
Data Structures and Algorithms
CS245-2008S-P2

Huffman Codes
Project 2

David Galles

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles


P2-0: Text Files

All files are represented as binary digits – including
text files

Each character is represented by an integer code
ASCII – American Standard Code for
Information Interchange

Text file is a sequence of binary digits which
represent the codes for each character.



P2-1: ASCII

Each character can be represented as an 8-bit
number

ASCII for a = 97 = 01100001
ASCII for b = 98 = 01100010

Text file is a sequence of 1’s and 0’s which
represent ASCII codes for characters in the file

File “aba” is 97, 97, 98
011000010110001001100001



P2-2: ASCII

Each character in ASCII is represented as 8 bits
We need 8 bits to represent all possible
character combinations

(including control characters, and unprintable
characters)

Breaking up file into individual characters is
easy
Finding the kth character in a file is easy



P2-3: ASCII

ASCII is not terribly efficient
All characters require 8 bits
Frequently used characters require the same
number of bits as infrequently used characters
We could be more efficient if frequently used
characters required fewer than 8 bits, and less
frequently used characters required more bits



P2-4: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d
(instead of 256 characters)

How many bits are required for each code, if
each code has the same length?



P2-5: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d
(instead of 256 characters)

How many bits are required for each code, if
each code has the same length?
2 bits are required, since there are 4 possible
options to distinguish



P2-6: Representing Codes as Trees

Want to encode 4 only characters: a, b, c, d

Pick the following codes:
a: 00
b: 01
c: 10
d: 11

We can represent these codes as a tree
Characters are stored at the leaves of the tree
Code is represented by path to leaf



P2-7: Representing Codes as Trees

a: 00, b: 01, c: 10, d:11

a b c d

0 1

0 01 1



P2-8: Representing Codes as Trees

a: 01, b: 00, c: 11, d:10

ab cd

0 1

0 01 1



P2-9: Prefix Codes

If no code is a prefix of any other code, then
decoding the file is unambiguous.

If all codes are the same length, then no code will
be a prefix of any other code (trivially)

We can create variable length codes, where no
code is a prefix of any other code



P2-10: Variable Length Codes

Variable length code example:
a: 0, b: 100, c: 101, d: 11

Decoding examples:
100
10011
01101010010011



P2-11: Prefix Codes & Trees

Any prefix code can be represented as a tree

a: 0, b: 100, c: 101, d: 11

c

d

0 1

0

0

1

1a

b



P2-12: File Length

If we use the code:
a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20
characters?



P2-13: File Length

If we use the code:
a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20
characters?

20 characters * 2 bits/character = 40 bits



P2-14: File Length

If we use the code:
a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20
characters?



P2-15: File Length

If we use the code:
a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20
characters?

It depends upon the number of a’s, b’s, c’s and d’s
in the file



P2-16: File Length

If we use the code:
a:0, b:100, c:101, d:11

How many bits are required to encode a file of:
11 a’s, 2 b’s, 2 c’s, and 5 d’s?



P2-17: File Length

If we use the code:
a:0, b:100, c:101, d:11

How many bits are required to encode a file of:
11 a’s, 2 b’s, 2 c’s, and 5 d’s?

11*1 + 2*3 + 2*3 + 5*2 = 33 < 40



P2-18: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

c

d

0 1

0

0

1

1a

b

0111001010011



P2-19: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

Finding the kth character in the file is more tricky



P2-20: Decoding Files

We can use variable length keys to encode a text
file

Given the encoded file, and the tree representation
of the codes, it is easy to decode the file

Finding the kth character in the file is more tricky
Need to decode the first (k-1) characters in the
file, to determine where the kth character is in
the file



P2-21: File Compression

We can use variable length codes to compress files
Select an encoding such that frequently used
characters have short codes, less frequently
used characters have longer codes
Write out the file using these codes
(If the codes are dependent upon the contents
of the file itself, we will also need to write out the
codes at the beginning of the file for decoding)



P2-22: File Compression

We need a method for building codes such that:
Frequently used characters are represented by
leaves high in the code tree
Less Frequently used characters are
represented by leaves low in the code tree
Characters of equal frequency have equal
depths in the code tree



P2-23: Huffman Coding

For each code tree, we keep track of the total
number of times the characters in that tree appear
in the input file

We start with one code tree for each character that
appears in the input file

We combine the two trees with the lowest
frequency, until all trees have been combined into
one tree



P2-24: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1



P2-25: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1

 :16



P2-26: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15

b:20

e:1

 :16

 :36



P2-27: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66



P2-28: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166



P2-29: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10



P2-30: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20



P2-31: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20 :20



P2-32: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10

e:10:20 :20

:30



P2-33: Huffman Coding

Example: If the letters a-e have the frequencies:
a: 10, b: 10, c:10, d: 10, e: 10

a:10

d:10c:10

b:10 e:10

:20

:20

:30

:30



P2-34: Huffman Trees & Tables

Once we have a Huffman tree, decoding a file is
straightforward – but encoding a tree requires a bit
more information.

Given just the tree, finding an encoding can be
difficult

... What would we like to have, to help with
encoding?



P2-35: Encoding Tables

a 0
b 100
c 1010
d 11
e 1011

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166



P2-36: Creating Encoding Table

Traverse the tree
Keep track of the path during the traversal

When a leaf is reached, store the path in the table



P2-37: Huffman Coding

To compress a file using huffman coding:
Read in the file, and count the occurrence of
each character, and built a frequency table
Build the Huffman tree from the frequencies
Build the Huffman codes from the tree
Print the Huffman tree to the output file (for use
in decompression)
Print out the codes for each character



P2-38: Huffman Coding

To uncompress a file using huffman coding:
Read in the Huffman tree from the input file
Read the input file bit by bit, traversing the
Huffman tree as you go
When a leaf is read, write the appropriate file to
an output file



P2-39: Binary Files

public BinaryFile(String filename,
char readOrWrite)

public boolean EndOfFile()
public char readChar()
public void writeChar(char c)

public boolean readBit()
public void writeBit(boolean bit)

public void close()



P2-40: Binary Files

readBit
Read a single bit

readChar
Read a single character (8 bits)



P2-41: Binary Files

writeBit
Writes out a single bit

writeChar
Writes out a single (8 bit) character



P2-42: Binary Files

If we write to a binary file:
bit, bit, char, bit, int

And then read from the file:
bit, char, bit, int, bit

What will we get out?



P2-43: Binary Files

If we write to a binary file:
bit, bit, char, bit, int

And then read from the file:
bit, char, bit, int, bit

What will we get out?

Garbage! (except for the first bit)



P2-44: Printing out Trees

To print out Huffman trees:
Print out nodes in pre-order traversal
Need a way of denoting which nodes are leaves
and which nodes are interior nodes

(Huffman trees are full – every node has 0 or
2 children)

For each interior node, print out a 0 (single bit).
For each leaf, print out a 1, followed by 8 bits for
the character at the leaf



P2-45: Command Line Arguments

public static void main(String args[])

The args parameter holds the input parameters

java MyProgram arg1 arg2 arg3
args.length = 3
args[0] = “arg1”
args[1] = “arg2”
args[2] = “arg3”



P2-46: Calling Huffman

java Huffman (-c|-u) [-v] infile outfile

(-c|-u) stands for either “-c” (for compress), or
“-u” (for uncompress)

[-v] stands for an optional “-v” flag (for verbose)

infile is the input file

outfile is the output file


	{small lecturenumber -	heblocknumber :} Text Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} ASCIIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Representing Codes as Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prefix Codesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variable Length Codesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Prefix Codes & Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Decoding Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Compressionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} File Compressionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Trees & Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Encoding Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Creating Encoding Tableaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Huffman Codingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Binary Filesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Printing out Treesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Command Line Argumentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Calling Huffmanaddtocounter {blocknumber}{1}

