
CS245-2012S-P2
Huffman Codes

Project 2 1

P2-0:Text Files

• All files are represented as binary digits – including text files

• Each character is represented by an integer code

• ASCII – American Standard Code for Information Interchange

• Text file is a sequence of binary digits which represent the codes for each character.

P2-1:ASCII

• Each character can be represented as an 8-bit number

• ASCII for a = 97 = 01100001

• ASCII for b = 98 = 01100010

• Text file is a sequence of 1’s and 0’s which represent ASCII codes for characters in the file

• File “aba” is 97, 97, 98

• 011000010110001001100001

P2-2:ASCII

• Each character in ASCII is represented as 8 bits

• We need 8 bits to represent all possible character combinations

• (including control characters, and unprintable characters)

• Breaking up file into individual characters is easy

• Finding the kth character in a file is easy

P2-3:ASCII

• ASCII is not terribly efficient

• All characters require 8 bits

• Frequently used characters require the same number of bits as infrequently used characters

• We could be more efficient if frequently used characters required fewer than 8 bits, and less frequently
used characters required more bits

P2-4:Representing Codes as Trees

• Want to encode 4 only characters: a, b, c, d (instead of 256 characters)

• How many bits are required for each code, if each code has the same length?

P2-5:Representing Codes as Trees

• Want to encode 4 only characters: a, b, c, d (instead of 256 characters)

• How many bits are required for each code, if each code has the same length?

• 2 bits are required, since there are 4 possible options to distinguish

P2-6:Representing Codes as Trees



CS245-2012S-P2
Huffman Codes

Project 2 2

• Want to encode 4 only characters: a, b, c, d

• Pick the following codes:

• a: 00

• b: 01

• c: 10

• d: 11

• We can represent these codes as a tree

• Characters are stored at the leaves of the tree

• Code is represented by path to leaf

P2-7:Representing Codes as Trees

• a: 00, b: 01, c: 10, d:11

a b c d

0 1

0 01 1

P2-8:Representing Codes as Trees

• a: 01, b: 00, c: 11, d:10

ab cd

0 1

0 01 1

P2-9:Prefix Codes

• If no code is a prefix of any other code, then decoding the file isunambiguous.

• If all codes are the same length, then no code will be a prefix ofany other code (trivially)

• We can create variable length codes, where no code is a prefix of any other code



CS245-2012S-P2
Huffman Codes

Project 2 3

P2-10:Variable Length Codes

• Variable length code example:

• a: 0, b: 100, c: 101, d: 11

• Decoding examples:

• 100

• 10011

• 01101010010011

P2-11:Prefix Codes & Trees

• Any prefix code can be represented as a tree

• a: 0, b: 100, c: 101, d: 11

c

d

0 1

0

0

1

1a

b

P2-12:File Length

• If we use the code:

• a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20 characters?

P2-13:File Length

• If we use the code:

• a:00, b:01, c:10, d:11

How many bits are required to encode a file of 20 characters?

• 20 characters * 2 bits/character = 40 bits

P2-14:File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20 characters?



CS245-2012S-P2
Huffman Codes

Project 2 4

P2-15:File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of 20 characters?

• It depends upon the number of a’s, b’s, c’s and d’s in the file

P2-16:File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

• 11 a’s, 2 b’s, 2 c’s, and 5 d’s?

P2-17:File Length

• If we use the code:

• a:0, b:100, c:101, d:11

How many bits are required to encode a file of:

• 11 a’s, 2 b’s, 2 c’s, and 5 d’s?

• 11*1 + 2*3 + 2*3 + 5*2 = 33 ¡ 40

P2-18:Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

c

d

0 1

0

0

1

1a

b

• 0111001010011

P2-19:Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

• Finding the kth character in the file is more tricky



CS245-2012S-P2
Huffman Codes

Project 2 5

P2-20:Decoding Files

• We can use variable length keys to encode a text file

• Given the encoded file, and the tree representation of the codes, it is easy to decode the file

• Finding the kth character in the file is more tricky

• Need to decode the first (k-1) characters in the file, to determine where the kth character is in the file

P2-21:File Compression

• We can use variable length codes to compress files

• Select an encoding such that frequently used characters have short codes, less frequently used characters
have longer codes

• Write out the file using these codes

• (If the codes are dependent upon the contents of the file itself, we will also need to write out the codes at
the beginning of the file for decoding)

P2-22:File Compression

• We need a method for building codes such that:

• Frequently used characters are represented by leaves high in the code tree

• Less Frequently used characters are represented by leaves low in the code tree

• Characters of equal frequency have equal depths in the code tree

P2-23:Huffman Coding

• For each code tree, we keep track of the total number of times the characters in that tree appear in the input file

• We start with one code tree for each character that appears inthe input file

• We combine the two trees with the lowest frequency, until alltrees have been combined into one tree

P2-24:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15b:20 e:1
P2-25:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1



CS245-2012S-P2
Huffman Codes

Project 2 6

a:100 d:30c:15b:20 e:1

 :16

P2-26:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100 d:30c:15

b:20

e:1

 :16

 :36

P2-27:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

P2-28:Huffman Coding

• Example: If the letters a-e have the frequencies:



CS245-2012S-P2
Huffman Codes

Project 2 7

• a: 100, b: 20, c:15, d: 30, e: 1

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166

P2-29:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10
P2-30:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20

P2-31:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10 e:10

:20 :20

P2-32:Huffman Coding



CS245-2012S-P2
Huffman Codes

Project 2 8

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10 d:10c:10b:10

e:10:20 :20

:30

P2-33:Huffman Coding

• Example: If the letters a-e have the frequencies:

• a: 10, b: 10, c:10, d: 10, e: 10

a:10

d:10c:10

b:10 e:10

:20

:20

:30

:30

P2-34:Huffman Trees & Tables

• Once we have a Huffman tree, decoding a file is straightforward – but encoding a tree requires a bit more
information.

• Given just the tree, finding an encoding can be difficult

• ... What would we like to have, to help with encoding?

P2-35:Encoding Tables



CS245-2012S-P2
Huffman Codes

Project 2 9

a 0
b 100
c 1010
d 11
e 1011

a:100

d:30

c:15

b:20

e:1

 :16

 :36

 :66

 :166

P2-36:Creating Encoding Table

• Traverse the tree

• Keep track of the path during the traversal

• When a leaf is reached, store the path in the table

P2-37:Huffman Coding

• To compress a file using huffman coding:

• Read in the file, and count the occurrence of each character, and built a frequency table

• Build the Huffman tree from the frequencies

• Build the Huffman codes from the tree

• Print the Huffman tree to the output file (for use in decompression)

• Print out the codes for each character

P2-38:Huffman Coding

• To uncompress a file using huffman coding:

• Read in the Huffman tree from the input file

• Read the input file bit by bit, traversing the Huffman tree as you go

• When a leaf is read, write the appropriate file to an output file

P2-39:Magic Numbers

• We only want to uncompress files that we actually compressed ourselves

• Write a “Magic Number” at the beginning of compressed file

• For this project, use 0x4846 (ASCII ’HF’)

• When uncompressing, first check to see that magic number is correct

P2-40:Binary Files



CS245-2012S-P2
Huffman Codes

Project 2 10

public BinaryFile(String filename,
char readOrWrite)

public boolean EndOfFile()
public char readChar()
public void writeChar(char c)

public boolean readBit()
public void writeBit(boolean bit)

public void close()

P2-41:Binary Files

• readBit

• Read a single bit

• readChar

• Read a single character (8 bits)

P2-42:Binary Files

• writeBit

• Writes out a single bit

• writeChar

• Writes out a single (8 bit) character

P2-43:Binary Files

• If we write to a binary file:

• bit, bit, char, bit, int

• And then read from the file:

• bit, char, bit, int, bit

• What will we get out?

P2-44:Binary Files

• If we write to a binary file:

• bit, bit, char, bit, int

• And then read from the file:

• bit, char, bit, int, bit

• What will we get out?

• Garbage! (except for the first bit)



CS245-2012S-P2
Huffman Codes

Project 2 11

P2-45:Printing out Trees

• To print out Huffman trees:

• Print out nodes in pre-order traversal

• Need a way of denoting which nodes are leaves and which nodes are interior nodes

• (Huffman trees are full – every node has 0 or 2 children)

• For each interior node, print out a 0 (single bit). For each leaf, print out a 1, followed by 8 bits for the
character at the leaf

P2-46:Compression?

• Is it possible that huffman compression would not compress the file?

• Is it possible that huffman compression could actually makethe file larger?

• How?

P2-47:Compression?

• What happens if all the charcters have the same frequency?

• What does the tree look like?

• What can we say about the lengths of the codes for each character?

• What does that mean for the file size?

P2-48:Compression?

• What happens if all the charcters have the same frequency?

• All nodes are at the same depth in the tree (that is, 8)

• Each code will have a length of 8

• The encoded file will be the same size as the original file –plus the size required to encode the tree

P2-49:Compression!

• What to do?

• Calculate the size of the input file

• Calculate the size that the compressed file would be

• If the compressed file is larger than than the input file, don’tcompress

P2-50:Compression!

• Given the frequency array, how large is the input file?

P2-51:Compression!

• Given the frequency array, how large is the input file?

•

∑
c
freq(c) ∗ len(c)

• (# of characters in the input file) * 8



CS245-2012S-P2
Huffman Codes

Project 2 12

P2-52:Compression!

• Given the frequency array & codes for each compressed element, how large is the compressed file?

P2-53:Compression!

• Given the frequency array & codes for each compressed element, how large is the compressed file?

•

∑
c
freq(c) ∗ len(c) +

• Size of tree +

• + 4 bytes (32 bits) (file overhead) + 2 (16 bits) bytes (Magic Number)

• Implementation detail of BinaryFile class

• Note file sizes need to be a multiple of 8 bits ...

P2-54:Command Line Arguments

public static void main(String args[])

• Theargs parameter holds the input parameters

• java MyProgram arg1 arg2 arg3

• args.length = 3

• args[0] = “arg1”

• args[1] = “arg2”

• args[2] = “arg3”

P2-55:Calling Huffman

java Huffman (-c|-u) [-v] [-f] infile outfile

• (-c|-u) stands for either “-c” (for compress), or “-u” (for uncompress)

• [-v] stands for an optional “-v” flag (for verbose)

• [-f] stands for an optional “-f” flag (for force compress)

• infile is the input file

• outfile is the output file


