
CS245-2015S-10 Sorting 1

10-0: Main Memory Sorting

• All data elements can be stored in memory at the same time

• Data stored in an array, indexed from 0 . . . n− 1, where n is the number of elements

• Each element has a key value (accessed with a key() method)

• We can compare keys for ¡, ¿, =

• For illustration, we will use arrays of integers – though often keys will be strings, other Comparable types

10-1: Stable Sorting

• A sorting algorithm is Stable if the relative order of duplicates is preserved

• The order of duplicates matters if the keys are duplicated, but the records are not.

3 1 2 1 1 2 3
B
o
b

J
o
e

E
d

A
m
y

S
u
e

A
l

B
u
d

Key

Data

1 1 1 2 2 3 3
A
m
y

J
o
e

S
u
e

E
d

A
l

B
o
b

B
u
d

Key

Data

A non-Stable sort

10-2: Insertion Sort

• Separate list into sorted portion, and unsorted portion

• Initially, sorted portion contains first element in the list, unsorted portion is the rest of the list

• (A list of one element is always sorted)

• Repeatedly insert an element from the unsorted list into the sorted list, until the list is sorted

10-3: Θ() For Insertion Sort

• Running time ∝ # of comparisons

• Worst Case:

10-4: Θ() For Insertion Sort

• Running time ∝ # of comparisons

• Worst Case: Inverse sorted list

of comparisons:

10-5: Θ() For Insertion Sort

• Running time ∝ # of comparisons

CS245-2015S-10 Sorting 2

• Worst Case: Inverse sorted list

of comparisons:
n−1∑

i=1

i ∈ Θ(n2)

10-6: Θ() For Insertion Sort

• Running time ∝ # of comparisons

• Best Case:

10-7: Θ() For Insertion Sort

• Running time ∝ # of comparisons

• Best Case: Sorted List

of comparisons:

10-8: Θ() For Insertion Sort

• Running time ∝ # of comparisons

• Best Case: Sorted List

of comparisons:

n− 1

10-9: Bubble Sort

• Scan list from the last index to index 0, swapping the smallest element to the front of the list

• Scan the list from the last index to index 1, swapping the second smallest element to index 1

• Scan the list from the last index to index 2, swapping the third smallest element to index 2

. . .

• Swap the second largest element into position (n− 2)

10-10: Θ() for Bubble Sort

• Running time ∝ # of comparisons

• Number of Comparisons:

10-11: Θ() for Bubble Sort

• Running time ∝ # of comparisons

• Number of Comparisons:

n−1∑

i=1

i ∈ Θ(n2)

10-12: Selection Sort

• Scan through the list, and find the smallest element

CS245-2015S-10 Sorting 3

• Swap smallest element into position 0

• Scan through the list, and find the second smallest element

• Swap second smallest element into position 1

. . .

• Scan through the list, and find the second largest element

• Swap smallest largest into position n− 2

10-13: Θ() for Selection Sort

• Running time ∝ # of comparisons

• Number of Comparisons:

10-14: Θ() for Selection Sort

• Running time ∝ # of comparisons

• Number of Comparisons:

n−1∑

i=1

i ∈ Θ(n2)

10-15: Improving Insertion Sort

• Insertion sort is fast if a list is “almost sorted”

• How can we use this?

• Do some work to make the list “almost sorted”

• Run insertion sort to finish sorting the list

• Only helps if work required to make list “almost sorted” is less than n2

10-16: Shell Sort

• Sort n/2 sublists of length 2, using insertion sort

• Sort n/4 sublists of length 4, using insertion sort

• Sort n/8 sublists of length 8, using insertion sort

. . .

• Sort 2 sublists of length n/2, using insertion sort

• Sort 1 sublist of length n, using insertion sort

10-17: Shell’s Increments

• Shell sort runs several insertion sorts, using increments

• Code on monitor uses “Shell’s Increments”: {n/2, n/4, . . .4, 2, 1}

• Problem with Shell’s Increments:

CS245-2015S-10 Sorting 4

• Various sorts do not interact much

• If all large elements are stored in large indices, and small elements are stored in even indices, what hap-

pens?

10-18: Other Increments

• Shell’s Increments: {n/2, n/4, . . .4, 2, 1}

• Running time: O(n2)

• “/3” increments: {n/3, n/9, . . . , 9, 3, 1}

• Running time: O(n
3

2)

• Hibbard’s Increments: {2k − 1, 2k−1 − 1, . . . 7, 3, 1}

• Running time: O(n
3

2)

10-19: Shell Sort: Best case

• What is the best case running time for Shell Sort (using Shell’s increments)

• When would the best case occur?

10-20: Shell Sort: Best case

• What is the best case running time for Shell Sort (using Shell’s increments)

• When would the best case occur?

• When the list was originally sorted

• How long would each pass through Shell Sort take?

10-21: Shell Sort: Best case

• What is the best case running time for Shell Sort (using Shell’s increments)

• When would the best case occur?

• When the list was originally sorted

• How long would each pass through Shell Sort take?

• Θ(n)

• How Many Passes?

10-22: Shell Sort: Best case

• What is the best case running time for Shell Sort (using Shell’s increments)

• When would the best case occur?

• When the list was originally sorted

• How long would each pass through Shell Sort take?

• Θ(n)

• How Many Passes?

• lg n

CS245-2015S-10 Sorting 5

• Total running time?

10-23: Shell Sort: Best case

• What is the best case running time for Shell Sort (using Shell’s increments)

• When would the best case occur?

• When the list was originally sorted

• How long would each pass through Shell Sort take?

• Θ(n)

• How Many Passes?

• lg n

• Total running time?

• Θ(n lg n)

10-24: Stability

• Is Insertion sort stable?

• Is Bubble Sort stable?

• Is Selection Sort stable?

• Is Shell Sort stable?

10-25: Stability

• Is Insertion sort stable? Yes!

• Is Bubble Sort stable? Yes!

• Is Selection Sort stable? No!

• Is Shell Sort stable? No!

Note that minor changes to the stable sorting algorithms will make them unstable (for instance, swaping A[i] and

A[i+ 1] when A[i] ≥ A[i+ 1], not just when A[i] > A[i + 1]

