11-0: Merge Sort - Recursive Sorting

- Base Case:
- A list of length 1 or length 0 is already sorted
- Recursive Case:
- Split the list in half
- Recursively sort two halves
- Merge sorted halves together

Example: 51826437 11-1: Merging

- Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
- i is index of left hand list
- j is index of right hand list
- n is index of temporary list T
- If $A[i]<A[j]$
- $T[n]=A[i]$, increment n and i
- else
- $T[n]=A[j]$, increment n and j

Example: 1258 and 3467

$$
T(0)=c_{1} \quad \text { for some constant } c_{1}
$$

11-2: $\Theta()$ for Merge Sort $\quad T(1)=c_{2}$ for some constant c_{2}
$T(n)=n c_{3}+2 T(n / 2) \quad$ for some constant c_{3}
$T(n)=n c_{3}+2 T(n / 2)$

$$
T(0)=c_{1}
$$

11-3: $\Theta()$ for Merge Sort $T(1)=c_{2}$

$$
T(n)=n c_{3}+2 T(n / 2)
$$

$T(n)=n c_{3}+2 T(n / 2)$
$=n c_{3}+2\left(n / 2 c_{3}+2 T(n / 4)\right)$
$=2 n c_{3}+4 T(n / 4)$

$$
T(0)=c_{1}
$$

11-4: $\Theta()$ for Merge Sort $T(1)=c_{2}$
$T(n)=n c_{3}+2 T(n / 2)$
for some constant c_{1} for some constant c_{2} for some constant c_{3}
$T(n)=n c_{3}+2 T(n / 2)$
$=n c_{3}+2\left(n / 2 c_{3}+2 T(n / 4)\right)$
$=2 n c_{3}+4 T(n / 4)$
$=2 n c_{3}+4\left(n / 4 c_{3}+2 T(n / 8)\right)$ $\left.=3 n c_{3}+8 T(n / 8)\right)$

$$
T(0)=c_{1} \quad \text { for some constant } c_{1}
$$

11-5: $\Theta()$ for Merge Sort
$\begin{array}{ll}T(1)=c_{2} & \text { for some constant } c_{2}\end{array}$
$T(n)=n c_{3}+2 T(n / 2) \quad$ for some constant c_{3}

$$
\begin{aligned}
T(n) & =n c_{3}+2 T(n / 2) \\
& =n c_{3}+2\left(n / 2 c_{3}+2 T(n / 4)\right) \\
& =2 n c_{3}+4 T(n / 4) \\
& =2 n c_{3}+4\left(n / 4 c_{3}+2 T(n / 8)\right) \\
& \left.=3 n c_{3}+8 T(n / 8)\right) \\
& =3 n c_{3}+8\left(n / 8 c_{3}+2 T(n / 16)\right) \\
& =4 n c_{3}+16 T(n / 16)
\end{aligned}
$$

$$
T(0)=c_{1} \quad \text { for some constant } c_{1}
$$

11-6: $\Theta()$ for Merge Sort $T(1)=c_{2} \quad$ for some constant c_{2} $T(n)=n c_{3}+2 T(n / 2) \quad$ for some constant c_{3}

$$
\begin{aligned}
T(n) & =n c_{3}+2 T(n / 2) \\
& =n c_{3}+2\left(n / 2 c_{3}+2 T(n / 4)\right) \\
& =2 n c_{3}+4 T(n / 4) \\
& =2 n c_{3}+4\left(n / 4 c_{3}+2 T(n / 8)\right) \\
& \left.=3 n c_{3}+8 T(n / 8)\right) \\
& =3 n c_{3}+8\left(n / 8 c_{3}+2 T(n / 16)\right) \\
& =4 n c_{3}+16 T(n / 16) \\
& =5 n c_{3}+32 T(n / 32)
\end{aligned}
$$

$$
T(0)=c_{1} \quad \text { for some constant } c_{1}
$$

11-7: $\Theta()$ for Merge Sort $\quad T(1)=c_{2} \quad$ for some constant c_{2} $T(n)=n c_{3}+2 T(n / 2) \quad$ for some constant c_{3}

$$
\begin{aligned}
T(n) & =n c_{3}+2 T(n / 2) \\
& =n c_{3}+2\left(n / 2 c_{3}+2 T(n / 4)\right) \\
& =2 n c_{3}+4 T(n / 4) \\
& =2 n c_{3}+4\left(n / 4 c_{3}+2 T(n / 8)\right) \\
& \left.=3 n c_{3}+8 T(n / 8)\right) \\
& =3 n c_{3}+8\left(n / 8 c_{3}+2 T(n / 16)\right) \\
& =4 n c_{3}+16 T(n / 16) \\
& =5 n c_{3}+32 T(n / 32) \\
& =k n c_{3}+2^{k} T\left(n / 2^{k}\right)
\end{aligned}
$$

11-8: $\Theta()$ for Merge Sort

$$
\begin{aligned}
& T(0)=c_{1} \\
& T(1)=c_{2} \\
& T(n)=k n c_{3}+2^{k} T\left(n / 2^{k}\right)
\end{aligned}
$$

Pick a value for k such that $n / 2^{k}=1$:

```
\(n / 2^{k}=1\)
\(n=2^{k}\)
\(\lg n=k\)
\(T(n)=(\lg n) n c_{3}+2^{\lg n} T\left(n / 2^{\lg n}\right)\)
    \(=\quad c_{3} n \lg n+n T(n / n)\)
    \(=c_{3} n \lg n+n T(1) \quad\) 11-9: \(\Theta()\) for Merge Sort
    \(=c_{3} n \lg n+c_{2} n\)
    \(\in O(n \lg n)\)
```

 T(n)
 11-10: $\Theta()$ for Merge Sort

11-11: $\Theta()$ for Merge Sort

11-12: $\Theta()$ for Merge Sort

11-13: $\Theta()$ for Merge Sort

11-14: $\Theta()$ for Merge Sort

$$
\begin{aligned}
\text { Total time }= & c^{*} n \\
& \Theta(g n \\
& \Theta\left(\begin{array}{lll}
n & l g & n
\end{array}\right)
\end{aligned}
$$

11-15: $\Theta()$ for Merge Sort

$$
\begin{array}{ll}
T(0)=c_{1} & \text { for some constant } c_{1} \\
T(1)=c_{2} & \text { for some constant } c_{2} \\
T(n)=n c_{3}+2 T(n / 2) & \text { for some constant } c_{3} \\
T(n)=a T(n / b)+f(n) & \\
a=2, b=2, f(n)=n \\
n^{\log _{b} a}=n^{\log _{2} 2}=n \in \Theta(n)
\end{array}
$$

By second case of the Master Method, $T(n) \in \Theta(n \lg n)$
11-16: Divide \& Conquer
Merge Sort:

- Divide the list two parts
- No work required - just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
- Some work required - need to merge lists

11-17: Divide \& Conquer

Quick Sort:

- Divide the list two parts
- Some work required - Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
- No work required!

11-18: Quick Sort

- Pick a pivot element
- Reorder the list:
- All elements $<$ pivot
- Pivot element
- All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements $>$ pivot

Example: 3728146
11-19: Quick Sort - Partitioning
Basic Idea:

- Swap pivot elememt out of the way (we'll swap it back later)
- Maintain two pointers, i and j
- i points to the beginning of the list
- j points to the end of the list
- Move i and j in to the middle of the list - ensuring that all elements to the left of i are $<$ the pivot, and all elememnts to the right of j are greater than the pivot
- Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap A[pivotindex] and A[high]
- Set $i \leftarrow$ low, $j \leftarrow$ high-1
- while $(i<=j)$
- while $A[i]<A[$ pivot $]$, increment i
- while $A[j]>A[$ pivot $]$, decrement i
- swap $A[i]$ and $A[j]$
- increment i, decrement j
- swap $A[i]$ and $A[$ pivot]

11-21: $\Theta()$ for Quick Sort

- Coming up with a recurrence relation for quicksort is harder than mergesort
- How the problem is divided depends upon the data
- Break list into:
size 0 , size $n-1$
size 1 , size $n-2$
size $\lfloor(n-1) / 2\rfloor$, size $\lceil(n-1) / 2\rceil$
...
size $n-2$, size 1
size $n-1$, size 0

11-22: $\Theta()$ for Quick Sort

Worst case performance occurs when break list into size $n-1$ and size 0

$$
\begin{aligned}
& T(0)=c_{1} \quad \text { for some constant } c_{1} \\
& T(1)=c_{2} \quad \text { for some constant } c_{2} \\
& T(n)=n c_{3}+T(n-1)+T(0) \quad \text { for some constant } c_{3} \\
& T(n)=n c_{3}+T(n-1)+T(0) \\
& =T(n-1)+n c_{3}+c_{2} \\
& \text { 11-23: } \Theta() \text { for Quick Sort Worst case: } T(n)=T(n-1)+n c_{3}+c_{2}
\end{aligned}
$$

$T(n)$
$=T(n-1)+n c_{3}+c_{2}$
11-24: $\Theta()$ for Quick Sort Worst case: $T(n)=T(n-1)+n c_{3}+c_{2}$
$T(n)$
$=T(n-1)+n c_{3}+c_{2}$
$=\left[T(n-2)+(n-1) c_{3}+c_{2}\right]+n c_{3}+c_{2}$
$=T(n-2)+(n+(n-1)) c_{3}+2 c_{2}$
11-25: $\Theta()$ for Quick Sort Worst case: $T(n)=T(n-1)+n c_{3}+c_{2}$

$$
T(n)
$$

$=T(n-1)+n c_{3}+c_{2}$
$=\left[T(n-2)+(n-1) c_{3}+c_{2}\right]+n c_{3}+c_{2}$
$=T(n-2)+(n+(n-1)) c_{3}+2 c_{2}$
$=\left[T(n-3)+(n-2) c_{3}+c_{2}\right]+(n+(n-1)) c_{3}+2 c_{2}$
$=T(n-3)+(n+(n-1)+(n-2)) c_{3}+3 c_{2}$
11-26: $\Theta()$ for Quick Sort Worst case: $T(n)=T(n-1)+n c_{3}+c_{2}$

$$
\begin{aligned}
& T(n) \\
& =T(n-1)+n c_{3}+c_{2} \\
& =\left[T(n-2)+(n-1) c_{3}+c_{2}\right]+n c_{3}+c_{2} \\
& =T(n-2)+(n+(n-1)) c_{3}+2 c_{2} \\
& =\left[T(n-3)+(n-2) c_{3}+c_{2}\right]+(n+(n-1)) c_{3}+2 c_{2} \\
& =T(n-3)+(n+(n-1)+(n-2)) c_{3}+3 c_{2} \\
& =T(n-4)+(n+(n-1)+(n-2)+(n-3)) c_{3}+4 c_{2}
\end{aligned}
$$

11-27: $\Theta()$ for Quick Sort Worst case: $T(n)=T(n-1)+n c_{3}+c_{2}$

$$
\begin{aligned}
& T(n) \\
& =T(n-1)+n c_{3}+c_{2} \\
& =\left[T(n-2)+(n-1) c_{3}+c_{2}\right]+n c_{3}+c_{2} \\
& =T(n-2)+(n+(n-1)) c_{3}+2 c_{2} \\
& =\left[T(n-3)+(n-2) c_{3}+c_{2}\right]+(n+(n-1)) c_{3}+2 c_{2} \\
& =T(n-3)+(n+(n-1)+(n-2)) c_{3}+3 c_{2} \\
& =T(n-4)+(n+(n-1)+(n-2)+(n-3)) c_{3}+4 c_{2} \\
& \cdots \\
& =T(n-k)+\left(\sum_{i=0}^{k-1}(n-i) c_{3}\right)+k c_{2}
\end{aligned}
$$

11-28: $\Theta()$ for Quick Sort Worst case:

$$
T(n)=T(n-k)+\left(\sum_{i=0}^{k-1}(n-i) c_{3}\right)+k c_{2}
$$

Set $k=n$:

$$
\begin{aligned}
T(n) & =T(n-k)+\left(\sum_{i=0}^{k-1}(n-i) c_{3}\right)+k c_{2} \\
& =T(n-n)+\left(\sum_{i=0}^{n-1}(n-i) c_{3}\right)+k c_{2} \\
& =T(0)+\left(\sum_{i=0}^{n-1}(n-i) c_{3}\right)+k c_{2} \\
& =T(0)+\left(\sum_{i=0}^{n-1} i c_{3}\right)+k c_{2} \\
& =c_{1}+c_{3} n(n+1) / 2+k c_{2} \\
& \in \Theta\left(n^{2}\right)
\end{aligned}
$$

11-29: $\Theta()$ for Quick Sort
T(n)
11-30: $\Theta()$ for Quick Sort

11-31: $\Theta()$ for Quick Sort

11-32: $\Theta()$ for Quick Sort

11-33: $\Theta()$ for Quick Sort

11-35: $\Theta()$ for Quick Sort

Best case performance occurs when break list into size $\lfloor(n-1) / 2\rfloor$ and size $\lceil(n-1) / 2\rceil$

$$
\begin{array}{lr}
T(0)=c_{1} & \text { for some constant } c_{1} \\
T(1)=c_{2} & \text { for some constant } c_{2} \\
T(n)=n c_{3}+2 T(n / 2) & \text { for some constant } c_{3}
\end{array}
$$

This is the same as Merge Sort: $\Theta(n \lg n)$
11-36: Quick Sort?
If Quicksort is $\Theta\left(n^{2}\right)$ on some lists, why is it called quick?

- Most lists give running time of $\Theta(n \lg n)$: The average case running time (assuming all permutations are equall likely) is $\Theta(n \lg n)$
- We could prove this by finding the running time for each permutation of a list of length n, and averaging them
- Math required to do this is a little beyond the prerequisites for this class
- Consider what happens when the list is always partitioned into a list of length $n / 9$ and a list of lenth $8 n / 9$ (recursion tree, on whiteboard)
- Consider what happenswhen the list is always partitioned into a list of length n / k and a list of length $(k-1) n / k$, for any k

11-37: Quick Sort?

If Quicksort is $\Theta\left(n^{2}\right)$ on some lists, why is it called quick?

- Most lists give running time of $\Theta(n \lg n)$
- Average case running time is $\Theta(n \lg n)$
- Constants are very small
- Constants don't matter when complexity is different
- Constants do matter when complexity is the same

What lists will cause Quick Sort to have $\Theta\left(n^{2}\right)$ performance?
11-38: Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
- The list is sorted (or almost sorted)
- The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?

11-39: Better Partitions

- Pick the middle element as the pivot
- Sorted and reverse sorted lists give good performance
- Pick a random element as the pivot
- No single list always gives bad performance
- Pick the median of 3 elements
- First, Middle, Last
- 3 Random Elements

11-40: Improving Quick Sort

- Insertion Sort runs faster than Quick Sort on small lists
- Why?
- We can combine Quick Sort \& Insertion Sort
- When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
- When lists get small, stop! After call to Quick Sort, list will be almost sorted - finish the job with a single call to Insertion Sort

11-41: Heap Sort

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
- Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 317254
11-42: Heap Sort

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
- Consider element 0 to be the root of the tree
- for element i, children are at $2 * \mathrm{i}+1$ and $2 * \mathrm{i}+2$, and parent is at $(i-1) / 2$
- (examples)
- Max-heap instead of a standard min-heap
- For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)

11-43: Heap Sort

- Build a heap out of the original array, with two differences:
- Consider element 0 to be the root of the tree
- for element i, children are at $2 * \mathrm{i}+1$ and $2 * \mathrm{i}+2$, and parent is at $(i-1) / 2$
- (examples)
- Max-heap instead of a standard min-heap
- For each subtree, element stored at root \geq element stored in that subtree (instead of \leq, as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: 317254
11-44: $\Theta()$ for Heap Sort

- Building the heap takes time $\Theta(n)$
- Each of the n RemoveMax calls takes time $O(\lg n)$
- Total time: $\emptyset(n \lg n)($ also $\Theta(n \lg n))$
11-45: Stability

Sorting Algorithm	Stable?
Insertion Sort	
Selection Sort	
Bubble Sort	
Shell Sort	
Merge Sort	
Quick Sort	
Heap Sort	
$11-46:$ Stability	
Sorting Algorithm Stable? Insertion Sort Yes Selection Sort No Bubble Sort Yes Shell Sort No Merge Sort Yes Quick Sort No Heap Sort No	

