Data Structures and Algorithms CS245-2015S-15

 Graphs

 Graphs}

David Galles

Department of Computer Science
University of San Francisco

15-0: Graphs

- A graph consists of:
- A set of nodes or vertices (terms are interchangable)
- A set of edges or arcs (terms are interchangable)
- Edges in graph can be either directed or undirected

15-1: Graphs \& Edges

- Edges can be labeled or unlabeled
- Edge labels are typically the cost assoctiated with an edge
- e.g., Nodes are cities, edges are roads between cities, edge label is the length of road

15-2: Graph Problems

- There are several problems that are "naturally" graph problems
- Networking problems
- Route planning
- etc
- Problems that don't seem like graph problems can also be solved with graphs
- Register allocation using graph coloring

15-3: Connected Undirected Graph

- Path from every node to every other node

- Connected

15-4: Connected Undirected Graph

- Path from every node to every other node

- Connected

15-5: Connected Undirected Graph

- Path from every node to every other node

- Not Connected

15-6: Strongly Connected Graph

- Directed Path from every node to every other node

$2<3$

- Strongly Connected

15-7: Strongly Connected Graph

- Directed Path from every node to every other node

2
3

- Strongly Connected

15-8: Strongly Connected Graph

- Directed Path from every node to every other node

- Not Strongly Connected

15-9: Weakly Connected Graph

- Directed graph w/ connected backbone

- Weakly Connected

15-10: Cycles in Graphs

- Undirected cycles

- Contains an undirected cycle

15-11: Cycles in Graphs

- Undirected cycles

- Contains an undirected cycle

15-12: Cycles in Graphs

- Undirected cycles

- Contains no undirected cycle

15-13: Cycles in Graphs

- Undirected cycles

- Contains no undirected cycle

15-14: Cycles in Graphs

- Directed cycles

- Contains a directed cycle

15-15: Cycles in Graphs

- Directed cycles

- Contains a directed cycle

15-16: Cycles in Graphs

- Directed cycles

- Contains a directed cycle

15-17: Cycles in Graphs

- Directed cycles

- Contains no directed cycle

15-18: Cycles \& Connectivity

- Must a connected, undirected graph contain a cycle?

15-19: Cycles \& Connectivity

- Must a connected, undirected graph contain a cycle?
- No.
- Can an unconnected, undirected graph contain a cycle?

15-20: Cycles \& Connectivity

- Must a connected, undirected graph contain a cycle?
- No.
- Can an unconnected, undirected graph contain a cycle?
- Yes.
- Must a strongly connected graph contain a cycle?

15-21: Cycles \& Connectivity

- Must a connected, undirected graph contain a cycle?
- No.
- Can an unconnected, undirected graph contain a cycle?
- Yes.
- Must a strongly connected graph contain a cycle?
- Yes! (why?)

15-22: Cycles \& Connectivity

- If a graph is weakly connected, and contains a cycle, must it be strongly connected?

15-23: Cycles \& Connectivity

- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
- No.

15-24: Cycles \& Connectivity

- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
- No.
- If a graph contains a cycle which contains all nodes, must the graph be strongly connected?

15-25: Cycles \& Connectivity

- If a graph is weakly connected, and contains a cycle, must it be strongly connected?
- No.
- If a graph contains a cycle which contains all nodes, must the graph be strongly connected?
- Yes. (why?)

15-26: Graph Representations

- Adjacency Matrix
- Represent a graph with a two-dimensional array G
- $G[i][j]=1$ if there is an edge from node i to node j
- $G[i][j]=0$ if there is no edge from node i to node j
- If graph is undirected, matrix is symmetric
- Can represent edges labeled with a cost as well:
- $G[i][j]=$ cost of link between i and j
- If there is no direct link, $G[i][j]=\infty$

15-27: Adjacency Matrix

- Examples:

	0		
0	1	2	3
0	0	1	0

15-28: Adjacency Matrix

- Examples:

	0		1
	1	2	3
0	0	1	0

- Examples:

	$\begin{array}{llll}0 & 1 & 2 & 3\end{array}$			
0	0	0	0	0
1	1	1	0	0
2	0	1	0	0
3	0	0	0	1

15-30: Adjacency Matrix

- Examples:

0			1	
2	3			
∞ ∞	∞	5		
	4	∞	∞	∞
2	∞	7	∞	∞
	∞	∞	-2	∞

15-31: Graph Representations

- Adjacency List
- Maintain a linked-list of the neighbors of every vertex.
- n vertices
- Array of n lists, one per vertex
- Each list i contains a list of all vertices adjacent to i.

15-32: Adjacency List

- Examples:

15-33: Adjacency List

- Examples:

- Note - lists are not always sorted

15-34: Sparse vs. Dense

- Sparse graph - relatively few edges
- Dense graph - lots of edges
- Complete graph - contains all possible edges
- These terms are fuzzy. "Sparse" in one context may or may not be "sparse" in a different context

15-35: Nodes with Labels

- If nodes are labeled with strings instead of integers
- Internally, nodes are still represented as integers
- Need to associate string labels \& vertex numbers
- Vertex number \rightarrow label
- Label \rightarrow vertex number

15-36: Nodes with Labels

- Vertex numbers \rightarrow labels

15-37: Nodes with Labels

- Vertex numbers \rightarrow labels
- Array
- Vertex numbers are indices into array
- Data in array is string label

15-38: Nodes with Labels

- Labels \rightarrow vertex numbers

15-39: Nodes with Labels

- Labels \rightarrow vertex numbers
- Use a hash table
- Key is the vertex label
- Data is vertex number

Examples!

15-40: Topological Sort

- Directed Acyclic Graph, Vertices $v_{1} \ldots v_{n}$
- Create an ordering of the vertices
- If there a path from v_{i} to v_{j}, then v_{i} appears before v_{j} in the ordering
- Example: Prerequisite chains

15-41: Topological Sort

- Which node(s) could be first in the topological ordering?

15-42: Topological Sort

- Which node(s) could be first in the topological ordering?
- Node with no incident (incoming) edges

15-43: Topological Sort

- Pick a node v_{k} with no incident edges
- Add v_{k} to the ordering
- Remove v_{k} and all edges from v_{k} from the graph
- Repeat until all nodes are picked.

15-44: Topological Sort

- How can we find a node with no incident edges?
- Count the incident edges of all nodes

15-45: Topological Sort

for (i=0; i < NumberOfVertices; i++) NumIncident[i] = 0;
for(i=0; i < NumberOfVertices; i++) each node k adjacent to i NumIncident [k] ++

15-46: Topological Sort

for(i=0; i < NumberOfVertices; i++) NumIncident[i] = 0;
for(i=0; i < NumberOfVertices; i++)
for (tmp=G[i]; tmp != null; tmp=tmp.next()) NumIncident[tmp.neighbor()]++

15-47: Topological Sort

- Create NumIncident array
- Repeat
- Search through NumIncident to find a vertex v with NumIncident $[v]=0$
- Add v to the ordering
- Decrement NumIncident of all neighbors of v
- Set NumIncident[$[$] = -1
- Until all vertices have been picked

15-48: Topological Sort

- In a graph with V vertices and E edges, how long does this version of topological sort take?

15-49: Topological Sort

- In a graph with V vertices and E edges, how long does this version of topological sort take?
- $\Theta\left(V^{2}+E\right)=\Theta\left(V^{2}\right)$
- Since $E \in O\left(V^{2}\right)$

15-50: Topological Sort

- Where are we spending "extra" time

15-51: Topological Sort

- Where are we spending "extra" time
- Searching through NumIncident each time looking for a vertex with no incident edges
- Keep around a set of all nodes with no incident edges
- Remove an element v from this set, and add it to the ordering
- Decrement NumIncident for all neighbors of v - If NumIncident[k] is decremented to 0 , add k to the set.
- How do we implement the set of nodes with no incident edges?

15-52: Topological Sort

- Where are we spending "extra" time
- Searching through NumIncident each time looking for a vertex with no incident edges
- Keep around a set of all nodes with no incident edges
- Remove an element v from this set, and add it to the ordering
- Decrement NumIncident for all neighbors of v - If NumIncident[$k]$ is decremented to 0 , add k to the set.
- How do we implement the set of nodes with no incident edges?
- Use a stack

15-53: Topological Sort

- Examples!!
- Graph
- Adjacency List
- NumIncident
- Stack

