Computer Science 245

Homework 2

Algorithm Analysis II

Due Wednesday, February 11th, 2015

1. For each of the following recursive functions:

- (1 point) Describe what the function computes (careful, some of these are tricky!)
- (1 point) Give a recurrence relation that describes the running time of the function (Give both base and recursive cases)
- (1 point) Solve the recurrence to get a Θ running time for the function. Use either the repeated substitution method, or the recursion tree method (which is essentially the same as the repeated substitution method, just a little more graphical). Do not use the master method for this question (you will have a chance to use the master method on later questions!)

```
(a) int recursive1(int n)
    {
        if (n == 0)
            return 0;
        else
            1 + recursive1(n-1);
    }
(b) int recursive2(int n)
    {
        if (n == 0)
        return 1;
        else
            recursive2(n-1) + recursive2(n-1);
    }
(c) int recursive3(int n)
    {
        if (n == 0)
        return 1;
        else
        2 * recursive3(n-1);
    }
(d) int recursive4(int n)
    {
    int no_op;
    if (n > 1)
    {
        for (int i = 0; i < n; i++)
        {
            no_op++;
        }
        return recursive4(n/2) * recursive4(n/2);
    }
    else
    {
        return 0;
    }
}
```

2. Use the substitution method (that is, proof by induction) to prove the following bounds:
(a) (3 points) $O\left(n^{2}\right)$ bound for:

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =T(n-2)+C_{2} n
\end{aligned}
$$

(b) (3 points) $O\left(2^{n}\right)$ bound for:

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =2 T(n-1)+C_{2}
\end{aligned}
$$

3. Use the master method to find Θ bounds for the following recurrence relations:
(a) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =4 T(n / 4)+n^{2}
\end{aligned}
$$

(b) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =16 T(n / 2)+n^{4}+2 n^{2}+n
\end{aligned}
$$

(c) (1 point)

$$
\begin{aligned}
T(0) & =C_{1} \\
T(1) & =C_{1} \\
T(n) & =4 T(n / 2)+n
\end{aligned}
$$

