
CS245-2017S-06 Binary Search Trees 1

06-0: Ordered List ADT

Operations:

• Insert an element in the list

• Check if an element is in the list

• Remove an element from the list

• Print out the contents of the list, in order

06-1: Implementing Ordered List

Using an Ordered Array – Running times:

Check

Insert

Remove

Print

06-2: Implementing Ordered List

Using an Ordered Array – Running times:

Check Θ(lg n)
Insert Θ(n)
Remove Θ(n)
Print Θ(n)

06-3: Implementing Ordered List

Using an Unordered Array – Running times:

Check

Insert

Remove

Print

06-4: Implementing Ordered List

Using an Unordered Array – Running times:

Check Θ(n)
Insert Θ(1)
Remove Θ(n) Need to find element first!

Print Θ(n lgn)
(Given a fast sorting algorithm)

06-5: Implementing Ordered List

Using an Ordered Linked List – Running times:

Check

Insert

Remove

Print

06-6: Implementing Ordered List

Using an Ordered Linked List – Running times:



CS245-2017S-06 Binary Search Trees 2

Check Θ(n)
Insert Θ(n)
Remove Θ(n)
Print Θ(n)

06-7: The Best of Both Worlds

• Linked Lists – Insert fast / Find slow

• Arrays – Find fast / Insert slow

• The only way to examine nth element in a linked list is to traverse (n-1) other elements

4 8 12 15 22 25 28

• If we could leap to the middle of the list ...

06-8: The Best of Both Worlds

4 8 12 15 22 25 28

06-9: The Best of Both Worlds

4 8 12 15 22 25 28

Move the initial pointer to the middle of the list:

4 8 12 15 22 25 28

We’ve cut our search time in half! Have we changed the Θ() running time?

06-10: The Best of Both Worlds

4 8 12 15 22 25 28

Move the initial pointer to the middle of the list:

4 8 12 15 22 25 28

We’ve cut our search time in half! Have we changed the Θ() running time?

Repeat the process!

06-11: The Best of Both Worlds

4 8 12 15 22 25 28

4 8 12 15 22 25 28



CS245-2017S-06 Binary Search Trees 3

4 8 12 15 22 25 28

06-12: The Best of Both Worlds Grab the first element of the list:

4 8 12 15 22 25 28

Give it a good shake -

4

8

12

15

22

25

28

06-13: Binary Trees

Binary Trees are Recursive Data Structures

• Base Case: Empty Tree

• Recursive Case: Node, consiting of:

• Left Child (Tree)

• Right Child (Tree)

• Data

06-14: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)

A

B C

D E

F

A

B

C

D

A

B C

F GD E

06-15: Tree Terminology

• Parent / Child



CS245-2017S-06 Binary Search Trees 4

• Leaf node

• Root node

• Edge (between nodes)

• Path

• Ancestor / Descendant

• Depth of a node n

• Length of path from root to n

• Height of a tree

• (Depth of deepest node) + 1

06-16: Full Binary Tree

• Each node has 0 or 2 children

• Full Binary Trees

• Not Full Binary Trees

06-17: Complete Binary Tree

• Can be built by starting at the root, and filling the tree by levels from left to right

• Complete Binary Trees

• Not Complete Binary Trees



CS245-2017S-06 Binary Search Trees 5

06-18: Binary Search Trees

• Binary Trees

• For each node n, (value stored at node n) ≥ (value stored in left subtree)

• For each node n, (value stored at node n) < (value stored in right subtree)

06-19: Example Binary Search Trees

D

C

B

A

D

B F

E GA c

A

B

C

D

06-20: Implementing BSTs

• Each Node in a BST is implemented as a class:

public class Node {

public Comparable data;

public Node left;

public Node right;

}

06-21: Implementing BSTs

public class Node {

public Node(Comparable data, Node left, Node right) {

this.data = data;

this.left = left;

this.right = right;

}

public Node left() {

return left;

}

public Node setLeft(Node newLeft) {

left = newLeft

}

... (etc)

private Comparable data;

private Node left;

private Node right;

}

06-22: Finding an Element in a BST

• Binary Search Trees are recursive data structures, so most operations on them will be recursive as well



CS245-2017S-06 Binary Search Trees 6

• Recall how to write a recursive algorithm ...

06-23: Writing a Recursive Algorithm

• Determine a small version of the problem, which can be solved immediately. This is the base case

• Determine how to make the problem smaller

• Once the problem has been made smaller, we can assume that the function that we are writing will work correctly

on the smaller problem (Recursive Leap of Faith)

• Determine how to use the solution to the smaller problem to solve the larger problem

06-24: Finding an Element in a BST

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?

06-25: Finding an Element in a BST

• First, the Base Case – when is it easy to determine if an element is stored in a Binary Search Tree?

• If the tree is empty, then the element can’t be there

• If the element is stored at the root, then the element is there

06-26: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

06-27: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

• Both the left and right subtrees are smaller versions of the problem. Which one do we use?

06-28: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

• Both the left and right subtrees are smaller versions of the problem. Which one do we use?

• If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use

the right subtree.

06-29: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?

• Both the left and right subtrees are smaller versions of the problem. Which one do we use?

• If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use

the right subtree.

• How do we use the solution to the subproblem to solve the original problem?

06-30: Finding an Element in a BST

• Next, the Recursive Case – how do we make the problem smaller?



CS245-2017S-06 Binary Search Trees 7

• Both the left and right subtrees are smaller versions of the problem. Which one do we use?

• If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use

the right subtree.

• How do we use the solution to the subproblem to solve the original problem?

• The solution to the subproblem is the solution to the original problem (this is not always the case in

recursive algorithms)

06-31: Finding an Element in a BST

To find an element e in a Binary Search Tree T :

• If T is empty, then e is not in T

• If the root of T contains e, then e is in T

• If e < the element stored in the root of T :

• Look for e in the left subtree of T

Otherwise

• Look for e in the right subtree of T

06-32: Finding an Element in a BST

boolean find(Node tree, Comparable elem) {

if (tree == null)

return false;

if (elem.compareTo(tree.element()) == 0)

return true;

if (elem.compareTo(tree) < 0)

return find(tree.left(), elem);

else

return find(tree.right(), elem);

}

06-33: Printing out a BST

To print out all element in a BST:

• Print all elements in the left subtree, in order

• Print out the element at the root of the tree

• Print all elements in the right subtree, in order

06-34: Printing out a BST

To print out all element in a BST:

• Print all elements in the left subtree, in order

• Print out the element at the root of the tree

• Print all elements in the right subtree, in order



CS245-2017S-06 Binary Search Trees 8

• Each subproblem is a smaller version of the original problem – we can assume that a recursive call will

work!

06-35: Printing out a BST

• What is the base case for printing out a Binary Search Tree – what is an easy tree to print out?

06-36: Printing out a BST

• What is the base case for printing out a Binary Search Tree – what is an easy tree to print out?

• An empty tree is extremely easy to print out – do nothing!

• Code for printing a BST ...

06-37: Printing out a BST

void print(Node tree) {

if (tree != null) {

print(tree.left());

System.out.println(tree.element());

print(tree.right());

}

}

06-38: Printing out a BST

Examples

06-39: Tree Traversals

• PREORDER Traversal

• Do operation on root of the tree

• Traverse left subtree

• Traverse right subtree

• INORDER Traversal

• Traverse left subtree

• Do operation on root of the tree

• Traverse right subtree

• POSTORDER Traversal

• Traverse left subtree

• Traverse right subtree

• Do operation on root of the tree

06-40: PREORDER Examples

06-41: POSTORDER Examples

06-42: INORDER Examples

06-43: BST Minimal Element

To find the minimal element in a BST:



CS245-2017S-06 Binary Search Trees 9

• Base Case: When is it easy to find the smallest element in a BST?

• Recursive Case: How can we make the problem smaller?

How can we use the solution to the smaller problem to solve the original problem?

06-44: BST Minimal Element

To find the minimal element in a BST:

Base Case:

• When is it easy to find the smallest element in a BST?

06-45: BST Minimal Element

To find the minimal element in a BST:

Base Case:

• When is it easy to find the smallest element in a BST?

• When the left subtree is empty, then the element stored at the root is the smallest element in the tree.

06-46: BST Minimal Element

To find the minimal element in a BST:

Recursive Case:

• How can we make the problem smaller?

06-47: BST Minimal Element

To find the minimal element in a BST:

Recursive Case:

• How can we make the problem smaller?

• Both the left and right subtrees are smaller versions of the same problem

• How can we use the solution to a smaller problem to solve the original problem?

06-48: BST Minimal Element

To find the minimal element in a BST:

Recursive Case:

• How can we make the problem smaller?

• Both the left and right subtrees are smaller versions of the same problem

• How can we use the solution to a smaller problem to solve the original problem?

• The smallest element in the left subtree is the smallest element in the tree

06-49: BST Minimal Element

Comparable minimum(Node tree) {

if (tree == null)

return null;

if (tree.left() == null)

return tree.element();

else

return minimum(tree.left());

}



CS245-2017S-06 Binary Search Trees 10

06-50: BST Minimal Element

Iterative Version

Comparable minimum(Node tree) {

if (tree == null)

return null;

while (tree.left() != null)

tree = tree.left();

return tree.element();

}

06-51: Inserting e into BST T

• What is the base case – an easy tree to insert an element into?

06-52: Inserting e into BST T

• What is the base case – an easy tree to insert an element into?

• An empty tree

• Create a new tree, containing the element e

06-53: Inserting e into BST T

• Recursive Case: How do we make the problem smaller?

06-54: Inserting e into BST T

• Recursive Case: How do we make the problem smaller?

• The left and right subtrees are smaller versions of the same problem.

• How do we use these smaller versions of the problem?

06-55: Inserting e into BST T

• Recursive Case: How do we make the problem smaller?

• The left and right subtrees are smaller versions of the same problem

• Insert the element into the left subtree if e ≤ value stored at the root, and insert the element into the right

subtree if e > value stored at the root

06-56: Inserting e into BST T

• Base case – T is empty:

• Create a new tree, containing the element e

• Recursive Case:

• If e is less than the element at the root of T , insert e into left subtree

• If e is greater than the element at the root of T , insert e into the right subtree

06-57: Tree Manipulation in Java



CS245-2017S-06 Binary Search Trees 11

• Tree manipulation functions return trees

• Insert method takes as input the old tree and the element to insert, and returns the new tree, with the element

inserted

• Old value (pre-insertion) of tree will be destroyed

• To insert an element e into a tree T:

• T = insert(T, e);

06-58: Inserting e into BST T

Node insert(Node tree, Comparable elem) {

if (tree == null) {

return new Node(elem);

if (elem.compareTo(tree.element() <= 0)) {

tree.setLeft(insert(tree.left(), elem));

return tree;

} else {

tree.setRight(insert(tree.right(), elem));

return tree;

}

}

06-59: Deleting From a BST

• Removing a leaf:

06-60: Deleting From a BST

• Removing a leaf:

• Remove element immediately

06-61: Deleting From a BST

• Removing a leaf:

• Remove element immediately

• Removing a node with one child:

06-62: Deleting From a BST

• Removing a leaf:

• Remove element immediately

• Removing a node with one child:

• Just like removing from a linked list

• Make parent point to child

06-63: Deleting From a BST



CS245-2017S-06 Binary Search Trees 12

• Removing a leaf:

• Remove element immediately

• Removing a node with one child:

• Just like removing from a linked list

• Make parent point to child

• Removing a node with two children:

06-64: Deleting From a BST

• Removing a leaf:

• Remove element immediately

• Removing a node with one child:

• Just like removing from a linked list

• Make parent point to child

• Removing a node with two children:

• Replace node with largest element in left subtree, or the smallest element in the right subtree

06-65: Comparable vs. .key() method

• We have been storing “Comparable” elements in BSTs

• Alternately, could use a “key()” method – elements stored in BSTs must implement a key() method, which

returns an integer.

• We can combine the two methods

• Each element stored in the tree has a key() method

• key() method returns Comparable class

06-66: BST Implementation Details

• Use BSTs to implement Ordered List ADT

• Operations

• Insert

• Find

• Remove

• Print in Order

• The specification (interface) should not specify an implementation

• Allow several different implementations of the same interface

06-67: BST Implementation Details

• BST functions require the root of the tree be sent in as a parameter



CS245-2017S-06 Binary Search Trees 13

• Ordered list functions should not contain implementation details!

• What should we do?

06-68: BST Implementation Details

• BST functions require the root of the tree be sent in as a parameter

• Ordered list functions should not contain implementation details!

• What should we do?

• Private variable, holds root of the tree

• Private recursive methods, require root as an argument

• Public methods call private methods, passing in private root


