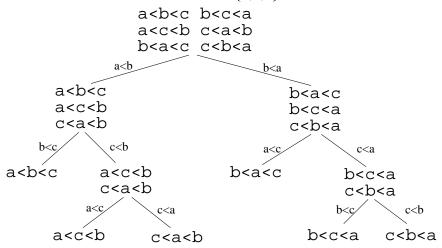
12-0: Comparison Sorting

- · Comparison sorts work by comparing elements
 - Can only compare 2 elements at a time
 - Check for <, >, =.
- All the sorts we have seen so far (Insertion, Quick, Merge, Heap, etc.) are comparison sorts
- If we know nothing about the list to be sorted, we need to use a comparison sort

12-1: **Decision Trees** Insertion Sort on list $\{a, b, c\}$



12-2: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-3: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1
- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?

12-4: Decision Trees

- Every comparison sorting algorithm has a decision tree
- What is the best-case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - (The depth of the shallowest leaf) + 1

- What is the worst case number of comparisons for a comparison sorting algorithm, given the decision tree for the algorithm?
 - The height of the tree (depth of the deepest leaf) + 1

12-5: Decision Trees

• What is the largest number of nodes for a tree of depth d?

12-6: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?

12-7: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?

12-8: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?
 - $\lg n$
- How many leaves are there in a decision tree for sorting *n* elements?
 - *n*!
- What is the minimum height, for a decision tree for sorting *n* elements?

12-9: Decision Trees

- What is the largest number of nodes for a tree of depth d?
 - 2^d
- What is the minimum height, for a tree that has *n* leaves?

• $\lg n$

- How many leaves are there in a decision tree for sorting *n* elements?
 - n!
- What is the minimum height, for a decision tree for sorting *n* elements?

• $\lg n!$

12-10: $\lg(n!) \in \Omega(n \lg n)$

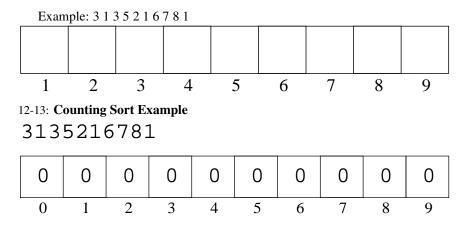
$$\begin{split} & \lg(n!) &= \ \lg(n*(n-1)*(n-2)*\ldots*2*1) \\ &= \ (\lg n) + (\lg(n-1)) + (\lg(n-2)) + \ldots \\ &+ (\lg 2) + (\lg 1) \\ &\geq \ \underbrace{(\lg n) + (\lg(n-1)) + \ldots + (\lg(n/2))}_{n/2 \text{ terms}} \\ &\geq \ \underbrace{(\lg n/2) + (\lg(n/2)) + \ldots + \lg(n/2)}_{n/2 \text{ terms}} \\ &= \ (n/2) \lg(n/2) \\ &\in \ \Omega(n \lg n) \end{split}$$

12-11: Sorting Lower Bound

- All comparison sorting algorithms can be represented by a decision tree with n! leaves
- Worst-case number of comparisons required by a sorting algorithm represented by a decision tree is the height of the tree
- A decision tree with n! leaves must have a height of at least $n \lg n$
- All comparison sorting algorithms have worst-case running time $\Omega(n \lg n)$

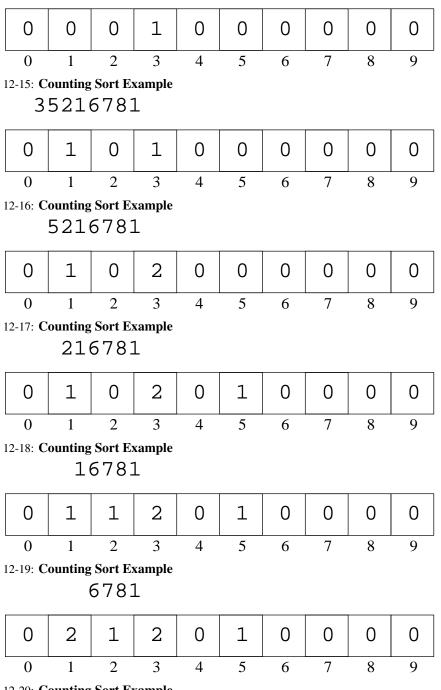
12-12: Counting Sort

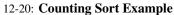
- Sorting a list of *n* integers
- We know all integers are in the range $0 \dots m$
- We can potentially sort the integers faster than $n \lg n$
- Keep track of a "Counter Array" C:
 - C[i] = # of times value *i* appears in the list

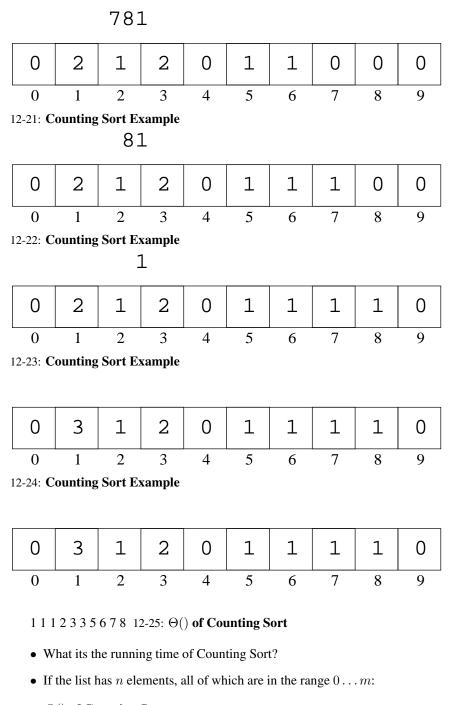


12-14: Counting Sort Example

135216781







12-26: $\Theta()$ of Counting Sort

- What its the running time of Counting Sort?
- If the list has n elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?

CS245-2015S-12

12-27: $\Theta()$ of Counting Sort

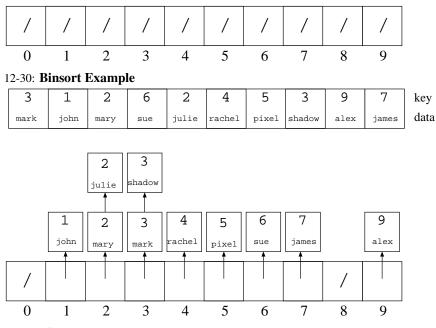
- What its the running time of Counting Sort?
- If the list has *n* elements, all of which are in the range $0 \dots m$:
 - Running time is $\Theta(n+m)$
- What about the $\Omega(n \lg n)$ bound for all sorting algorithms?
 - For *Comparison Sorts*, which allow for sorting arbitrary data. What happens when m is very large?

12-28: Binsort

- Counting Sort will need some modification to allow us to sort *records* with integer keys, instead of just integers.
- Binsort is much like Counting Sort, except that in each index *i* of the counting array *C*:
 - Instead of storing the *number* of elements with the value *i*, we store a *list* of all elements with the value *i*.

12-29: Binsort Example

3	1	2	6	2	4	5	3	9	7	key
mark	john	mary	sue	julie	rachel	pixel	shadow	alex	james	data



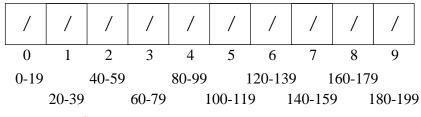
	1	2	2	3	3	4	5	б	7	9	key
	john	mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data
						•					-
			2	3							
			1 1	shadow							
		1	2	3	4	5	6	7		9	
		john	mary	mark	rachel	pixel	sue	james		alex	
Г											
	/								/		
	/								/		
-	0	1	2	3	4	5	6	7	8	9	

12-32: Bucket Sort

- Expand the "bins" in Bin Sort to "buckets"
- Each bucket holds a range of key values, instead of a single key value
- Elements in each bucket are sorted.

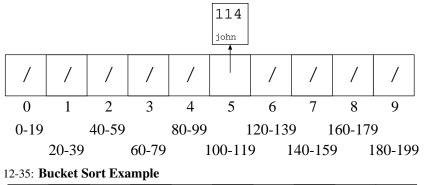
12-33: Bucket Sort Example

114	26	50	180	44	111	4	95	196	170	key
john	mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data

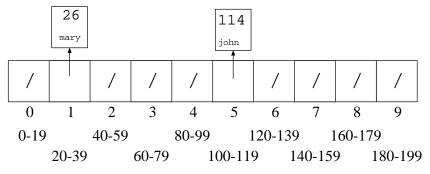


12-34: Bucket Sort Example

26	50	180	44	111	4	95	196	170	key
mary	julie	mark	shadow	rachel	pixel	sue	james	alex	data

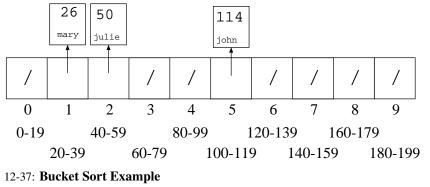


50	180	44	111	4	95	196	170	key
julie	mark	shadow	rachel	pixel	sue	james	alex	data

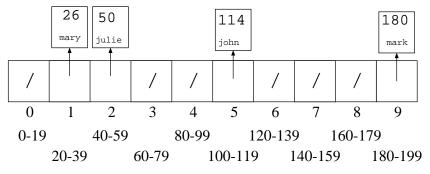


12-36: Bucket Sort Example

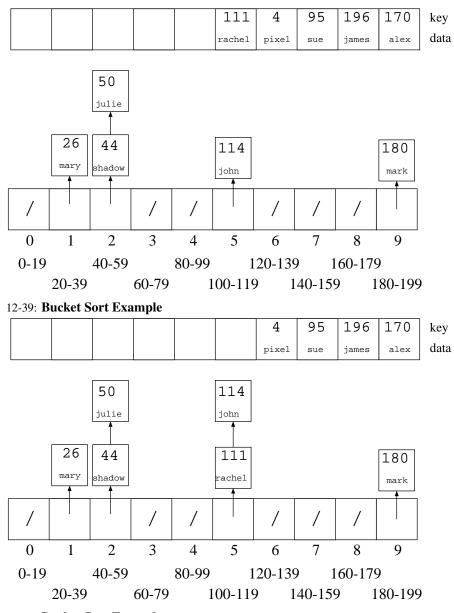
	180	44	111	4	95	196	170	key
	mark	shadow	rachel	pixel	sue	james	alex	data



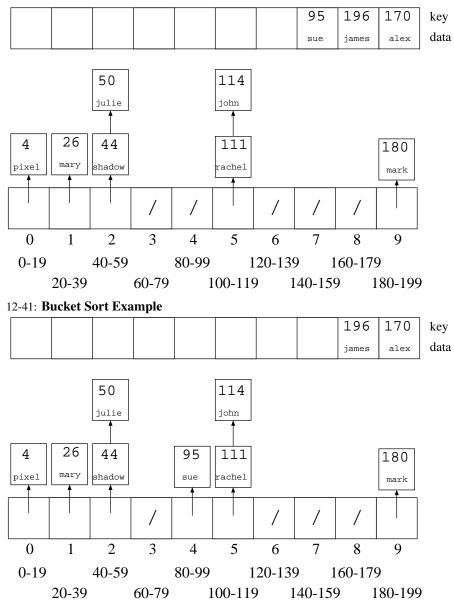
	44	111	4	95	196	170	key
	shadow	rachel	pixel	sue	james	alex	data



12-38: Bucket Sort Example



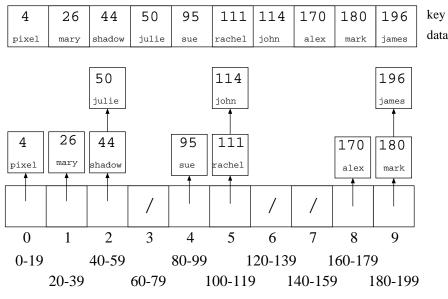
12-40: Bucket Sort Example



12-42: Bucket Sort Example



12-44: Bucket Sort Example



12-45: Counting Sort Revisited

- We're going to look at counting sort again
- For the moment, we will assume that our array is indexed from $1 \dots n$ (where n is the number of elements in the list) instead of being indexed from $0 \dots n 1$, to make the algorithm easier to understand
- Later, we will go back and change the algorithm to allow for an index between $0 \dots n-1$

12-46: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

12-47: Counting Sort Revisited

- Create the array C[], such that C[i] = # of times key i appears in the array.
- Modify C[] such that C[i] = the *index* of key i in the sorted array. (assume no duplicate keys, for now)
- If $x \notin A$, we don't care about C[x]

```
for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-1];</pre>
```

• Example: 3124987

12-48: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

12-49: Counting Sort Revisited

• Once we have a modified C, such that C[i] = index of key i in the array, how can we use C to sort the array?

```
for (i=1; i <= n; i++)
    B[C[A[i].key()]] = A[i];
for (i=1; i <= n; i++)
    A[i] = B[i];</pre>
```

• Example: 3124987

12-50: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

```
for(i=1; i <= n; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)
   C[i] = C[i] + C[i-1];</pre>
```

What will the value of C[i] represent?

12-51: Counting Sort & Duplicates

• If a list has duplicate elements, and we create C as before:

for(i=1; i <= n; i++)
 C[A[i].key()]++;
for(i=1; i < C.length; i++)
 C[i] = C[i] + C[i-1];</pre>

What will the value of C[i] represent?

• The *last* index in A where element *i* could appear.

12-52: (Almost) Final Counting Sort

12-53: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i<C.length; i++)
    C[i] = C[i] + C[i-1];
for (i=1; i <= n; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=1; i <= n; i++)
    A[i] = B[i];
    Example: 312422916</pre>
```

• Is this a Stable sorting algorithm?

12-54: (Almost) Final Counting Sort

```
for(i=1; i <= n; i++)
    C[A[i].key()]++;
for(i=1; i < C.length; i++)
    C[i] = C[i] + C[i-1];
for (i = n; i>=1; i++) {
    B[C[A[i].key()]] = A[i];
    C[A[i].key()]--;
}
for (i=1; i < n; i++)
    A[i] = B[i];</pre>
```

• How would we change this algorithm if our arrays were indexed from $0 \dots n - 1$ instead of $1 \dots n$?

12-55: Final (!) Counting Sort

```
for(i=0; i < A.length; i++)
   C[A[i].key()]++;
for(i=1; i < C.length; i++)
   C[i] = C[i] + C[i-1];
for (i=A.length - 1; i>=0; i++) {
    C[A[i].key()]--;
    B[C[A[i].key()]] = A[i];
}
for (i=0; i < A.length; i++)
   A[i] = B[i];</pre>
```

12-56: Radix Sort

- Sort a list of numbers one digit at a time
 - Sort by 1st digit, then 2nd digit, etc

- Each sort can be done in linear time, using counting sort
- First Try: Sort by most significant digit, then the next most significant digit, and so on
 - Need to keep track of a lot of sublists

12-57: Radix Sort Second Try:

- Sort by least significant digit first
- Then sort by next-least significant digit, using a Stable sort
- Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted. Why? 12-58: **Radix Sort**

 If (most significant digit of x); (most significant digit of y),

then x will appear in A before y.

12-59: Radix Sort

• If (most significant digit of x); (most significant digit of y),

then x will appear in A before y.

• Last sort was by the most significant digit

12-60: Radix Sort

• If (most significant digit of x) ; (most significant digit of y),

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of x) = (most significant digit of y) and

(second most significant digit of x); (second most significant digit of y),

then x will appear in A before y.

12-61: Radix Sort

• If (most significant digit of x); (most significant digit of y),

then x will appear in A before y.

- Last sort was by the most significant digit
- If (most significant digit of *x*) =

(most significant digit of y) and

(second most significant digit of x);

(second most significant digit of y),

then x will appear in A before y.

• After next-to-last sort, x is before y. Last sort does not change relative order of x and y

12-62: Radix Sort

Original List

 $982\,414\,357\,495\,500\,904\,645\,777\,716\,637\,149\,913\,817\,493\,730\,331\,201$

Sorted by Least Significant Digit

 $500\ 730\ 331\ 201\ 982\ 493\ 913\ 414\ 904\ 645\ 495\ 716\ 357\ 777\ 637\ 817\ 149$

Sorted by Second Least Significant Digit

 $5\underline{0}0|2\underline{0}1|9\underline{0}4|9\underline{1}3|4\underline{1}4|7\underline{1}6|8\underline{1}7|7\underline{3}0|3\underline{3}1|6\underline{3}7|6\underline{4}5|1\underline{4}9|3\underline{5}7|7\underline{7}7|9\underline{8}2|4\underline{9}3|4\underline{9}5|1\underline{6}5|$

Sorted by Most Significant Digit

149 201 331 357 414 493 495 500 637 645 716 730 777 817 904 913 982

12-63: Radix Sort

- We do not need to use a single digit of the key for each of our counting sorts
 - We could use 2-digit chunks of the key instead
 - Our C array for each counting sort would have 100 elements instead of 10

12-64: Radix Sort

Original List

9823 4376 2493 1055 8502 4333 1673 8442 8035 6061 7004 3312 4409 2338

 Sorted by Least Significant Base-100 Digit (last 2 base-10 digits)

 8502
 7004
 4409
 3312
 9823
 4333
 8035
 2338
 8442
 1055
 6061
 1673
 4376
 2493

Sorted by Most Significant Base-100 Digit (first 2 base-10 digits)

 $\underline{1055} \, \underline{1673} \, \underline{2338} \, \underline{2493} \, \underline{3312} \, \underline{4333} \, \underline{4376} \, \underline{4409} \, \underline{6061} \, \underline{7004} \, \underline{8035} \, \underline{8442} \, \underline{8502} \, \underline{9823}$

12-65: Radix Sort

• "Digit" does not need to be base ten

• For any value *r*:

. . .

- Sort the list based on (key % r)
- Sort the list based on ((key / r) % r))
- Sort the list based on $((\text{key} / r^2) \% r))$
- Sort the list based on $((\text{key} / r^3) \% r))$
- Sort the list based on

 ((key / r<sup>log_k(largest value in array)) % r))

 </sup>
- Code on other screen