24-0: Binomial Trees

- B_0 is a tree containing a single node
- To build B_k :
 - Start with B_{k-1}
 - Add B_{k-1} as left subtree

24-1: Binomial Trees

24-2: Binomial Trees

24-3: Binomial Trees

- Equivalent defintion
 - B_0 is a binomial heap with a single node
 - B_k is a binomial heap with k children:
 - $B_0 \ldots B_{k-1}$

24-4: **Binomial Trees**

24-5: Binomial Trees

24-6: Binomial Trees

- Properties of binomial trees B_k
 - Contains 2^k nodes
 - Has height k
 - Contains $\binom{k}{i}$ nodes at depth *i* for $i = 0 \dots k$

24-7: Binomial Heaps

- A Binomial Heap is:
 - Set of binomial trees, each of which has the heap property
 - Each node in every tree is <= all of its children
 - All trees in the set have a different root degree
 - Can't have two B_3 's, for instance

24-8: Binomial Heaps

24-9: Binomial Heaps

- Representing Binomial Heaps
 - Each node contains:

- left child, right sibling, parent pointers
- degreee (is the tree rooted at this node B_0 , B_1 , etc.)
- data
- Each list of children sorted by degree

24-10: **Binomial Heaps**

24-11: Binomial Heaps

- How can we find the minimum element in a binomial heap?
- How long does it take?

24-12: Binomial Heaps

- How can we find the minimum element in a binomial heap?
 - Look at the root of each tree in the list, find smallest value
- How long does it take?
 - Heap has *n* elements
 - Represent n as a binary number
 - B_k is in heap iff kth binary digit of n is 1
 - Number of trees in heap $\in O(\lg n)$

24-13: Binomial Heaps

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - What property of binomial heaps may be broken?
 - How do we fix it?

24-14: Binomial Heaps

- Merging Heaps H_1 and H_2
 - Merge root lists of H_1 and H_2
 - Could now have two trees with same degree
 - Go through list from smallest degree to largest degree
 - If two trees have same degree, combine them into one tree of larger degree
 - If three trees have same degree (how can this happen?) leave one, combine other two into tree of larger degree

24-15: Binomial Heaps

24-18: Binomial Heaps

24-19: Binomial Heaps

24-20: Binomial Heaps

- Removing minimum element
 - Find tree T that has minimum value at root, remove T from the list
 - Remove the root of T
 - Leaving a list of smaller trees
 - Reverse list of smaller trees
 - Merge two lists of trees together

24-21: Binomial Heaps

• Removing minimum element

• Removing minimum element


```
24-23: Binomial Heaps
```

• Removing minimum element

24-24: Binomial Heaps

• Removing minimum element

• Removing minimum element

24-28: Binomial Heaps

- Removing minimum element
 - Time?

24-29: Binomial Heaps

- Removing minimum element
 - Time?
 - Find the smallest element: $O(\lg n)$
 - Reverse list of children $O(\lg n)$
 - Merge heaps $O(\lg n)$

24-30: Binomial Heaps

• Decreasing the key of an element (assuming you have a pointer to it)

24-31: Binomial Heaps

• Decreasing the key of an element (assuming you have a pointer to it)

- Decrease key value
- While value < parent, swap with parent
 - Exactly like standard, binary heaps
- Time: $O(\lg n)$

24-32: Binomial Heaps

• How could we delete an arbitrary element (assuming we had a pointer to this element)?

24-33: Binomial Heaps

- How could we delete an arbitrary element (assuming we had a pointer to this element)?
 - Decrease key to $-\infty$, Time $O(\lg n)$
 - Remove smallest, Time $O(\lg n)$