
CS245-2015S-20 B-Trees 1

20-0: Indexing

• Operations:

• Add an element

• Remove an element

• Find an element, using a key

• Find all elements in a range of key values

20-1: Indexing

• Sorted List

• Find / Find in Range fast

• Add / Remove slow

• Unsorted List / Hash Table

• Add, Find, Remove fast (hash)

• Find in Range slow

• Binary Search Tree

• All operations are fast (O(lg n))

• if the tree is balanced

20-2: Indexing

• Generalized Binary Search Trees

• Each node can store several keys, instead of just one

• Values in subtrees between values in surrounding keys

• For non leaves, # of children = # of keys + 1

2 6

1 3 4 7

20-3: 2-3 Trees

• Generalized Binary Search Tree

• Each node has 1 or 2 keys

• Each (non-leaf) node has 2-3 children

• hence the name, 2-3 Trees

• All leaves are at the same depth

CS245-2015S-20 B-Trees 2

20-4: Example 2-3 Tree

6 16

3 8 13 18

7 11 12 14 17 202 5

20-5: Finding in 2-3 Trees

• How can we find an element in a 2-3 tree?

20-6: Finding in 2-3 Trees

• How can we find an element in a 2-3 tree?

• If the tree is empty, return false

• If the element is stored at the root, return true

• Otherwise, recursively find in the appropriate subtree

20-7: Inserting into 2-3 Trees

• Always insert at the leaves

• To insert an element:

• Find the leaf where the element would live, if it was in the tree

• Add the element to that leaf

20-8: Inserting into 2-3 Trees

• Always insert at the leaves

• To insert an element:

• Find the leaf where the element would live, if it was in the tree

• Add the element to that leaf

• What if the leaf already has 2 elements?

20-9: Inserting into 2-3 Trees

• Always insert at the leaves

• To insert an element:

• Find the leaf where the element would live, if it was in the tree

• Add the element to that leaf

• What if the leaf already has 2 elements?

• Split!

CS245-2015S-20 B-Trees 3

20-10: Splitting Nodes

5 6 7

75

6

20-11: Splitting Nodes

4

1 2 5 6 7
Too many
elements

20-12: Splitting Nodes

4

1 2 5 6 7

Promote to parent

Left child
of 6

Right child
of 6

20-13: Splitting Nodes

CS245-2015S-20 B-Trees 4

4 6

1 2 5 7

20-14: Splitting Root

• When we split the root:

• Create a new root

• Tree grows in height by 1

20-15: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

20-16: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 2

20-17: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split

20-18: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3

20-19: 2-3 Tree Example

CS245-2015S-20 B-Trees 5

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4

20-20: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4 5

Too many keys,
need to split

20-21: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5

20-22: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5 6

20-23: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4

3 5 6 7

Too many keys
need to split

CS245-2015S-20 B-Trees 6

20-24: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1

2 4 6

3 5 7

Too many keys
need to split

20-25: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7

4

2 6

20-26: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8

4

2 6

20-27: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

CS245-2015S-20 B-Trees 7

1 3 5 7 8 9

4

2 6

Too many keys
need to split

20-28: 2-3 Tree Example

• Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5

4

2 6 8

7 9

20-29: Deleting from 2-3 Tree

• As with BSTs, we will have 2 cases:

• Deleting a key from a leaf

• Deleting a key from an internal node

20-30: Deleting Leaves

• If leaf contains 2 keys

• Can safely remove a key

20-31: Deleting Leaves

4 8

3 5 7 11

• Deleting 7

CS245-2015S-20 B-Trees 8

20-32: Deleting Leaves

4 8

3 5 11

• Deleting 7

20-33: Deleting Leaves

• If leaf contains 1 key

• Cannot remove key without making leaf empty

• Try to steal extra key from sibling

20-34: Deleting Leaves

4 8

3 5 7 11

• Deleting 3 – we can steal the 5

20-35: Deleting Leaves

4 8

5 7 11

• Not a 2-3 tree. What can we do?

20-36: Deleting Leaves

CS245-2015S-20 B-Trees 9

4 8

 5 7 11

• Steal key from sibling through parent

20-37: Deleting Leaves

5 8

 7 114

• Steal key from sibling through parent

20-38: Deleting Leaves

• If leaf contains 1 key, and no sibling contains extra keys

• Cannot remove key without making leaf empty

• Cannot steal a key from a sibling

• Merge with sibling

• split in reverse

20-39: Merging Nodes

5 8

7 114

• Removing the 4

20-40: Merging Nodes

CS245-2015S-20 B-Trees 10

5 8

7 11

• Removing the 4

• Combine 5, 7 into one node

20-41: Merging Nodes

8

5 7 11

20-42: Merging Nodes

• Merge decreases the number of keys in the parent

• May cause parent to have too few keys

• Parent can steal a key, or merge again

20-43: Merging Nodes

1 3 5

4

2 6 8

7 9

• Deleting the 3 – cause a merge

20-44: Merging Nodes

CS245-2015S-20 B-Trees 11

1 2 5

4

6 8

7 9

• Deleting the 3 – cause a merge

• Not enough keys in parent

20-45: Merging Nodes

1 2 5

4

6 8

7 9

• Steal key from sibling

20-46: Merging Nodes

1 2 5

6

 8

7 9

4

• Steal key from sibling

20-47: Merging Nodes

1 2 5

6

 8

7 9

4

• When we steal a key from an internal node, steal nearest subtree as well

CS245-2015S-20 B-Trees 12

20-48: Merging Nodes

1 2 5

6

 8

7 9

4

• When we steal a key from an internal node, steal nearest subtree as well

20-49: Merging Nodes

1 2 5

6

 8

7 9

4

• Deleting the 7 – cause a merge

20-50: Merging Nodes

1 2 5

6

8 9

4

• Parent has too few keys – merge again

20-51: Merging Nodes

1 2 5 8 9

4 6

• Root has no keys – delete

CS245-2015S-20 B-Trees 13

20-52: Merging Nodes

1 2 5 8 9

4 6

20-53: Deleting Interior Keys

• How can we delete keys from non-leaf nodes?

• HINT: How did we delete non-leaf nodes in standard BSTs?

20-54: Deleting Interior Keys

• How can we delete keys from non-leaf nodes?

• Replace key with smallest element subtree to right of key

• Recursivly delete smallest element from subtree to right of key

• (can also use largest element in subtree to left of key)

20-55: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

• Deleting the 4

20-56: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

• Deleting the 4

• Replace 4 with smallest element in tree to right of 4

CS245-2015S-20 B-Trees 14

20-57: Deleting Interior Keys

1 3 6 8 9

5

2 7

20-58: Deleting Interior Keys

1 3 6 8 9

5

2 7

• Deleting the 5

20-59: Deleting Interior Keys

1 3 6 8 9

5

2 7

• Deleting the 5

• Replace the 5 with the smallest element in tree to right of 5

20-60: Deleting Interior Keys

1 3 8 9

6

2 7

• Deleting the 5

• Replace the 5 with the smallest element in tree to right of 5

CS245-2015S-20 B-Trees 15

• Node with two few keys

20-61: Deleting Interior Keys

1 3 8 9

6

2 7

• Node with two few keys

• Steal a key from a sibling

20-62: Deleting Interior Keys

1 3 9

6

2 8

7

20-63: Deleting Interior Keys

1 3 9

6 10

2 8

7 13

11

12

• Removing the 6

20-64: Deleting Interior Keys

1 3 9

6 10

2 8

7 13

11

12

• Removing the 6

CS245-2015S-20 B-Trees 16

• Replace the 6 with the smallest element in the tree to the right of the 6

20-65: Deleting Interior Keys

1 3 9

7 10

2 8

 13

11

12

• Node with too few keys

• Can’t steal key from sibling

• Merge with sibling

20-66: Deleting Interior Keys

1 3 8 9

7 10

2

 13

11

12

• Node with too few keys

• Can’t steal key from sibling

• Merge with sibling

• (arbitrarily pick right sibling to merge with)

20-67: Deleting Interior Keys

1 3 8 9

7

2

 13

10 11

12

20-68: Generalizing 2-3 Trees

• In 2-3 Trees:

• Each node has 1 or 2 keys

• Each interior node has 2 or 3 children

CS245-2015S-20 B-Trees 17

• We can generalize 2-3 trees to allow more keys / node

20-69: B-Trees

• A B-Tree of maximum degree k:

• All interior nodes have ⌈k/2⌉ . . . k children

• All nodes have ⌈k/2⌉ − 1 . . . k − 1 keys

• 2-3 Tree is a B-Tree of maximum degree 3

20-70: B-Trees

5 11 16 19

1 3 7 8 9 12 15 17 18 22 23

• B-Tree with maximum degree 5

• Interior nodes have 3 – 5 children

• All nodes have 2-4 keys

20-71: B-Trees

• Inserting into a B-Tree

• Find the leaf where the element would go

• If the leaf is not full, insert the element into the leaf

• Otherwise, split the leaf (which may cause further splits up the tree), and insert the element

20-72: B-Trees

5 11 16 19

1 3 7 8 9 12 15 17 18 22 23

• Inserting a 6 ..

20-73: B-Trees

5 11 16 19

1 3 6 7 8 9 12 15 17 18 22 23

20-74: B-Trees

CS245-2015S-20 B-Trees 18

5 11 16 19

1 3 6 7 8 9 12 15 17 18 22 23

• Inserting a 10 ..

20-75: B-Trees

5 11 16 19

1 3 6 7 8 9 10 12 15 17 18 22 23

Too many keys
need to split

• Promote 8 to parent (between 5 and 11)

• Make nodes out of (6, 7) and (9, 10)

20-76: B-Trees

5 8 11 16 19

1 3 9 10 12 15 17 18 22 236 7

Too many keys
need to split

• Promote 11 to parent (new root)

• Make nodes out of (5, 8) and (6, 19)

20-77: B-Trees

16 19

1 3 9 10 12 15 17 18 22 236 7

5 8

11

• Note that the root only has 1 key, 2 children

• All nodes in B-Trees with maximum degree 5 should have at least 2 keys

• The root is an exception – it may have as few as one key and two children for any maximum degree

CS245-2015S-20 B-Trees 19

20-78: B-Trees

• B-Tree of maximum degree k

• Generalized BST

• All leaves are at the same depth

• All nodes (other than the root) have ⌈k/2⌉ − 1 . . . k − 1 keys

• All interior nodes (other than the root) have ⌈k/2⌉ . . . k children

20-79: B-Trees

• B-Tree of maximum degree k

• Generalized BST

• All leaves are at the same depth

• All nodes (other than the root) have ⌈k/2⌉ − 1 . . . k − 1 keys

• All interior nodes (other than the root) have ⌈k/2⌉ . . . k children

• Why do we need to make exceptions for the root?

20-80: B-Trees

• Why do we need to make exceptions for the root?

• Consider a B-Tree of maximum degree 5 with only one element

20-81: B-Trees

• Why do we need to make exceptions for the root?

• Consider a B-Tree of maximum degree 5 with only one element

• Consider a B-Tree of maximum degree 5 with 5 elements

20-82: B-Trees

• Why do we need to make exceptions for the root?

• Consider a B-Tree of maximum degree 5 with only one element

• Consider a B-Tree of maximum degree 5 with 5 elements

• Even when a B-Tree could be created for a specific number of elements, creating an exception for the root

allows our split/merge algorithm to work correctly.

20-83: B-Trees

• Deleting from a B-Tree (Key is in a leaf)

• Remove key from leaf

• Steal / Split as necessary

• May need to split up tree as far as root

CS245-2015S-20 B-Trees 20

20-84: B-Trees

5 11 16 19

1 3 7 8 9 12 15 17 18 22 23

• Deleting the 15

20-85: B-Trees

5 11 16 19

1 3 7 8 9 12 17 18 22 23

Too few keys

20-86: B-Trees

5 11 16 19

1 3 7 8 9 12 17 18 22 23

• Steal a key from sibling

20-87: B-Trees

5 9 16 19

1 3 7 8 11 12 17 18 22 23

20-88: B-Trees

5 9 16 19

1 3 7 8 11 12 17 18 22 23

• Delete the 11

20-89: B-Trees

5 9 16 19

1 3 7 8 12 17 18 22 23

Too few keys

CS245-2015S-20 B-Trees 21

20-90: B-Trees

5 9 16 19

1 3 7 8 12 17 18 22 23

Combine into 1 node

• Merge with a sibling (pick the left sibling arbitrarily)

20-91: B-Trees

5 16 19

1 3 7 8 9 12 17 18 22 23

20-92: B-Trees

• Deleting from a B-Tree (Key in internal node)

• Replace key with largest key in right subtree

• Remove largest key from right subtree

• (May force steal / merge)

20-93: B-Trees

5 16 19

1 3 7 8 9 12 17 18 22 23

• Remove the 5

20-94: B-Trees

5 16 19

1 3 7 8 9 12 17 18 22 23

• Remove the 5

20-95: B-Trees

7 16 19

1 3 8 9 12 17 18 22 23

CS245-2015S-20 B-Trees 22

20-96: B-Trees

7 16 19

1 3 8 9 12 17 18 22 23

• Remove the 19

20-97: B-Trees

7 16 19

1 3 8 9 12 17 18 22 23

• Remove the 19

20-98: B-Trees

7 16 22

1 3 8 9 12 17 18 23

Too few keys

20-99: B-Trees

7 16 22

1 3 8 9 12 17 18 23

• Merge with left sibling

20-100: B-Trees

7 16

1 3 8 9 12 17 18 22 23

20-101: B-Trees

• Almost all databases that are large enough to require storage on disk use B-Trees

• Disk accesses are very slow

• Accessing a byte from disk is 10,000 – 100,000 times as slow as accessing from main memory

CS245-2015S-20 B-Trees 23

• Recently, this gap has been getting even bigger

• Compared to disk accesses, all other operations are essentially free

• Most efficient algorithm minimizes disk accesses as much as possible

20-102: B-Trees

• Disk accesses are slow – want to minimize them

• Single disk read will read an entire sector of the disk

• Pick a maximum degree k such that a node of the B-Tree takes up exactly one disk block

• Typically on the order of 100 children / node

20-103: B-Trees

• With a maximum degree around 100, B-Trees are very shallow

• Very few disk reads are required to access any piece of data

• Can improve matters even more by keeping the first few levels of the tree in main memory

• For large databases, we can’t store the entire tree in main memory – but we can limit the number of disk

accesses for each operation to only 1 or 2

