Data Structures and Algorithms CS245-2015S-11Sorting in $\Theta(n \lg n)$

David Galles

Department of Computer Science University of San Francisco

11-0: Merge Sort – Recursive Sorting

- Base Case:
 - A list of length 1 or length 0 is already sorted
- Recursive Case:
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 51826437

11-1: Merging

- Merge lists into a new temporary list, ${\cal T}$
- Maintain three pointers (indices) i, j, and n
 - *i* is index of left hand list
 - j is index of right hand list
 - n is index of temporary list T
- If A[i] < A[j]
 - T[n] = A[i], increment n and i

• else

• T[n] = A[j], increment n and j

Example: 1 2 5 8 and 3 4 6 7

11-2: $\Theta()$ for Merge Sort

 $T(0) = c_1$ $\overline{T(1)} = c_2$ $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$

for some constant c_1 for some constant c_2

11-3: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$

11-4: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$ $= 3nc_3 + 8T(n/8))$

11-5: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$ $= 3nc_3 + 8T(n/8))$ $= 3nc_3 + 8(n/8c_3 + 2T(n/16))$ $= 4 n c_3 + 16 T (n/16)$

11-6: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$ $= 3nc_3 + 8T(n/8))$ $=3nc_3 + 8(n/8c_3 + 2T(n/16))$ $=4nc_3+16T(n/16)$ $= 5nc_3 + 32T(n/32)$

11-7: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3 $T(n) = nc_3 + 2T(n/2)$ $= nc_3 + 2(n/2c_3 + 2T(n/4))$ $= 2nc_3 + 4T(n/4)$ $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$ $= 3nc_3 + 8T(n/8))$ $= 3nc_3 + 8(n/8c_3 + 2T(n/16))$ $=4nc_3+16T(n/16)$ $= 5nc_3 + 32T(n/32)$ $= knc_3 + 2^kT(n/2^k)$

11-8: $\Theta()$ for Merge Sort

 $T(0) = c_1$ $T(1) = c_2$ $T(n) = knc_3 + 2^kT(n/2^k)$ Pick a value for k such that $n/2^k = 1$: $n/2^{k} = 1$ $n = 2^k$ $\lg n = k$ $T(n) = (\lg n)nc_3 + 2^{\lg n}\overline{T(n/2^{\lg n})}$ $= c_3 n \lg n + nT(n/n)$ $= c_3 n \lg n + nT(1)$ $= c_3 n \lg n + c_2 n$ $\in O(n \lg n)$

11-9: $\Theta()$ for Merge Sort

T(n)

11-10: $\Theta()$ for Merge Sort

11-11: $\Theta()$ for Merge Sort

11-12: $\Theta()$ for Merge Sort

11-13: $\Theta()$ for Merge Sort

11-14: $\Theta()$ for Merge Sort

Total time = $c*n \lg n$ $\Theta(n \lg n)$

11-15: $\Theta()$ for Merge Sort

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3

T(n) = aT(n/b) + f(n) a = 2, b = 2, f(n) = n $n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n)$ By second case of the Master Method, $T(n) \in \Theta(n \lg n)$

11-16: Divide & Conquer

Merge Sort:

- Divide the list two parts
 - No work required just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required need to merge lists

11-17: Divide & Conquer

Quick Sort:

- Divide the list two parts
 - Some work required Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!

11-18: Quick Sort

- Pick a pivot element
- Reorder the list:
 - All elements < pivot
 - Pivot element
 - All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6

11-19: Quick Sort - Partitioning

Basic Idea:

- Swap pivot element out of the way (we'll swap it back later)
- Maintain two pointers, i and j
 - *i* points to the beginning of the list
 - *j* points to the end of the list
- Move *i* and *j* in to the middle of the list ensuring that all elements to the left of *i* are < the pivot, and all elements to the right of *j* are greater than the pivot
- Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap A[pivotindex] and A[high]
- Set $i \leftarrow low$, $j \leftarrow high-1$
- while (i <= j)
 - while A[i] < A[pivot], increment i
 - while A[j] > A[pivot], decrement i
 - swap A[i] and A[j]
 - increment i, decrement j
- swap A[i] and A[pivot]

11-21: $\Theta()$ for Quick Sort

- Coming up with a recurrence relation for quicksort is harder than mergesort
- How the problem is divided depends upon the data
 - Break list into:

size 0, size n - 1size 1, size n - 2... size $\lfloor (n - 1)/2 \rfloor$, size $\lceil (n - 1)/2 \rceil$... size n - 2, size 1 size n - 1, size 0

11-22: $\Theta()$ for Quick Sort

Worst case performance occurs when break list into size n-1 and size 0

 $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + T(n-1) + T(0)$ for some constant c_3 $T(n) = nc_3 + T(n-1) + T(0)$ $= T(n-1) + nc_3 + c_2$

11-23: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$

$$T(n) = T(n-1) + nc_3 + c_2$$

11-24: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$

$$T(n) = T(n-1) + nc_3 + c_2$$

= $[T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$
= $T(n-2) + (n + (n-1))c_3 + 2c_2$

11-25: $\Theta()$ for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$

$$T(n) = T(n-1) + nc_3 + c_2$$

= $[T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$
= $T(n-2) + (n + (n-1))c_3 + 2c_2$
= $[T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2$
= $T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2$

11-26: $\Theta()$ for Quick Sort

Norst case:
$$T(n) = T(n-1) + nc_3 + c_2$$

 $T(n)$
 $= T(n-1) + nc_3 + c_2$
 $= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$
 $= T(n-2) + (n + (n-1))c_3 + 2c_2$
 $= [T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2$
 $= T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2$
 $= T(n-4) + (n + (n-1) + (n-2) + (n-3))c_3 + 4c_2$

11-27: $\Theta()$ for Quick Sort

 $\setminus \mathbf{Z}$

-i=0

Norst case:
$$T(n) = T(n-1) + nc_3 + c_2$$

 $T(n)$
 $= T(n-1) + nc_3 + c_2$
 $= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$
 $= T(n-2) + (n + (n-1))c_3 + 2c_2$
 $= [T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2$
 $= T(n-3) + (n + (n-1) + (n-2))c_3 + 3c_2$
 $= T(n-4) + (n + (n-1) + (n-2) + (n-3))c_3 + 4c_2$
...

11-28: $\Theta()$ for Quick Sort

Worst case:

$$T(n) = T(n-k) + (\sum_{i=0}^{k-1} (n-i)c_3) + kc_2$$

Set $k = m$:

Set k = n:

$$T(n) = T(n-k) + \left(\sum_{i=0}^{k-1} (n-i)c_3\right) + kc_2$$

= $T(n-n) + \left(\sum_{i=0}^{n-1} (n-i)c_3\right) + kc_2$
= $T(0) + \left(\sum_{i=0}^{n-1} (n-i)c_3\right) + kc_2$
= $T(0) + \left(\sum_{i=0}^{n-1} ic_3\right) + kc_2$
= $c_1 + c_3n(n+1)/2 + kc_2$
 $\in \Theta(n^2)$

11-29: $\Theta()$ for Quick Sort

T(n)

11-30: $\Theta()$ for Quick Sort

11-31: $\Theta()$ for Quick Sort

11-32: $\Theta()$ for Quick Sort

11-33: $\Theta()$ for Quick Sort

c*(n-1)+c2c*(n-2)+c2c*(n-3)+c2

c*n

 $\overline{c} * (n-k) + c^2$

n levels

11-34: $\Theta()$ for Quick Sort

11-35: $\Theta()$ for Quick Sort

Best case performance occurs when break list into size $\lfloor (n-1)/2 \rfloor$ and size $\lceil (n-1)/2 \rceil$ $T(0) = c_1$ for some constant c_1 $T(1) = c_2$ for some constant c_2 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3

This is the same as Merge Sort: $\Theta(n \lg n)$

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$: The average case running time (assuming all permutations are equal likely) is $\Theta(n \lg n)$
 - We could prove this by finding the running time for each permutation of a list of length *n*, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class
 - Consider what happens when the list is always partitioned into a list of length n/9 and a list of lenth 8n/9 (recursion tree, on whiteboard)

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$
 - Average case running time is $\Theta(n \lg n)$
- Constants are very small
 - Constants don't matter when complexity is different
 - Constants *do* matter when complexity is the same

What lists will cause Quick Sort to have $\Theta(n^2)$ performance?

11-38: Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
 - The list is sorted (or almost sorted)
 - The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?

11-39: Better Partitions

- Pick the middle element as the pivot
 - Sorted and reverse sorted lists give good performance
- Pick a random element as the pivot
 No single list always gives bad performance
- Pick the median of 3 elements
 - First, Middle, Last
 - 3 Random Elements

11-40: Improving Quick Sort

- Insertion Sort runs faster than Quick Sort on small lists
 - Why?
- We can combine Quick Sort & Insertion Sort
 - When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 - When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single call to Insertion Sort

11-41: Heap Sort

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 317254

11-42: Heap Sort

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element *i*, children are at $2^{i} + 1$ and $2^{i}+2$, and parent is at (i 1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root ≥ element stored in that subtree (instead of ≤, as in a standard heap)

11-43: Heap Sort

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element *i*, children are at $2^{i} + 1$ and $2^{i}+2$, and parent is at (i 1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root ≥ element stored in that subtree (instead of ≤, as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4

11-44: $\Theta()$ for Heap Sort

- Building the heap takes time $\Theta(n)$
- Each of the *n* RemoveMax calls takes time $O(\lg n)$
- Total time: $(n \lg n)$ (also $\Theta(n \lg n)$)

11-45: Stability

Sorting Algorithm	Stable?
Insertion Sort	
Selection Sort	
Bubble Sort	
Shell Sort	
Merge Sort	
Quick Sort	
Heap Sort	

11-46: Stability

Sorting Algorithm	Stable?
Insertion Sort	Yes
Selection Sort	No
Bubble Sort	Yes
Shell Sort	No
Merge Sort	Yes
Quick Sort	No
Heap Sort	No