
CS245-2015S-14 Disjoint Sets 1

14-0: Disjoint Sets

• Maintain a collection of sets

• Operations:

• Determine which set an element is in

• Union (merge) two sets

• Initially, each element is in its own set

• # of sets = # of elements

14-1: Disjoint Sets

• Elements will be integers (for now)

• Operations:

• CreateSets(n) – Create n sets, for integers 0..(n-1)

• Union(x,y) – merge the set containing x and the set containing y

• Find(x) – return a representation of x’s set

• Find(x) = Find(y) iff x,y are in the same set

14-2: Disjoint Sets

• Implementing Disjoint sets

• How should disjoint sets be implemented?

14-3: Implementing Disjoint Sets

• Implementing Disjoint sets (First Try)

• Array of set identifiers:

Set[i] = set containing element i

• Initially, Set[i] = i

14-4: Implementing Disjoint Sets

• Creating sets:

14-5: Implementing Disjoint Sets

• Creating sets: (pseudo-Java)

void CreateSets(n) {

for (i=0; i<n; i++) {

Set[i] = i;

}

}

14-6: Implementing Disjoint Sets

• Find:

CS245-2015S-14 Disjoint Sets 2

14-7: Implementing Disjoint Sets

• Find: (pseudo-Java)

int Find(x) {

return Set[x];

}

14-8: Implementing Disjoint Sets

• Union:

14-9: Implementing Disjoint Sets

• Union: (pseudo-Java)

void Union(x,y) {

set1 = Set[x];

set2 = Set[y];

for (i=0; i < n; i=+)

if (Set[i] == set2)

Set[i] = set1;

}

14-10: Disjoint Sets Θ()

• CreateSets

• Find

• Union

14-11: Disjoint Sets Θ()

• CreateSets: Θ(n)

• Find: Θ(1)

• Union: Θ(n)

14-12: Disjoint Sets Θ()

• CreateSets: Θ(n)

• Find: Θ(1)

• Union: Θ(n)

We can do better! (At least for Union ...) 14-13: Implementing Disjoint Sets II

• Store elements in trees

• All elements in the same set will be in the same tree

• Find(x) returns the element at the root of the tree containing x

CS245-2015S-14 Disjoint Sets 3

• How can we easily find the root of a tree containing x?

14-14: Implementing Disjoint Sets II

• Store elements in trees

• All elements in the same set will be in the same tree

• Find(x) returns the element at the root of the tree containing x

• How can we easily find the root of a tree containing x?

• Implement trees using parent pointers instead of children pointers

14-15: Trees Using Parent Pointers

• Examples:

1

2 3

4 5 6 7

1

2 3

4 5 6 7

14-16: Implementing Disjoint Sets II

• Each element is represented by a node in a tree

• Maintain an array of pointers to nodes

1 2 3 4 5 60 7 8

0 1 2 3 4 5 6 7 8

14-17: Implementing Disjoint Sets II

• Each element is represented by a node in a tree

• Maintain an array of pointers to nodes

CS245-2015S-14 Disjoint Sets 4

1 2 3 4 5 60 7 8

0

1 2 3

4

5

6 7 8

14-18: Implementing Disjoint Sets II

• Find:

14-19: Implementing Disjoint Sets II

• Find:

• Follow parent pointers, until root is reached.

• Root is node with null parent pointer.

• Return element at root

14-20: Implementing Disjoint Sets II

• Find: (pseudo-Java)

int Find(x) {

Node tmp = Sets[x];

while (tmp.parent != null)

tmp = tmp.parent;

return tmp.element;

}

14-21: Implementing Disjoint Sets II

• Union(x,y)

14-22: Implementing Disjoint Sets II

• Union(x,y)

• Calculate:

• Root of x’s tree, rootx

• Root of y’s tree, rooty

• Set parent(rootx) = rooty

14-23: Implementing Disjoint Sets II

• Union(x,y) (pseudo-Java)

CS245-2015S-14 Disjoint Sets 5

void Union(x,y) {

rootx = Find(x);

rooty = Find(y);

Sets[rootx].parent = Sets[rooty];

}

14-24: Removing pointers

• We don’t need any pointers

• Instead, use index into set array

1 2 3 4 5 60 7 8

-1 -1 -1 -1 -1 -1 -1 -1 -1

14-25: Removing pointers

1 2 3 4 5 60 7 8

-1 -1 -1 -1 -1 -1 -1 -1 -1

• Union(2,3), Union(6,8), Union(0,2), Union(2,6)

14-26: Removing pointers

• Union(2,3), Union(6,8), Union(0,2), Union(2,8)

1 2 3 4 5 60 7 8

 3 -1 3 8 -1 -1 8 -1 -1

14-27: Implementing Disjoint Sets III

• Find: (pseudo-Java)

int Find(x) {

while (Parent[x] != -1)

x = Parent[x]

return x

}

14-28: Implementing Disjoint Sets II

• Union(x,y) (pseudo-Java)

void Union(x,y) {

rootx = Find(x);

rooty = Find(y);

Parent[rootx] = rooty;

}

CS245-2015S-14 Disjoint Sets 6

14-29: Efficiency of Disjoint Sets II

• So far, we haven’t done much to improve the run-time efficiency of Disjoint sets.

• Two improvements will make a huge difference:

• Union by rank

• Path compression

14-30: Union by Rank

• When we merge two sets:

• “Shorter” tree point to the taller tree

14-31: Union by Rank

• We need to keep track of the height of each tree

• How?

14-32: Union by Rank

• We need to keep track of the height of each tree

• Store the height of the tree at the root

• If a node x is not a root, Parent[x] = parent of x

• If a node x is a root, Parent[x] = 0 - # height of tree rooted at x

14-33: Union by Rank

• Examples

14-34: Union by Rank

• When we merge two trees, how do we know which tree to point at the other?

14-35: Union by Rank

• When we merge two trees, how do we know which tree to point at the other?

• The node with the larger (less negative) Parent[] value points to the node with the smaller (more negative)

Parent[] value. Break ties arbitrarily.

• How do we update the height of the new merged tree?

14-36: Union by Rank

• When we merge two trees, how do we know which tree to point at the other?

• The node with the larger (less negative) Parent[] value points to the node with the smaller (more negative)

Parent[] value. Break ties arbitrarily.

• How do we update the height of the new merged tree?

• If trees are different sizes, do nothing

CS245-2015S-14 Disjoint Sets 7

• If trees are the same size, increase (decrease) new parent by 1.

14-37: Union by Rank

• Union(x,y) (pseudo-Java)

void Union(x,y) {

rootx = Find(x);

rooty = Find(y);

if (Parent[rootx] < Parent[rooty]) {

Parent[rooty] = x;

} else {

if Parent[rootx] == Parent[rooty]

Parent[rooty]--;

Parent[rootx] = rooty;

}

}

14-38: Path Compression

• After each call to Find(x), change x’s parent pointer to point directly at root

• Also, change all parent pointers on path from x to root

14-39: Implementing Disjoint Sets III

• Find: (pseudo-Java)

int Find(x) {

if (Parent[x] < 0)

return x;

else {

Parent[x] = Find(Parent[x]);

return Parent[x];

}

}

14-40: Disjoint Set Θ

• Time to do a Find / Union proportional to the depth of the trees

• “Union by Rank” tends to keep tree sizes down

• “Path compression” makes Find and Union causes trees to flatten

• Union / Find take roughly time O(1) on average

14-41: Disjoint Set Θ

• Technically, n Find/Unions take time O(n lg∗ n)

• lg∗ n is the number of times we need to take lg of n to get to 1.

• lg 2 = 1, lg∗ 2 = 1

• lg(lg 4) = 1, lg∗ 4 = 2

CS245-2015S-14 Disjoint Sets 8

• lg(lg(lg 16)) = 1, lg∗ 16 = 3

• lg(lg(lg(lg 65536))) = 1, lg∗ 65536 = 4

• . . .

• lg∗ 265536 = 5

• # of atoms in the universe ≈ 1080 ≪ 265536

• lg∗ n <= 5 for all practical values of n

