20-0: Indexing

- Operations:
- Add an element
- Remove an element
- Find an element, using a key
- Find all elements in a range of key values

20-1: Indexing

- Sorted List
- Find / Find in Range fast
- Add / Remove slow
- Unsorted List / Hash Table
- Add, Find, Remove fast (hash)
- Find in Range slow
- Binary Search Tree
- All operations are fast $(\mathrm{O}(\lg \mathrm{n}))$
- if the tree is balanced

20-2: Indexing

- Generalized Binary Search Trees
- Each node can store several keys, instead of just one
- Values in subtrees between values in surrounding keys
- For non leaves, \# of children = \# of keys + 1

20-3: 2-3 Trees

- Generalized Binary Search Tree
- Each node has 1 or 2 keys
- Each (non-leaf) node has 2-3 children
- hence the name, 2-3 Trees
- All leaves are at the same depth

20-4: Example 2-3 Tree

20-5: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?

20-6: Finding in 2-3 Trees

- How can we find an element in a 2-3 tree?
- If the tree is empty, return false
- If the element is stored at the root, return true
- Otherwise, recursively find in the appropriate subtree

20-7: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
- Find the leaf where the element would live, if it was in the tree
- Add the element to that leaf

20-8: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
- Find the leaf where the element would live, if it was in the tree
- Add the element to that leaf
- What if the leaf already has 2 elements?

20-9: Inserting into 2-3 Trees

- Always insert at the leaves
- To insert an element:
- Find the leaf where the element would live, if it was in the tree
- Add the element to that leaf
- What if the leaf already has 2 elements?
- Split!

20-10: Splitting Nodes

20-11: Splitting Nodes

20-12: Splitting Nodes

20-13: Splitting Nodes

20-14: Splitting Root

- When we split the root:
- Create a new root
- Tree grows in height by 1

20-15: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

$$
1
$$

20-16: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

$$
12
$$

20-17: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

$$
\begin{aligned}
& \left.\begin{array}{|lll}
1 & 2 & 3
\end{array} \right\rvert\, \\
& \text { Too many keys, } \\
& \text { need to split }
\end{aligned}
$$

20-18: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-19: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-20: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

> Too many keys, need to split

20-21: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-22: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-23: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-24: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-25: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-26: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-27: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

$$
\begin{aligned}
& \text { Too many keys } \\
& \text { need to split }
\end{aligned}
$$

20-28: 2-3 Tree Example

- Inserting elements 1-9 (in order) into a 2-3 tree

20-29: Deleting from 2-3 Tree

- As with BSTs, we will have 2 cases:
- Deleting a key from a leaf
- Deleting a key from an internal node

20-30: Deleting Leaves

- If leaf contains 2 keys
- Can safely remove a key

20-31: Deleting Leaves

- Deleting 7

20-32: Deleting Leaves

- Deleting 7

20-33: Deleting Leaves

- If leaf contains 1 key
- Cannot remove key without making leaf empty
- Try to steal extra key from sibling

20-34: Deleting Leaves

- Deleting 3 - we can steal the 5

20-35: Deleting Leaves

- Not a 2-3 tree. What can we do?

20-36: Deleting Leaves

- Steal key from sibling through parent

20-37: Deleting Leaves

- Steal key from sibling through parent

20-38: Deleting Leaves

- If leaf contains 1 key, and no sibling contains extra keys
- Cannot remove key without making leaf empty
- Cannot steal a key from a sibling
- Merge with sibling
- split in reverse

20-39: Merging Nodes

- Removing the 4

20-40: Merging Nodes

- Removing the 4
- Combine 5, 7 into one node

20-41: Merging Nodes

20-42: Merging Nodes

- Merge decreases the number of keys in the parent
- May cause parent to have too few keys
- Parent can steal a key, or merge again

20-43: Merging Nodes

- Deleting the 3 - cause a merge

20-44: Merging Nodes

- Deleting the 3 - cause a merge
- Not enough keys in parent

20-45: Merging Nodes

- Steal key from sibling

20-46: Merging Nodes

- Steal key from sibling

20-47: Merging Nodes

- When we steal a key from an internal node, steal nearest subtree as well

20-48: Merging Nodes

- When we steal a key from an internal node, steal nearest subtree as well

20-49: Merging Nodes

- Deleting the 7 - cause a merge

20-50: Merging Nodes

- Parent has too few keys - merge again

20-51: Merging Nodes

- Root has no keys - delete

20-52: Merging Nodes

20-53: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
- HINT: How did we delete non-leaf nodes in standard BSTs?

20-54: Deleting Interior Keys

- How can we delete keys from non-leaf nodes?
- Replace key with smallest element subtree to right of key
- Recursivly delete smallest element from subtree to right of key
- (can also use largest element in subtree to left of key)

20-55: Deleting Interior Keys

- Deleting the 4

20-56: Deleting Interior Keys

- Deleting the 4
- Replace 4 with smallest element in tree to right of 4

20-57: Deleting Interior Keys

20-58: Deleting Interior Keys

- Deleting the 5

20-59: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5

20-60: Deleting Interior Keys

- Deleting the 5
- Replace the 5 with the smallest element in tree to right of 5
- Node with two few keys

20-61: Deleting Interior Keys

- Node with two few keys
- Steal a key from a sibling

20-62: Deleting Interior Keys

20-63: Deleting Interior Keys

- Removing the 6

20-64: Deleting Interior Keys

- Removing the 6
- Replace the 6 with the smallest element in the tree to the right of the 6

20-65: Deleting Interior Keys

- Node with too few keys
- Can't steal key from sibling
- Merge with sibling

20-66: Deleting Interior Keys

- Node with too few keys
- Can't steal key from sibling
- Merge with sibling
- (arbitrarily pick right sibling to merge with)

20-67: Deleting Interior Keys

20-68: Generalizing 2-3 Trees

- In 2-3 Trees:
- Each node has 1 or 2 keys
- Each interior node has 2 or 3 children
- We can generalize 2-3 trees to allow more keys / node

20-69: B-Trees

- A B-Tree of maximum degree k :
- All interior nodes have $\lceil k / 2\rceil \ldots k$ children
- All nodes have $\lceil k / 2\rceil-1 \ldots k-1$ keys
- 2-3 Tree is a B-Tree of maximum degree 3

20-70: B-Trees

- B-Tree with maximum degree 5
- Interior nodes have $3-5$ children
- All nodes have 2-4 keys

20-71: B-Trees

- Inserting into a B-Tree
- Find the leaf where the element would go
- If the leaf is not full, insert the element into the leaf
- Otherwise, split the leaf (which may cause further splits up the tree), and insert the element

20-72: B-Trees

- Inserting a 6 ..

20-73: B-Trees

20-74: B-Trees

- Inserting a 10 ..

20-75: B-Trees

- Promote 8 to parent (between 5 and 11)
- Make nodes out of $(6,7)$ and $(9,10)$

20-76: B-Trees

- Promote 11 to parent (new root)
- Make nodes out of $(5,8)$ and $(6,19)$

20-77: B-Trees

- Note that the root only has 1 key, 2 children
- All nodes in B-Trees with maximum degree 5 should have at least 2 keys
- The root is an exception - it may have as few as one key and two children for any maximum degree

20-78: B-Trees

- B-Tree of maximum degree k
- Generalized BST
- All leaves are at the same depth
- All nodes (other than the root) have $\lceil k / 2\rceil-1 \ldots k-1$ keys
- All interior nodes (other than the root) have $\lceil k / 2\rceil \ldots k$ children

20-79: B-Trees

- B-Tree of maximum degree k
- Generalized BST
- All leaves are at the same depth
- All nodes (other than the root) have $\lceil k / 2\rceil-1 \ldots k-1$ keys
- All interior nodes (other than the root) have $\lceil k / 2\rceil \ldots k$ children
- Why do we need to make exceptions for the root?

20-80: B-Trees

- Why do we need to make exceptions for the root?
- Consider a B-Tree of maximum degree 5 with only one element

20-81: B-Trees

- Why do we need to make exceptions for the root?
- Consider a B-Tree of maximum degree 5 with only one element
- Consider a B-Tree of maximum degree 5 with 5 elements

20-82: B-Trees

- Why do we need to make exceptions for the root?
- Consider a B-Tree of maximum degree 5 with only one element
- Consider a B-Tree of maximum degree 5 with 5 elements
- Even when a B-Tree could be created for a specific number of elements, creating an exception for the root allows our split/merge algorithm to work correctly.

20-83: B-Trees

- Deleting from a B-Tree (Key is in a leaf)
- Remove key from leaf
- Steal / Split as necessary
- May need to split up tree as far as root

20-84: B-Trees

- Deleting the 15

20-85: B-Trees

20-86: B-Trees

- Steal a key from sibling

20-87: B-Trees

20-88: B-Trees

- Delete the 11

20-89: B-Trees

20-90: B-Trees

- Merge with a sibling (pick the left sibling arbitrarily)

20-91: B-Trees

20-92: B-Trees

- Deleting from a B-Tree (Key in internal node)
- Replace key with largest key in right subtree
- Remove largest key from right subtree
- (May force steal / merge)

20-93: B-Trees

- Remove the 5

20-94: B-Trees

- Remove the 5

20-95: B-Trees

20-96: B-Trees

- Remove the 19

20-97: B-Trees

- Remove the 19

20-98: B-Trees

20-99: B-Trees

- Merge with left sibling

20-100: B-Trees

20-101: B-Trees

- Almost all databases that are large enough to require storage on disk use B-Trees
- Disk accesses are very slow
- Accessing a byte from disk is $10,000-100,000$ times as slow as accessing from main memory
- Recently, this gap has been getting even bigger
- Compared to disk accesses, all other operations are essentially free
- Most efficient algorithm minimizes disk accesses as much as possible

20-102: B-Trees

- Disk accesses are slow - want to minimize them
- Single disk read will read an entire sector of the disk
- Pick a maximum degree k such that a node of the B-Tree takes up exactly one disk block
- Typically on the order of 100 children / node

20-103: B-Trees

- With a maximum degree around 100, B-Trees are very shallow
- Very few disk reads are required to access any piece of data
- Can improve matters even more by keeping the first few levels of the tree in main memory
- For large databases, we can't store the entire tree in main memory - but we can limit the number of disk accesses for each operation to only 1 or 2

