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11-0: Merge Sort – Recursive Sorting

Base Case:

A list of length 1 or length 0 is already sorted

Recursive Case:

Split the list in half

Recursively sort two halves

Merge sorted halves together

Example: 5 1 8 2 6 4 3 7



11-1: Merging

Merge lists into a new temporary list, T

Maintain three pointers (indices) i, j, and n

i is index of left hand list

j is index of right hand list

n is index of temporary list T

If A[i] < A[j]

T [n] = A[i], increment n and i

else

T [n] = A[j], increment n and j

Example: 1 2 5 8 and 3 4 6 7



11-2: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)



11-3: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

= nc3 + 2(n/2c3 + 2T (n/4))

= 2nc3 + 4T (n/4)



11-4: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

= nc3 + 2(n/2c3 + 2T (n/4))

= 2nc3 + 4T (n/4)

= 2nc3 + 4(n/4c3 + 2T (n/8))

= 3nc3 + 8T (n/8))



11-5: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

= nc3 + 2(n/2c3 + 2T (n/4))

= 2nc3 + 4T (n/4)

= 2nc3 + 4(n/4c3 + 2T (n/8))

= 3nc3 + 8T (n/8))

= 3nc3 + 8(n/8c3 + 2T (n/16))

= 4nc3 + 16T (n/16)



11-6: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

= nc3 + 2(n/2c3 + 2T (n/4))

= 2nc3 + 4T (n/4)

= 2nc3 + 4(n/4c3 + 2T (n/8))

= 3nc3 + 8T (n/8))

= 3nc3 + 8(n/8c3 + 2T (n/16))

= 4nc3 + 16T (n/16)

= 5nc3 + 32T (n/32)



11-7: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = nc3 + 2T (n/2)

= nc3 + 2(n/2c3 + 2T (n/4))

= 2nc3 + 4T (n/4)

= 2nc3 + 4(n/4c3 + 2T (n/8))

= 3nc3 + 8T (n/8))

= 3nc3 + 8(n/8c3 + 2T (n/16))

= 4nc3 + 16T (n/16)

= 5nc3 + 32T (n/32)

= knc3 + 2kT (n/2k)



11-8: Θ() for Merge Sort

T (0) = c1
T (1) = c2
T (n) = knc3 + 2kT (n/2k)

Pick a value for k such that n/2k = 1:

n/2k = 1

n = 2k

lg n = k

T (n) = (lg n)nc3 + 2lg nT (n/2lg n)

= c3n lg n+ nT (n/n)

= c3n lg n+ nT (1)

= c3n lg n+ c2n

∈ O(n lg n)



11-9: Θ() for Merge Sort

T(n)



11-10: Θ() for Merge Sort

c*n

T(n/2) T(n/2)



11-11: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)



11-12: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n... ... ... ...



11-13: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n

lg n
levels

... ... ... ...



11-14: Θ() for Merge Sort

c*n

c*(n/2) c*(n/2)

c*(n/4) c*(n/4) c*(n/4) c*(n/4)

c*n

c*n

c*n

c*n

lg n
levels

... ... ... ...

c*n lg nTotal time =
Θ(n lg n)



11-15: Θ() for Merge Sort

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

T (n) = aT (n/b) + f(n)

a = 2, b = 2, f(n) = n

nlogb a = nlog2 2 = n ∈ Θ(n)
By second case of the Master Method,
T (n) ∈ Θ(n lg n)



11-16: Divide & Conquer

Merge Sort:

Divide the list two parts

No work required – just calculate midpoint

Recursively sort two parts

Combine sorted lists into one list

Some work required – need to merge lists



11-17: Divide & Conquer

Quick Sort:

Divide the list two parts

Some work required – Small elements in left
sublist, large elements in right sublist

Recursively sort two parts

Combine sorted lists into one list

No work required!



11-18: Quick Sort

Pick a pivot element

Reorder the list:

All elements < pivot

Pivot element

All elements > pivot

Recursively sort elements < pivot

Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6



11-19: Quick Sort - Partitioning

Basic Idea:

Swap pivot elememt out of the way (we’ll swap it
back later)

Maintain two pointers, i and j

i points to the beginning of the list

j points to the end of the list

Move i and j in to the middle of the list – ensuring
that all elements to the left of i are < the pivot, and
all elememnts to the right of j are greater than the
pivot

Swap pivot element back to middle of list



11-20: Quick Sort - Partitioning

Pseudocode:

Pick a pivot index

Swap A[pivotindex] and A[high]

Set i← low, j ← high−1

while (i <= j)

while A[i] < A[pivot], increment i

while A[j] > A[pivot], decrement i

swap A[i] and A[j]

increment i, decrement j

swap A[i] and A[pivot]



11-21: Θ() for Quick Sort

Coming up with a recurrence relation for quicksort
is harder than mergesort

How the problem is divided depends upon the data

Break list into:

size 0, size n− 1
size 1, size n− 2
. . .
size ⌊(n− 1)/2⌋, size ⌈(n− 1)/2⌉
. . .
size n− 2, size 1
size n− 1, size 0



11-22: Θ() for Quick Sort

Worst case performance occurs when break list into
size n− 1 and size 0
T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + T (n− 1) + T (0) for some constant c3

T (n) = nc3 + T (n− 1) + T (0)

= T (n− 1) + nc3 + c2



11-23: Θ() for Quick Sort

Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)

= T (n− 1) + nc3 + c2



11-24: Θ() for Quick Sort

Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)

= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2



11-25: Θ() for Quick Sort

Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)

= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2



11-26: Θ() for Quick Sort

Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)

= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2
= T (n− 4) + (n+ (n− 1) + (n− 2) + (n− 3))c3 + 4c2



11-27: Θ() for Quick Sort

Worst case: T (n) = T (n− 1) + nc3 + c2

T (n)

= T (n− 1) + nc3 + c2
= [T (n− 2) + (n− 1)c3 + c2] + nc3 + c2
= T (n− 2) + (n+ (n− 1))c3 + 2c2
= [T (n− 3) + (n− 2)c3 + c2] + (n+ (n− 1))c3 + 2c2
= T (n− 3) + (n+ (n− 1) + (n− 2))c3 + 3c2
= T (n− 4) + (n+ (n− 1) + (n− 2) + (n− 3))c3 + 4c2
. . .

= T (n− k) + (
∑k−1

i=0 (n− i)c3) + kc2



11-28: Θ() for Quick Sort

Worst case:

T (n) = T (n− k) + (
∑

k−1

i=0 (n− i)c3) + kc2

Set k = n:

T (n) = T (n− k) + (
∑

k−1

i=0 (n− i)c3) + kc2
= T (n− n) + (

∑n−1

i=0 (n− i)c3) + kc2
= T (0) + (

∑
n−1

i=0 (n− i)c3) + kc2
= T (0) + (

∑
n−1

i=0 ic3) + kc2
= c1 + c3n(n+ 1)/2 + kc2
∈ Θ(n2)



11-29: Θ() for Quick Sort

T(n) 



11-30: Θ() for Quick Sort

c*n 

T(n-1) T(0)



11-31: Θ() for Quick Sort

c*n 

c*(n-1) c2

T(n-2) T(0)



11-32: Θ() for Quick Sort

c*n 

c*(n-1) c2

c*(n-2) c2

T(n-3) T(0)



11-33: Θ() for Quick Sort

c*n 

c*(n-1) c2

c*n

c*(n-1)+c2
n

levels
c*(n-2) c2 c*(n-2)+c2

c*(n-3) c2 c*(n-3)+c2

...
c*(n-k)+c2



11-34: Θ() for Quick Sort

c*n 

c*(n-1) c2

c*n

c*(n-1)+c2
n

levels

c*n*(n+1)/2 + nc2Total time =

c*(n-2) c2 c*(n-2)+c2

c*(n-3) c2 c*(n-3)+c2

...

Θ(n )2

c*(n-k)+c2



11-35: Θ() for Quick Sort

Best case performance occurs when break list into size
⌊(n− 1)/2⌋ and size ⌈(n− 1)/2⌉

T (0) = c1 for some constant c1
T (1) = c2 for some constant c2
T (n) = nc3 + 2T (n/2) for some constant c3

This is the same as Merge Sort: Θ(n lg n)



11-36: Quick Sort?

If Quicksort is Θ(n2) on some lists, why is it called
quick?

Most lists give running time of Θ(n lg n): The
average case running time (assuming all

permutations are equall likely) is Θ(n lg n)

We could prove this by finding the running time
for each permutation of a list of length n, and
averaging them

Math required to do this is a little beyond the
prerequisites for this class

Consider what happens when the list is always
partitioned into a list of length n/9 and a list of

lenth 8n/9 (recursion tree, on whiteboard)

Consider what happenswhen the list is always



11-37: Quick Sort?

If Quicksort is Θ(n2) on some lists, why is it called
quick?

Most lists give running time of Θ(n lg n)

Average case running time is Θ(n lg n)

Constants are very small

Constants don’t matter when complexity is
different

Constants do matter when complexity is the
same

What lists will cause Quick Sort to have Θ(n2) perfor-

mance?



11-38: Quick Sort - Worst Case

Quick Sort has worst-case performance when:

The list is sorted (or almost sorted)

The list is inverse sorted (or almost inverse
sorted)

Many lists we want to sort are almost sorted!

How can we fix Quick Sort?



11-39: Better Partitions

Pick the middle element as the pivot

Sorted and reverse sorted lists give good
performance

Pick a random element as the pivot

No single list always gives bad performance

Pick the median of 3 elements

First, Middle, Last

3 Random Elements



11-40: Improving Quick Sort

Insertion Sort runs faster than Quick Sort on small
lists

Why?

We can combine Quick Sort & Insertion Sort

When lists get small, run Insertion Sort instead
of a recursive call to Quick Sort

When lists get small, stop! After call to Quick
Sort, list will be almost sorted – finish the job
with a single call to Insertion Sort



11-41: Heap Sort

Copy the data into a new array (except leave out
element at index 0)

Build a heap out of the new array

Repeat:

Remove the smallest element from the heap,
add it to the original array

Until all elements have been removed from the
heap

The original array is now sorted

Example: 3 1 7 2 5 4



11-42: Heap Sort

This requires Θ(n) extra space

We can modify heapsort so that it does not use
extra space

Build a heap out of the original array, with two
differences:

Consider element 0 to be the root of the tree
for element i, children are at 2*i +1 and
2*i+2, and parent is at (i− 1)/2
(examples)

Max-heap instead of a standard min-heap
For each subtree, element stored at root ≥
element stored in that subtree (instead of ≤,
as in a standard heap)



11-43: Heap Sort

Build a heap out of the original array, with two
differences:

Consider element 0 to be the root of the tree
for element i, children are at 2*i +1 and
2*i+2, and parent is at (i− 1)/2
(examples)

Max-heap instead of a standard min-heap
For each subtree, element stored at root ≥
element stored in that subtree (instead of ≤,
as in a standard heap)

Repeatedly remove the largest element, and insert
it in the back of the heap

Example: 3 1 7 2 5 4



11-44: Θ() for Heap Sort

Building the heap takes time Θ(n)

Each of the n RemoveMax calls takes time O(lg n)

Total time: (n lg n) (also Θ(n lg n))



11-45: Stability

Sorting Algorithm Stable?

Insertion Sort

Selection Sort

Bubble Sort

Shell Sort

Merge Sort

Quick Sort

Heap Sort



11-46: Stability

Sorting Algorithm Stable?

Insertion Sort Yes

Selection Sort No

Bubble Sort Yes

Shell Sort No

Merge Sort Yes

Quick Sort No

Heap Sort No
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