
CS245-2015S-18 Spanning Trees 1

18-0: Spanning Trees

• Given a connected, undirected graph G

• A subgraph of G contains a subset of the vertices and edges in G

• A Spanning Tree T of G is:

• subgraph of G

• contains all vertices in G

• connected

• acyclic

18-1: Spanning Tree Examples

• Graph

0 1

2 3 4

5 6
18-2: Spanning Tree Examples

• Spanning Tree

0 1

2 3 4

5 6
18-3: Spanning Tree Examples

• Graph



CS245-2015S-18 Spanning Trees 2

0 1

2 3 4

5 6
18-4: Spanning Tree Examples

• Spanning Tree

0 1

2 3 4

5 6
18-5: Minimal Cost Spanning Tree

• Minimal Cost Spanning Tree

• Given a weighted, undirected graph G

• Spanning tree of G which minimizes the sum of all weights on edges of spanning tree

18-6: MST Example

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

18-7: MST Example



CS245-2015S-18 Spanning Trees 3

0 1

2 3 4

5 6

2

1

2

4 6

1

18-8: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

18-9: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

• YES!

• What happens when all edges have unit cost?

18-10: Minimal Cost Spanning Trees

• Can there be more than one minimal cost spanning tree for a particular graph?

• YES!

• What happens when all edges have unit cost?

• All spanning trees are MSTs

18-11: Calculating MST

• Two algorithms to calculate MST:

• Kruskal’s Algorithm

• Build a “forest” of spanning trees

• Combine into one tree

• Prims Algorithm

• Grow a single tree out from a start vertex

18-12: Kruskal’s Algorithm

• Start with an empty graph (no edges)

• Sort the edges by cost

• For each edge e (in increasing order of cost)

• Add e to G if it would not cause a cycle



CS245-2015S-18 Spanning Trees 4

18-13: Kruskal’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

18-14: Kruskal’s Algorithm

• Proof (by contradiction)

• Assume that no optimal MST T contains the minimum cost edge e

• Add e to T , which causes a cycle

• Remove an edge other than e to break the cycle

• cost T ′ ≤ T , a contradiction

18-15: Kruskal’s Algorithm

• Coding Kruskal’s Algorithm:

• Place all edges into a list

• Sort list of edges by cost

• For each edge in the list

• Select the edge if it does not form a cycle with previously selected edges

• How can we do this?

18-16: Kruskal’s Algorithm

• Determining of adding an edge will cause a cycle

• Start with a forest of V trees (each containing one node)

• Each added edge merges two trees into one tree

• An edge causes a cycle if both vertices are in the same tree

• (examples)

18-17: Kruskal’s Algorithm

• We need to:

• Put each vertex in its own tree

• Given any two vertices v1 and v2, determine if they are in the same tree

• Given any two vertices v1 and v2, merge the tree containing v1 and the tree containing v2



CS245-2015S-18 Spanning Trees 5

• ... sound familiar?

18-18: Kruskal’s Algorithm

• Disjoint sets!

• Create a list of all edges

• Sort list of edges

• For each edge e = (v1, v2) in the list

• if FIND(v1) != FIND(v2)

• Add e to spanning tree

• UNION(v1, v2)

18-19: Prim’s Algorithm

• Grow that spanning tree out from an initial vertex

• Divide the graph into two sets of vertices

• vertices in the spanning tree

• vertices not in the spanning tree

• Initially, Start vertex is in the spanning tree, all other vertices are not in the tree

• Pick the initial vertex arbitrarily

18-20: Prim’s Algorithm

• While there are vertices not in the spanning tree

• Add the cheapest vertex to the spanning tree

18-21: Prims’s Algorithm Examples

0 1

2 3 4

5 6

2

4 1 3 10

2 7

5 8 4 6

1

18-22: Prim’s Algorithm

• Use a table – much like Dijkstra table

• Path has the same meaning

• Cost is for vertex vk



CS245-2015S-18 Spanning Trees 6

• cost to add vk to the tree

• (instead of length of path to vk)

18-23: Prim’s Algorithm

• Code for Prim’s algorithm is very similar to the code for Dijkstra’s algorithm

• Make one small change to Dijkstra’s algorithm to get Prim’s algorithm

18-24: Dijkstra Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

T[v].distance + e.cost) {

T[e.neighbor].distance = T[v].distance + e.cost;

T[e.neighbor].path = v;

}

}

}

}

18-25: Prim Code

void Dijkstra(Edge G[], int s, tableEntry T[]) {

int i, v;

Edge e;

for(i=0; i<G.length; i++) {

T[i].distance = Integer.MAX_VALUE;

T[i].path = -1;

T[i].known = false;

}

T[s].distance = 0;

for (i=0; i < G.length; i++) {

v = minUnknownVertex(T);

T[v].known = true;

for (e = G[v]; e != null; e = e.next) {

if (T[e.neighbor].distance >

e.cost) {

T[e.neighbor].distance = e.cost;

T[e.neighbor].path = v;

}

}

}

}


