Data Structures and Algorithms CS245-2015S-14 Disjoint Sets

David Galles

Department of Computer Science University of San Francisco

14-0: Disjoint Sets

- Maintain a collection of sets
- Operations:
- Determine which set an element is in
- Union (merge) two sets
- Initially, each element is in its own set
- \# of sets = \# of elements

14-1: Disjoint Sets

- Elements will be integers (for now)
- Operations:
- CreateSets(n) - Create n sets, for integers 0..(n-1)
- Union (x, y) - merge the set containing x and the set containing y
- Find (x) - return a representation of x 's set
- Find $(x)=\operatorname{Find}(y)$ iff x, y are in the same set

14-2: Disjoint Sets

- Implementing Disjoint sets
- How should disjoint sets be implemented?

14-3: Implementing Disjoint Sets

- Implementing Disjoint sets (First Try)
- Array of set identifiers: Set[i] = set containing element i
- Initially, Set[i] = i

14-4: Implementing Disjoint Sets

- Creating sets:

14-5: Implementing Disjoint Sets

- Creating sets: (pseudo-Java)

```
void CreateSets(n) {
    for (i=0; i<n; i++) {
        Set[i] = i;
    }
}
```


14-6: Implementing Disjoint Sets

- Find:

14-7: Implementing Disjoint Sets

- Find: (pseudo-Java)
int Find(x) \{
return Set [x];
\}

14-8: Implementing Disjoint Sets

- Union:

14-9: Implementing Disjoint Sets

- Union: (pseudo-Java)

```
void Union(x,y) {
set1 = Set[x];
set2 = Set[y];
```

for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{n}$; $\mathrm{i}=+$)
if (Set[i] == set2)
Set[i] = set1;
\}

14-10: Disjoint Sets $\Theta()$

- CreateSets
- Find
- Union

14-11: Disjoint Sets $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$

14-12: Disjoint Sets $\Theta()$

- CreateSets: $\Theta(n)$
- Find: $\Theta(1)$
- Union: $\Theta(n)$

We can do better! (At least for Union ...)

14-13: Implementing Disjoint Sets II

- Store elements in trees
- All elements in the same set will be in the same tree
- Find (x) returns the element at the root of the tree containing x
- How can we easily find the root of a tree containing x ?

14-14: Implementing Disjoint Sets II

- Store elements in trees
- All elements in the same set will be in the same tree
- Find (x) returns the element at the root of the tree containing x
- How can we easily find the root of a tree containing x ?
- Implement trees using parent pointers instead of children pointers

14-15: Trees Using Parent Pointers

- Examples:

14-16: Implementing Disjoint Sets II

- Each element is represented by a node in a tree
- Maintain an array of pointers to nodes

14-17: Implementing Disjoint Sets II

- Each element is represented by a node in a tree
- Maintain an array of pointers to nodes

14-18: Implementing Disjoint Sets II

- Find:

14-19: Implementing Disjoint Sets II

- Find:
- Follow parent pointers, until root is reached.
- Root is node with null parent pointer.
- Return element at root

14-20: Implementing Disjoint Sets II

- Find: (pseudo-Java)
int Find (x) \{
Node tmp = Sets[x]; while (tmp.parent ! = null) tmp = tmp.parent; return tmp.element;

14-21: Implementing Disjoint Sets II

- Union(x,y)

14-22: Implementing Disjoint Sets II

- Union(x,y)
- Calculate:
- Root of x's tree, rootx
- Root of y's tree, rooty
- Set parent(rootx) = rooty

14-23: Implementing Disjoint Sets II

- Union(x,y) (pseudo-Java)
void Union(x,y) \{
rootx $=$ Find(x);
rooty = Find(y);
Sets[rootx].parent = Sets[rooty];

14-24: Removing pointers

- We don't need any pointers
- Instead, use index into set array

-1	-1	-1	-1	-1	-1	-1	-1	-1
0	1	2	3	4	5	6	7	8

14-25: Removing pointers

-1	-1	-1	-1	-1	-1	-1	-1	-1
0	1	2	3	4	5	6	7	8

- Union(2,3), Union(6,8), Union(0,2), Union(2,6)

14-26: Removing pointers

- Union(2,3), Union(6,8), Union(0,2), Union(2,8)

3	-1	3	8	-1	-1	8	-1	-1
0	1	2	3	4	5	6	7	8

14-27: Implementing Disjoint Sets III

- Find: (pseudo-Java)

```
int Find(x) {
    while (Parent[x] != -1)
        x = Parent [x]
```

 return x
 \}

14-28: Implementing Disjoint Sets II

- Union(x,y) (pseudo-Java)
void Union(x, y) \{
rootx = Find(x);
rooty = Find(y);
Parent[rootx] = rooty;

14-29: Efficiency of Disjoint Sets II

- So far, we haven't done much to improve the run-time efficiency of Disjoint sets.
- Two improvements will make a huge difference:
- Union by rank
- Path compression

14-30: Union by Rank

- When we merge two sets:
- "Shorter" tree point to the taller tree

14-31: Union by Rank

- We need to keep track of the height of each tree
- How?

14-32: Union by Rank

- We need to keep track of the height of each tree
- Store the height of the tree at the root
- If a node x is not a root, Parent $[x]=$ parent of x
- If a node x is a root, Parent $[x]=0$ - \# height of tree rooted at x

14-33: Union by Rank

- Examples

14-34: Union by Rank

- When we merge two trees, how do we know which tree to point at the other?

14-35: Union by Rank

- When we merge two trees, how do we know which tree to point at the other?
- The node with the larger (less negative) Parent[] value points to the node with the smaller (more negative) Parent[] value. Break ties arbitrarily.
- How do we update the height of the new merged tree?

14-36: Union by Rank

- When we merge two trees, how do we know which tree to point at the other?
- The node with the larger (less negative) Parent[] value points to the node with the smaller (more negative) Parent[] value. Break ties arbitrarily.
- How do we update the height of the new merged tree?
- If trees are different sizes, do nothing
- If trees are the same size, increase (decrease) new parent by 1 .

14-37: Union by Rank

- Union(x,y) (pseudo-Java)

```
void Union(x,y) {
    rootx = Find(x);
    rooty = Find(y);
    if (Parent[rootx] < Parent[rooty]) {
        Parent[rooty] = x;
    } else {
        if Parent[rootx] == Parent [rooty]
        Parent[rooty]--;
        Parent[rootx] = rooty;
    }
}
```


14-38: Path Compression

- After each call to Find (x), change x's parent pointer to point directly at root
- Also, change all parent pointers on path from x to root

14-39: Implementing Disjoint Sets III

- Find: (pseudo-Java)

```
int Find(x) {
    if (Parent[x] < 0)
        return x;
        else {
        Parent[x] = Find(Parent[x]);
        return Parent[x];
    }
```

\}

14-40: Disjoint Set Θ

- Time to do a Find / Union proportional to the depth of the trees
- "Union by Rank" tends to keep tree sizes down
- "Path compression" makes Find and Union causes trees to flatten
- Union / Find take roughly time $\mathrm{O}(1)$ on average

14-41: Disjoint Set Θ

- Technically, n Find/Unions take time $O\left(n \lg ^{*} n\right)$
- $\lg ^{*} n$ is the number of times we need to take \lg of n to get to 1 .
- $\lg 2=1, \lg ^{*} 2=1$
- $\lg (\lg 4)=1, \lg ^{*} 4=2$
- $\lg (\lg (\lg 16))=1, \lg ^{*} 16=3$
- $\lg (\lg (\lg (\lg 65536)))=1, \lg ^{*} 65536=4$
- . .
- $\lg ^{*} 2^{65536}=5$
- \# of atoms in the universe $\approx 10^{80} \ll 2^{65536}$
- $\lg ^{*} n<=5$ for all practical values of n

