Data Structures and Algorithms CS245-2015S-13 Hash Tables

David Galles

Department of Computer Science University of San Francisco

13-0: Searching \& Selecting

- Maintian a Database (keys and associated data)
- Operations:
- Add a key / value pair to the database
- Remove a key (and associated value) from the database
- Find the value associated with a key

13-1: Sorted List Implementation

If database is implemented as a sorted list:

- Add
- Remove
- Find

13-2: Sorted List Implementation

If database is implemented as a sorted list:

- Add $O(n)$
- Remove $O(n)$
- Find $O(\lg n)$

13-3: BST Implementation

If database is implemented as a Binary Search Tree:

- Add
- Remove
- Find

13-4: BST Implementation

If database is implemented as a Binary Search Tree:

- Add $O(\lg n)$ best, $O(n)$ worst
- Remove $O(\lg n)$ best, $O(n)$ worst
- Find $O(\lg n)$ best, $O(n)$ worst

13-5: Unsorted List

Maintain an unsorted, non-contiguous array of elements

- How long does a Find take?
- How long does a Remove take?
- How long does an Add take?

Does this sound like a good idea?

13-6: Hash Function

- What if we had a "magic function" -
- Takes a key as input
- Returns the index in the array where the key can be found, if the key is in the array
- To add an element
- Put the key through the magic function, to get a location
- Store element in that location
- To find an element
- Put the key through the magic function, to get a location
- See if the key is stored in that location

13-7: Hash Function

- The "magic function" is called a Hash function
- If hash (key) = i, we say that the key hashes to the value i
- We'd like to ensure that different keys will always hash to different values.
- Why is this not possible?

13-8: Hash Function

- The "magic function" is called a Hash function
- If hash (key) = i, we say that the key hashes to the value i
- We'd like to ensure that different keys will always hash to different values.
- Why is this not possible?
- Too many possible keys
- If keys are strings of up to 15 letters, there are 10^{21} different keys
- 1 sextillion - number of grains of salt it would take to fill this room one million times over.

13-9: Integer Hash Function

- When two keys hash to the same value, a collision occurs.
- We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.
- Example: Keys are integers
- Keys are in range 1...m
- Array indices are in range 1 . . . n
- $n \ll m$

13-10: Integer Hash Function

- When two keys hash to the same value, a collision occurs.
- We cannot avoid collisions, but we can minimize them by picking a hash function that distributes keys evenly through the array.
- Example: Keys are integers
- Keys are in range 1...m
- Array indices are in range 1 . . . n
- $n \ll m$
- $\operatorname{hash}(k)=k \bmod n$

13-11: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?

13-12: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?
- What if table size is even, all keys are even?

13-13: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?
- What if table size is even, all keys are even?
- In general, what if the table size and many of the keys share factors?

13-14: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?
- What if table size is even, all keys are even?
- In general, what if the table size and many of the keys share factors?
- What can we do?

13-15: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?
- What if table size is even, all keys are even?
- In general, what if the table size and many of the keys share factors?
- What can we do?
- Prevent keys and table size from sharing factors.
- No control over the keys.

13-16: Integer Hash Function

- What if table size $=10$, all keys end in 0 ?
- What if table size is even, all keys are even?
- In general, what if the table size and many of the keys share factors?
- What can we do?
- Prevent keys and table size from sharing factors.
- No control over the keys.
- Make the table size prime.

13-17: String Hash Function

- Hash tables are usually used to store string values
- If we can convert a string into an integer, we can use the integer hash function
- How can we convert a string into an integer?

13-18: String Hash Function

- Hash tables are usually used to store string values
- If we can convert a string into an integer, we can use the integer hash function
- How can we convert a string into an integer?
- Add up ASCII values of the characters in the string
int hash(String key, int tableSize) \{ int hashvalue = 0;
for (int i=0; i<key.length(); i++)
hashvalue += (int) key.charAt(i);
return hashvalue \% tableSize;

13-19: String Hash Function

- Hash tables are usually used to store string values
- If we can convert a string into an integer, we can use the integer hash function
- How can we convert a string into an integer?
- Concatenate ASCII digits together

$$
\sum_{k=0}^{k e y s i z e-1} k e y[k] * 256^{\text {keysize }-k-1}
$$

13-20: String Hash Function

- Concatenating digits does not work, since numbers get big too fast. Solutions:
- Overlap digits a little (use base of 32 instead of 256)
- Ignore early characters (shift them off the left side of the string)
static long hash(String key, int tablesize) \{
long h = 0;
int i;
for (i=0; i<key.length() ; i++)
h = (h << 4) + (int) key.charAt(i);
return h \% tablesize;
\}
- For each new character, the hash value is shifted to the left, and the new character is added to the accumulated value.
- If the string is long, the early characters will "fall off" the end of the hash value when it is shifted
- Early characters will not affect the hash value of large strings
- Instead of falling off the end of the string, the most significant bits can be shifted to the middle of the string, and XOR'ed.
- Every character will influence the value of the hash function.

13-22: ElfHash

static long ELFhash(String key, int tablesize) \{ long h = 0;
long g; int i;
for (i=0; i<key.length(); i++) \{
h = (h << 4) + (int) key.charAt(i);
$\mathrm{g}=\mathrm{h}$ \& 0xF0000000L;
if (g != 0)
h ^ $=\mathrm{g}$ >>> 24
$\mathrm{h} \&={ }^{\sim} \mathrm{g}$
\}
return h \% M;
\}

13-23: Collisions

- When two keys hash to the same value, a collision occurs
- A collision strategy tells us what to do when a collision occurs
- Two basic collision strategies:
- Open Hashing (Closed Addressing, Separate Chaining)
- Closed Hashing (Open Addressing)

13-24: Open Hashing

- Array does not store elements, but linked-lists of elements
- To Add an element to the hash table:
- Hash the key to get an index i
- Store the key/value pair in the linked list at index i
- To find an element in the hash table
- Hash the key to get an index i
- Search the linked list at index i for the key

13-25: Open Hashing

Under the following conditions:

- Keys are evenly distributed through the hash table
- Size of the hash table = \# of keys inserted

What is the running time for the following operations:

- Add
- Remove
- Find

13-26: Open Hashing

Under the following conditions:

- Keys are evenly distributed through the hash table
- Size of the hash table = \# of keys inserted

What is the running time for the following operations:

- Add $\Theta(1)$
- Remove Θ (1)
- Find $\Theta(1)$

13-27: Closed Hashing

- Values are stored in the array itself (no linked lists)
- The number of elements that can be stored in the hash table is limited to the table size (hence closed hashing)

13-28: Closed Hashing

- To add element X to a closed hash table:
- Find the smallest i, such that Array[hash(x) + $f(\mathrm{i})]$ is empty (wrap around if necessary)
- Add X to Array[hash(x) + f(i)]
- If $f(i)=i$, linear probing

13-29: Closed Hashing

- Problems with linear probing:
- Primary Clustering
- "Clumps" - large sequences of consecutively filled array elements - tend to form
- Positive feedback system - the larger the clumps, the more likely an element will end up in a clump.

13-30: Closed Hashing

- Quadradic probing
- Find the smallest i , such that Array[hash(x) + $f(i)]$ is empty
- Add X to Array[hash(x) + f(i)]
- $\mathrm{f}(\mathrm{i})=i^{2}$

13-31: Closed Hashing

- Quadradic probing
- Find the smallest i, such that Array[hash(x) + $f(i)$] is empty
- Add X to Array[hash(x) + f(i)]
- $\mathrm{f}(\mathrm{i})=i^{2}$
- Problems:
- Can't reach all elements in the list

13-32: Closed Hashing

- Quadradic probing
- Find the smallest i, such that $\operatorname{Array}[h a s h(x)+$ $f(i)$] is empty
- Add X to Array[hash(x) + f(i)]
- $\mathrm{f}(\mathrm{i})=i^{2}$
- Problems:
- Can't reach all elements in the list
- (if table is less than $1 / 2$ full, and table size is an integer, guaranteed to be able to add an element)

13-33: Closed Hashing

- Pseudo-Random
- Create a "Permutation Array" P
- $\mathrm{f}(\mathrm{i})=\mathrm{P}[\mathrm{i}]$

13-34: Closed Hashing

- Multiple keys hash to the same element
- Secondary clustering
- Double Hashing
- Use a secondary hash function to determine how far ahead to look
- $f(i)=$ i * hash2(key)

13-35: Deletion

- Deletion from an open hash table is easy.
- Find the element.
- Delete it.
- Deletion from a closed hash table is harder.
- Why?

13-36: Deletion

- Deletion a closed hash table can cause problems
- Three different kinds of entries
- Empty cells
- Cells that contain data
- Cells that have been deleted (tombstones)

13-37: Deletion

- To insert an element:
- Find the smallest i such that hash $(x)+f(i)$ is either empty or deleted
- To find an element
- Try all values of i (starting with 0) until either
- Table[hash $(x)+f(i)]=x$
- Table[hash(x) + f(i)] is empty (not deleted)

13-38: Rehashing

- What can we do when our closed hash table gets full?
- - Or if the load (\# of elements / table size) gets larger than 0.5
- Create a new, larger table
- New hash table will have a different hash function, since the table size is different
- Add each element in the old table to the new table

13-39: Rehashing

- When we creata a new table, it should be approx. twice as large as the old table
- A single insert can now require $\Theta(n)$ work
- ... but only after $\Theta(n)$ inserts
- Time for n inserts is $\Theta(n)$
- Average time for an insert is still $\Theta(1)$
- What happens if we make the table 100 units larger, instead of twice as large?
- Rememeber to keep the table size prime!

