(CS245-2015S-23 NP-Completeness and Undecidablity

23-0: Hard Problems

e Some algorithms take exponential time

e Simple version of Fibonacci

e Faster versions of Fibonacci that take linear time
e Some Problems take exponential time

e All algorithms that solve the problem take exponential time

e Towers of Hanoi

23-1: Towers of Hanoi

e Move one disk at a time

e Never place a larger disk on a smaller disk

23-2: Towers of Hanoi

= _

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =1
23-3: Towers of Hanoi

=_ _

e Move one disk at a time

e Never place a larger disk on a smaller disk



(CS245-2015S-23 NP-Completeness and Undecidablity

Moves =2
23-4: Towers of Hanoi

e Move one disk at a time
e Never place a larger disk on a smaller disk

Moves =
23-5: Towers of Hanoi

= __

e Move one disk at a time
e Never place a larger disk on a smaller disk

Moves =4
23-6: Towers of Hanoi

=_

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =5
23-7: Towers of Hanoi

=_

e Move one disk at a time



(CS245-2015S-23 NP-Completeness and Undecidablity

e Never place a larger disk on a smaller disk

Moves =
23-8: Towers of Hanoi

==

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =7
23-9: Towers of Hanoi

_——

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =
23-10: Towers of Hanoi

—_

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =
23-11: Towers of Hanoi

=_

e Move one disk at a time




(CS245-2015S-23 NP-Completeness and Undecidablity

e Never place a larger disk on a smaller disk

Moves = 10
23-12: Towers of Hanoi

= | _

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =11
23-13: Towers of Hanoi

e Move one disk at a time
e Never place a larger disk on a smaller disk

Moves =12
23-14: Towers of Hanoi

= |

e Move one disk at a time

e Never place a larger disk on a smaller disk

Moves =13
23-15: Towers of Hanoi

= =

e Move one disk at a time




(CS245-2015S-23 NP-Completeness and Undecidablity

e Never place a larger disk on a smaller disk

Moves = 14
23-16: Towers of Hanoi

e Move one disk at a time
e Never place a larger disk on a smaller disk

Moves = 15
23-17: Towers of Hanoi

e Move one disk at a time

e Never place a larger disk on a smaller disk
Moves = 15

e Moving n disks requires 2 — 1 moves

23-18: Towers of Hanoi

e Move one disk at a time

e Never place a larger disk on a smaller disk
Moves = 15

e Moving n disks requires 2" — 1 moves

e Completely impractical for large values of n

23-19: Reductions

e A reduction from Problem 1 to Problem 2 allows us to solve Problem 1 in terms of Problem 2



(CS245-2015S-23 NP-Completeness and Undecidablity

e Given an instance of Problem 1, create an instance of Problem 2
e Solve the instance of Problem 2

e Use the solution of Problem 2 to create a solution to Problem 1

23-20: Reductions

e Example Problem: Pairing

e Given two lists of integers of size n
e Match the smallest element of each list together
e Match the second smallest element of each list together

e . etc.

23-21: Reductions

13 30

21 14

5 26

47 19

93 87

25 54

14 23

6 11

12 8
List 1 List 2
23-22: Reductions

13

21

5

47

93

25

14

6 11

12¥ ‘s
List 1 List 2

23-23: Reductions

e Reduction from Pairing to Sorting

e Can we reduce the pairing problem to a sorting problem

e That is, how can we use the sorting problem to solve the pairing problem?

23-24: Reductions

e Reduction from Pairing to Sorting

e Lets us solve the Pairing problem by solving Sorting problem



CS245-2015S-23 NP-Completeness and Undecidablity

e Given any two lists L1 and L2 that we wish to pair:

e Sort L1 and L2
e Pair L1[i] with L2[i] for all i

23-25: Reductions

e Reduction from Pairing to Sorting

e Reduction takes very little time
e Time to solve Pairing (using this reduction) is the time to solve Sorting

e We can solve Pairing in time O(n g n) using sorting.
23-26: Reductions

e Reduction from Sorting to Pairing

o Given an instance of Sorting, create an instance of pairing problem
e Solve the paring problem

e Use the solution of pairing problem to solve the sorting problem
23-27: Reductions

e Given an list L1:

e Create a new list L2, such that L2[i] =1
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired element from L2 as the key
23-28: Reductions

e Given an list L1:

e Create a new list L2, such that L2[i] =1
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired element from L2 as the key
How long does this take? 23-29: Reductions

e Givenan list L1:

e Create a new list L2, such that L2[i] =1
e Solve the paring problem, pairing L1 and L2

e Use counting sort to sort L1, using the paired element from L2 as the key
How long does this take?
e O(n + time to do pairing)
23-30: Reductions

e We can reduce Sorting to Pairing, such that:



CS245-2015S-23 NP-Completeness and Undecidablity 8

e Time to do Sorting takes O(n + time to do pairing)
e Sorting takes Q(nlgn) time
e Thus, the pairing problem must take at least 2(n lgn) time as well

23-31: Reductions

e We can use a Reduction to compare problems
e If there is a reduction from problem A to problem B that can be done quickly
e Problem A is known to be hard (cannot be solved quickly)

e Problem B cannot be solved quickly, either

23-32: NP Problems

e A problem is NP if a solution can be verified easily

e Given a potential solution to the problem, verify that the solution does solve the problem
e Verification takes polynomial (not exponential!) time

o (Pretty low bar for “easily”)

23-33: NP Problems

e A problem is NP if a solution can be verified easily

e Traveling Salesman Problem (TSP)

e Given a graph with weighted vertices, and a cost bound &
o Is there a cycle that contains all vertices in the graph, that has a total cost less than £?

o Given any potential solution to the TSP, we can easily verify that the solution is correct

23-34: NP Problems

e A problem is NP if a solution can be verified easily

e Graph Coloring

e Given a graph and a number of colors k

e Can we color every vertex using no more than k colors, such that all adjacent vertices have different
colors?

e Given any potential solution to the Graph Coloring problem, we can easily verify that the solution is correct

23-35: NP Problems

e A problem is NP if a solution can be verified easily

e Satisfiability

e Given a boolean formula over a set of boolean variables a; ... a,,
(a1 ||'az)&&(as]|as||lal)&& . . .
e Can we give a truth value to all variables a; . .. a,, so that the value of the formula is true?

o Given any potential solution to the Satisfiability problem, we can easily verify that the solution is correct



CS245-2015S-23 NP-Completeness and Undecidablity

23-36: NP Problems

e A problem is NP if a solution can be verified easily

e Sorting
e Given a list of elements L and an ordering of the elements <
e Create a permutation of L such that L[i] < L[i + 1]

e Given any potential solution to the Sorting problem, we can easily verify that the solution is correct
23-37: NP Problems

e If we can guess an answer, we can verify it quickly
e NP stands for Non-Deterministic Polynomial

e Non-Deterministic = we can guess

e Polynomial = “quickly”

e NP problem: If we could guess an answer, we could verify it in polynomial (n, n2, n® — not exponential) time
23-38: Non-Deterministic Machine

e Two Definitions of Non-Deterministic Machines:

e “Oracle” — allows machine to magically make a correct guess
e Massively parallel — simultaneously try to verify all possible solutions

e Try all permutations of vertices in a graph, see if any form a cycle with cost | k
e Try all colorings of a graph with up to k colors, see if any are legal
e Try all permutations of a list, see if any are sorted

23-39: NP vs. P

e A problem is NP if a non-deterministic machine can solve it in polynomial time
e Of course, we have no real non-deterministic machines
e A problem is in P (Polynomial), if a deterministic machine can solve it in polynomial time

e Sorting is in P — can sort a list in polynomial time
e All problems in P are also in NP

e Ignore the oracle
23-40: NP-Complete

e An NP problem is “NP-Complete” if there is a reduction from any NP problem to that problem
e For example, Traveling Salesman (TSP) is NP-Complete
e We can reduce any NP problem to TSP

o If we could solve TSP in polynomial time, we could solve all NP problems in polynomial time

e Is TSP unique in this way?



CS245-2015S-23 NP-Completeness and Undecidablity 10

23-41: NP-Complete

e There are many NP-Complete problems

e TSP
e Graph Coloring
o Satisfiability

e .. many, many more
e If we could solve any of these problems quickly, we could solve all of them quickly

e All known solutions take exponential time

23-42: NP-Complete

e If a problem is NP-Complete, it almost certainly cannot be solved quickly (polynomial time)

e If it could, then all NP problems could be solved quickly

e Many people have tried for many years to find polynomial solutions for NP complete problems, all have
failed

e However, no proof that NP-Complete problems require exponential time — open problem
23-43: NP =? P

e If we could solve any NP-Complete problem quickly (polynomial time), we could solve all NP problems quickly
o If that is the case, then NP=P
e P is set of problems that can be solved by a standard machine in polynomial time

e Most everyone believes that NP # P, and all NP-Complete problems require exponential time on standard
computers — not yet been proven

23-44: NP-Completeness

e Why is NP-Completeness important?

e If a problem is NP-Complete, no point in trying to come up with an algorithm to solve it

e What can we do, if we need to solve a problem that is NP-Complete?
23-45: NP-Completeness

e What can we do, if we need to solve a problem that is NP-Complete?

o If the problem we need to solve is very small (j 20), an exponential solution might be OK
e We can solve an approximation of the problem

e Color a graph using an non-optimal number of colors
e Find a Traveling Salesman tour that is not optimal

23-46: Impossible Problems

e Some problems are “easy” — require a fairly small amount of time to solve



(CS245-2015S-23 NP-Completeness and Undecidablity 11

e Sorting

e Some problems are “probably hard” — believed to require exponential time to solve
e TSP, Graph Coloring, etc

e Some problems are “hard” — known to require an exponential amount of time to solve
e Towers of Hanoi

e Some problems are impossible — cannot be solved

23-47: Halting Problem

e Program is running — seems to be taking a long time
e We’d like to know if the program will eventually finish, or if it is in an infinite loop
e Great debugging tool:

e Takes as input the source code to a program p, and an input ¢

e Determines if p will run forever when run on %
23-48: Halting Problem

e Program is running — seems to be taking a long time
e We’d like to know if the program will eventually finish, or if it is in an infinite loop
e Great debugging tool:

e Takes as input the source code to a program p, and an input ¢

e Determines if p will run forever when run on

e No such tool can exist!
23-49: Halting Problem

e We will prove that the halting problem is unsolvable by contradiction

e Assume that we have a solution to the halting problem
e Derive a contradiction

e Our original assumption (that the halting problem has a solution) must be false

23-50: Halting Problem
boolean halt (char [] program, char [] input) {

/+ code to determine if the program
halts when run on the input =*/

if (program halts on input)
return true;

else
return false;



(CS245-2015S-23 NP-Completeness and Undecidablity 12

23-51: Halting Problem

boolean selfhalt (char [] program) {
if (halt (program, program))
return true;
else
return false;

}

23-52: Halting Problem

boolean selfhalt (char [] program) {
if (halt (program, program))
return true;

else
return false;
}
void contrary(char [] program) {
if (selfhalt (program)
while (true); /+ infinite loop =/

}

23-53: Halting Problem

boolean selfhalt (char [] program) {
if (halt (program, program))
return true;

else
return false;
}
void contrary (char [] program) {
if (selfhalt (program)
while (true); /+ infinite loop =/

e what happens when we call contrary, passing in its own source code as input?
23-54: Reduction Example
e Hamiltonian Cycle:
e Given an unweighted, undirected graph G, is there a cycle that includes every vertex exactly once?

e Traveling Salesman Problem (TSP)

e Given a complete, weighed, undirected graph GG and a cost bound k, is there a cycle that incldes every
vertex in (G, with a cost < k?

23-55: Reduction Example

e If we could solve the Traveling Salesman problem in polynomial time, we could solve the Hamiltonian Cycle
problem in polynomial time



CS245-2015S-23 NP-Completeness and Undecidablity 13

e Given any graph GG, we can create a new graph G’ and limit &, such that there is a Hamiltonian Circuit in
G if and only if there is a Traveling Salesman tour in G’ with cost less than &

e Vertices in G’ are the same as the vertices in G

e For each pair of vertices z; and x; in G, if the edge (z;, ;) is in G, add the edge (z;, ;) to G’ with the
cost 1. Otherwise, add the edge (z;, z;) to G’ with the cost 2.

e Set the limit & = # of vertices in G

23-56: Reduction Example

o o 1
2| 2
O 1
Limit = 4

23-57: Reduction Example

e If we could solve TSP in polynomial time, we could solve Hamiltonian Cycle problem in polynomial time

e Start with an instance of Hamiltonian Cycle
e Create instance of TSP
e Feed instance of TSP into TSP solver

e Use result to find solution to Hamiltonian Cycle
23-58: Reduction Example #2

e Given any instance of the Hamiltonian Cycle Problem:

e We can (in polynomial time) create an instance of Satisfiability

e Thatis, given any graph GG, we can create a boolean formula f, such that f is satisfiable if and only if there
is a Hamiltonian Cycle in G

o If we could solve Satisfiability in Polynomial Time, we could solve the Hamiltonian Cycle problem in Polyno-
mial Time

23-59: Reduction Example #2
e Given a graph G with n vertices, we will create a formula with n? variables:

® T11,212,%13,---T1in
€21, L22,L23, ... T2n

Tnls Tn2,Tn3, .- Tnn

e Design our formula such that x;; will be true if and only if the ith element in a Hamiltonian Circuit of G is
vertex # j

23-60: Reduction Example #2



(CS245-2015S-23 NP-Completeness and Undecidablity 14

e For our set of n? variables x;;, we need to write a formula that ensures that:

e For each 4, there is exactly one j such that x;; = true
e For each j, there is exactly one 7 such that z;; = true

e If x;; and x(;; 1), are both true, then there must be a link from v; to vy, in the graph G
23-61: Reduction Example #2

e For each i, there is exactly one j such that z;; = true

e Foreachiin1...n, add the rules:
o (zallzazll ... [|Tin)
o This ensures that for each ¢, there is at least one j such that z;; = true

e (This adds n clauses to the formula)
23-62: Reduction Example #2
e For each i, there is exactly one j such that z;; = true

foreachiinl...n
foreachjinl...n
foreachkinl...n j#k
Add rule ('me'Ilk)

e This ensures that for each i, there is at most one j such that x;; = true

o (this adds a total of n? clauses to the formula)
23-63: Reduction Example #2

o Ifz;; and T(i41)k are both true, then there must be a link from v; to vy, in the graph G

foreachiinl...(n —1)
foreachjinl...n
foreachkinl...n
if edge (vj, vx) is not in the graph:
Add rule ('x”H'ZC(H_l)k)

o (This adds no more than n? clauses to the formula)
23-64: Reduction Example #2

o If x,,; and zy, are both true, then there must be a link from v; to vy, in the graph G (looping back to finish cycle)

foreachjinl...n
foreachkinl...n
if edge (vn,, vo) is not in the graph:
Add rule (1z,,;]|'zok)



CS245-2015S-23 NP-Completeness and Undecidablity

15

o (This adds no more than n? clauses to the formula)
23-65: Reduction Example #2

e In order for this formula to be satisfied:

e For each 4, there is exactly one j such that x;; is true
e For each j, there is exactly one 7 such that zj; is true

o if x;; is true, and T(i41)k is true, then there is an arc from v; to vy, in the graph G
e Thus, the formula can only be satisfied if there is a Hamiltonian Cycle of the graph

23-66: More NP-Complete Problems

e Exact Cover Problem

e Set of elements A
e F C 24, family of subsets

e Is there a subset of F' such that each element of A appears exactly once?
23-67: More NP-Complete Problems

e Exact Cover Problem
.A:{a’7bacad767f7g}
L4 F:{{a/’b7c}’{d’e’f}7{b’f’g}’{g}}

e Exact cover exists:
{a,b,c}, {d,e, f},{g}

23-68: More NP-Complete Problems

e Exact Cover Problem
L d A:{a’7bacad767f7g}
o F'={{a,b,c},{c,de, f},{a, f, g} {c}}

e No exact cover exists
23-69: More NP-Complete Problems

e Exact Cover is NP-Complete

e Reduction from Satisfiability

e Given any instance of Satisfiability, create (in polynomial time) an instance of Exact Cover

e Solution to Exact Cover problem tells us solution to Satisfiability problem

o Satisfiability is NP-Complete =; Exact Cover is NP-Complete
23-70: Exact Cover is NP-Complete
e Given an instance of SAT:

o (] Z(,Tl \/,T_Q)
] CQZ(,T_l\/,TQ\/fLB)



CS245-2015S-23 NP-Completeness and Undecidablity 16

[ ] Cg = (IQ)
o Cy = (T2 VT3)
e Formula: C1 ACo A C3 A Cy
e Create an instance of Exact Cover

e Define a set A and family of subsets F' such that there is an exact cover of A in F' if and only if the formula
is satisfiable

23-71: Exact Cover is NP-Complete
C) = (:C1 \/ZC_Q) Cy = (:C_1\/$2 \/x‘g) C3 = (x‘g) Cy = (:C_z\/x'_g)

A ={z1,22,23,C1,C2,C3,C4, p11, D12, P21, P22, D23, P31, P41, P42 }

F = {{pu1}, {p12}, {p21}, {p22}, {p23}, {ps1}, {par}, {pa=},

X1, f={z1,p11}

X1,t ={x1,p21}

Xo, f = {x2,p22,p31}

Xo,t = {x2,p12,pa1}

X3, f = {x3,p23}

Xs,t = {x3,paz}

{C1,p11}, {C1,p12}, {Ca,p2r}, {Co,p22}, {C2,p23}, {C3,p31}, {Ca,par}, {Ca, paza}}  23-72: Directed Hamilto-
nian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

P

23-73: Directed Hamiltonian Cycle

e Given any directed graph G, determine if G has a a Hamiltonian Cycle

e Cycle that includes every node in the graph exactly once, following the direction of the arrows

P

23-74: Directed Hamiltonian Cycle

e The Directed Hamiltonian Cycle problem is NP-Complete
e Reduce Exact Cover to Directed Hamiltonian Cycle

e Given any set A, and family of subsets F:

e Create a graph G that has a hamiltonian cycle if and only if there is an exact cover of A in F'



(CS245-2015S-23 NP-Completeness and Undecidablity 17

23-75: Directed Hamiltonian Cycle

e Widgets:
e Consider the following graph segment:

a b
o

u Vv W/
C@\
©°c

d @)
e If a graph containing this subgraph has a Hamiltonian cycle, then the cycle must contain either a — u —
v —w—borc— w— v — u— d-butnot both (why)?
23-76: Directed Hamiltonian Cycle
e Widgets:
e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle

a b

©) 7y > O

< v
dO OC

23-77: Directed Hamiltonian Cycle

e Widgets:

e XOR edges: Exactly one of the edges must be used in a Hamiltonian Cycle
a b
O———F—>O0
d O fic fik‘ O e
a b
£° e d °c

23-78: Directed Hamiltonian Cycle

e Add a vertex for every variable in A (+ 1 extra)



CS245-2015S-23 NP-Completeness and Undecidablity

a, O
° F={a.3}
Fo= {a&}
Fa={a.a}
a, O
8, O
23-79: Directed Hamiltonian Cycle
e Add a vertex for every subset F’' (+ 1 extra)
a.3 O O FO F]_ — {31 ’ az }
Fo= {a&}
Fa={a.a}
a, O o k
a, O o R
a, O o Fs

23-80: Directed Hamiltonian Cycle

e Add an edge from the last variable to the Oth subset, and from the last subset to the Oth variable



(CS245-2015S-23 NP-Completeness and Undecidablity

a; O >0 Fy

F={a.a}
Fo= {a&}
Fa={a.a}

a, O o k

a, O o R

a, O o Fs

23-81: Directed Hamiltonian Cycle

e Add 2 edges from F; to F;41. One edge will be a “short edge”, and one will be a “long edge”.

az; o >0  Fy, F,={a.3}
Fo={a&}
Fa={a.a}

a, O o, ki

a, O o F2

a, O o Fs

23-82: Directed Hamiltonian Cycle

e Add an edge from a;_; to a; for each subset a; appears in.



(CS245-2015S-23

NP-Completeness and Undecidablity

20

as

O
S
dg <

>0 Fy Fo={a.a)
Fo= {a&}
Fs={a.a}

<O Fy

o F

o Fs

23-83: Directed Hamiltonian Cycle

e Each edge (a;-1, a;) corresponds to some subset that contains a;. Add an XOR link between this edge and the
long edge of the corresponding subset

a; o

a,
a;
ay -

FO Elf Ealjaz}
F= {ZB,a}
3 2 3
I:1
-—6—>
P XOR edge
FS

23-84: Directed Hamiltonian Cycle

as

O > O
az @) Fl
F
Q o "2 XOR edge
a, O o Fs

i
TR
A
o VP L
- e
w®
——

23-85: Directed Hamiltonian Cycle



(CS245-2015S-23 NP-Completeness and Undecidablity

a, O >0 Fy

Fi={a&. . a}
+—> ’ Fo={a&, a}
Fs={a.a}
a, o Fu F,={g}
> —5
a, O> P2 XOR edge




