a

d

b

c

23-77: Directed Hamiltonian Cycle

• Widgets:

• XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a

d

b

c f e

a b

f cde

23-78: Directed Hamiltonian Cycle

• Add a vertex for every variable in A (+ 1 extra)

CS245-2017S-23 NP-Completeness and Undecidablity 18

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

1a

0a

2a

3a
2

23-79: Directed Hamiltonian Cycle

• Add a vertex for every subset F (+ 1 extra)

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-80: Directed Hamiltonian Cycle

• Add an edge from the last variable to the 0th subset, and from the last subset to the 0th variable

CS245-2017S-23 NP-Completeness and Undecidablity 19

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-81: Directed Hamiltonian Cycle

• Add 2 edges from Fi to Fi+1. One edge will be a “short edge”, and one will be a “long edge”.

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-82: Directed Hamiltonian Cycle

• Add an edge from ai−1 to ai for each subset ai appears in.

CS245-2017S-23 NP-Completeness and Undecidablity 20

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

23-83: Directed Hamiltonian Cycle

• Each edge (ai−1, ai) corresponds to some subset that contains ai. Add an XOR link between this edge and the

long edge of the corresponding subset

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

XOR edge

23-84: Directed Hamiltonian Cycle

F = {a ,a }
F = {a }
F = {a ,a }

1

2

3

1

3

2 3

2F

1F

3F

0F

1a

0a

2a

3a
2

XOR edge

23-85: Directed Hamiltonian Cycle

CS245-2017S-23 NP-Completeness and Undecidablity 21

F = {a ,a }
F = {a ,a }
F = {a ,a }
F = {a }

1

2

3

4

2

2

1

2

4

3

2F

1F

3F

4F

0F

2a

1a

3a

4a

0a

4

XOR edge

