
CS245-2017S-04 Stacks and Queues 1

04-0: Abstract Data Types

• An Abstract Data Type is a definition of a type based on the operations that can be performed on it.

• An ADT is an interface

• Data in an ADT cannot be manipulated directly – only through operations defined in the interface

04-1: Abstract Data Types

• To define an ADT, give the operations that can be performed on it

• The ADT says nothing about how the operations are performed

• Could have different implementations of the same ADT

• First ADT for thie class: Stack

04-2: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

• Add an element to the top of the stack

• Remove the top element

• Check if the stack is empty

04-3: Stack Implementation

Array:

04-4: Stack Implementation

Array:

• Stack elements are stored in an array

• Top of the stack is the end of the array

• If the top of the stack was the beginning of the array, a push or pop would require moving all elements in

the array

• Push: data[top++] = elem

• Pop: elem = data[--top]

04-5: Stack Implementation

• See code & Visualizaion

04-6: Θ() For Stack Operations

Array Implementation:

push

pop

empty()

04-7: Θ() For Stack Operations

Array Implementation:



CS245-2017S-04 Stacks and Queues 2

push Θ(1)
pop Θ(1)
empty() Θ(1)

04-8: Stack Implementation

Linked List:

04-9: Stack Implementation

Linked List:

• Stack elements are stored in a linked list

• Top of the stack is the front of the linked list

• push: top = new Link(elem, top)

• pop: elem = top.element(); top = top.next()

04-10: Stack Implementation

• See code & Visualization

04-11: Θ() For Stack Operations

Linked List Implementation:

push

pop

empty()

04-12: Θ() For Stack Operations

Linked List Implementation:

push Θ(1)
pop Θ(1)
empty() Θ(1)

04-13: Queue

A Queue is a First-In, First-Out (FIFO) data structure.

Queue Operations:

• Add an element to the end (tail) of the Queue

• Remove an element from the front (head) of the Queue

• Check if the Queue is empty

04-14: Queue Implementation

Linked List:

04-15: Queue Implementation

Linked List:

• Maintain a pointer to the first and last element in the Linked List

• Add elements to the back of the Linked List

• Remove elements from the front of the linked list

•

Enqueue: tail.setNext(new link(elem,null));

tail = tail.next()

•

Dequeue: elem = head.element();

head = head.next();



CS245-2017S-04 Stacks and Queues 3

04-16: Queue Implementation

• See code & visualization

04-17: Queue Implementation

Array:

04-18: Queue Implementation

Array:

• Store queue elements in a circular array

• Maintain the index of the first element (head) and the next location to be inserted (tail)

•

Enqueue: data[tail] = elem;

tail = (tail + 1) % size

•

Dequeue: elem = data[head];

head = (head + 1) % size

04-19: Queue Implementation

• Se code & visualization

04-20: Modifying Stacks

“Minimum Stacks” have one additional operation:

• minimum: return the minimum value stored in the stack

Can you implement a O(n) minimum?

04-21: Modifying Stacks

“Minimum Stacks” have one additional operation:

• minimum: return the minimum value stored in the stack

Can you implement a O(n) minimum?

Can you implement a Θ(1) minimum?

push, pop must remain Θ(1) as well! 04-22: Modifying Queues

• We’d like our array-based queues and our linked list-based queues to behave in the same way

• How do they behave differently, given the implementation we’ve seen so far?

04-23: Modifying Queues

• We’d like our array-based queues and our linked list-based queues to behave in the same way

• How do they behave differently, given the implementation we’ve seen so far?

• Array-based queues can get full

• How can we fix this?

04-24: Modifying Queues

• Growing queues



CS245-2017S-04 Stacks and Queues 4

• If we do a Enqueue on a full queue, we can:

• Create a new array, that is twice as big as the old array

• Copy all of the data across to the new array

• Replace the old array with a new array

• Why is this a little tricky?

04-25: Modifying Queues

• Growing queues

• If we do a Enqueue on a full queue, we can:

• Create a new array, that is twice as big as the old array

• Copy all of the data across to the new array

• Replace the old array with a new array

• Why is this a little tricky?

• Queue could wrap around the end of the array (examples!)

04-26: Modifying Queues

• Growing stacks/queues

• Why do we double the size of the queue when it gets full, instead of just increasing the size by a constant

amount

• Hint – think about running times

04-27: Modifying Queues

• Growing stacks/queues

• What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size

of the stack/queue when it is full)

• What is the running time for n enqueues/pushes?

04-28: Modifying Queues

• Growing stacks/queues

• What is the running time for a single enqueue/push, if we allow the stack to grow? (by doubling the size

of the stack/queue when it is full)

• O(n), for a stack size of n

• What is the running time for n enqueues/pushes?

• O(n) – so each push/enqueue takes O(1) on average

04-29: Modifying Queues

• Growing stacks/queues

• What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements

when the stack/queue is full)

• What is the running time for n enqueues/pushes?



CS245-2017S-04 Stacks and Queues 5

04-30: Modifying Queues

• Growing stacks/queues

• What is the running time for a single enqueue/push, if we allow the stack to grow? (by adding k elements

when the stack/queue is full)

• O(n), for a sack size of n

• What is the running time for n enqueues/pushes?

• O(n ∗ n/k) = O(n2), if k is a constant

• Each enqueue/dequeue takes time O(n) on average!

04-31: Amortized Analysis

• Figuring out how long an algorithm takes to run on average, by adding up how long a sequence of operations

takes, is called Amortized Analysis

• Washing Machine example

• Cost of a washing machine

• Amortized cost per wash

• We’ll take quite a bit about amortized analysis, complete with some more formal mathematics, later in the

semester.


