06-0: Ordered List ADT

Operations:

- Insert an element in the list
- Check if an element is in the list
- Remove an element from the list
- Print out the contents of the list, in order

06-1: Implementing Ordered List
Using an Ordered Array - Running times:

Check
Insert
Remove
Print
06-2: Implementing Ordered List
Using an Ordered Array - Running times:

Check	$\Theta(\lg n)$
Insert	$\Theta(n)$
Remove	$\Theta(n)$
Print	$\Theta(n)$

06-3: Implementing Ordered List
Using an Unordered Array - Running times:

Check
Insert
Remove
Print
06-4: Implementing Ordered List
Using an Unordered Array - Running times:

Check	$\Theta(n)$	
Insert	$\Theta(1)$	
Remove	$\Theta(n)$ Need to find element first!	
Print	$\Theta(n \lg n)$	
\quad Given a fast sorting algorithm)		
Using an Ordered Linked List - Running times:		

Check
Insert
Remove
06-6: Implementing Ordered List Print
Using an Ordered Linked List - Running times:

Check $\quad \Theta(n)$
Insert $\quad \Theta(n)$
Remove $\Theta(n)$
Print $\quad \Theta(n)$
06-7: The Best of Both Worlds

- Linked Lists - Insert fast / Find slow
- Arrays - Find fast / Insert slow
- The only way to examine nth element in a linked list is to traverse (n-1) other elements

\rightarrow| 4 | \rightarrow |
| :--- | :--- |

- If we could leap to the middle of the list ...

06-8: The Best of Both Worlds

06-9: The Best of Both Worlds

Move the initial pointer to the middle of the list:

We've cut our search time in half! Have we changed the $\Theta()$ running time?
06-10: The Best of Both Worlds

Move the initial pointer to the middle of the list:

We've cut our search time in half! Have we changed the $\Theta()$ running time?
Repeat the process! 06-11: The Best of Both Worlds

06-12: The Best of Both Worlds Grab the first element of the list:

Give it a good shake -

06-13: Binary Trees
Binary Trees are Recursive Data Structures

- Base Case: Empty Tree
- Recursive Case: Node, consiting of:
- Left Child (Tree)
- Right Child (Tree)
- Data

06-14: Binary Tree Examples

The following are all Binary Trees (Though not Binary Search Trees)

06-15: Tree Terminology

- Parent / Child
- Leaf node
- Root node
- Edge (between nodes)
- Path
- Ancestor / Descendant
- Depth of a node n
- Length of path from root to n
- Height of a tree
- $($ Depth of deepest node $)+1$

06-16: Full Binary Tree

- Each node has 0 or 2 children
- Full Binary Trees

- Not Full Binary Trees

06-17: Complete Binary Tree

- Can be built by starting at the root, and filling the tree by levels from left to right
- Complete Binary Trees

- Not Complete Binary Trees

06-18: Binary Search Trees

- Binary Trees
- For each node n , (value stored at node n$) \geq$ (value stored in left subtree)
- For each node n, (value stored at node n) $<$ (value stored in right subtree)

06-19: Example Binary Search Trees

06-20: Implementing BSTs

- Each Node in a BST is implemented as a class:

```
public class Node {
    public Comparable data;
    public Node left;
    public Node right;
}
```

06-21: Implementing BSTs
public class Node $\{$
public Node (Comparable data, Node left, Node right) \&
this.data = data;
this.left = left;
this.right = right;
\}
public Node left() \{
return left;
)
public Node setLeft (Node newLeft) \{
left $=$ newLeft
\}
... (etc)
private Comparable data;
private Node left;
private Node right;
\}

06-22: Finding an Element in a BST

- Binary Search Trees are recursive data structures, so most operations on them will be recursive as well
- Recall how to write a recursive algorithm ...

06-23: Writing a Recursive Algorithm

- Determine a small version of the problem, which can be solved immediately. This is the base case
- Determine how to make the problem smaller
- Once the problem has been made smaller, we can assume that the function that we are writing will work correctly on the smaller problem (Recursive Leap of Faith)
- Determine how to use the solution to the smaller problem to solve the larger problem

06-24: Finding an Element in a BST

- First, the Base Case - when is it easy to determine if an element is stored in a Binary Search Tree?

06-25: Finding an Element in a BST

- First, the Base Case - when is it easy to determine if an element is stored in a Binary Search Tree?
- If the tree is empty, then the element can't be there
- If the element is stored at the root, then the element is there

06-26: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?

06-27: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?

06-28: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is < the element stored at the root, use the left subtree. Otherwise, use the right subtree.

06-29: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is $<$ the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?

06-30: Finding an Element in a BST

- Next, the Recursive Case - how do we make the problem smaller?
- Both the left and right subtrees are smaller versions of the problem. Which one do we use?
- If the element we are trying to find is $<$ the element stored at the root, use the left subtree. Otherwise, use the right subtree.
- How do we use the solution to the subproblem to solve the original problem?
- The solution to the subproblem is the solution to the original problem (this is not always the case in recursive algorithms)

06-31: Finding an Element in a BST

To find an element e in a Binary Search Tree T :

- If T is empty, then e is not in T
- If the root of T contains e, then e is in T
- If $e<$ the element stored in the root of T :
- Look for e in the left subtree of T

Otherwise

- Look for e in the right subtree of T

06-32: Finding an Element in a BST

```
boolean find(Node tree, Comparable elem) {
    if (tree == null)
        return false;
    if (elem.compareTo(tree.element()) == 0)
        return true;
    if (elem.compareTo(tree) < 0)
        return find(tree.left(), elem);
    else
            return find(tree.right(), elem);
}
```


06-33: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order

06-34: Printing out a BST

To print out all element in a BST:

- Print all elements in the left subtree, in order
- Print out the element at the root of the tree
- Print all elements in the right subtree, in order
- Each subproblem is a smaller version of the original problem - we can assume that a recursive call will work!

06-35: Printing out a BST

- What is the base case for printing out a Binary Search Tree - what is an easy tree to print out?

06-36: Printing out a BST

- What is the base case for printing out a Binary Search Tree - what is an easy tree to print out?
- An empty tree is extremely easy to print out - do nothing!
- Code for printing a BST ...

06-37: Printing out a BST

```
void print(Node tree) {
    if (tree != null) {
        print(tree.left());
        System.out.println(tree.element());
        print(tree.right());
    }
}
06-38: Printing out a BST
Examples
06-39: Tree Traversals
```

- PREORDER Traversal
- Do operation on root of the tree
- Traverse left subtree
- Traverse right subtree
- INORDER Traversal
- Traverse left subtree
- Do operation on root of the tree
- Traverse right subtree
- POSTORDER Traversal
- Traverse left subtree
- Traverse right subtree
- Do operation on root of the tree

06-40: PREORDER Examples
06-41: POSTORDER Examples
06-42: INORDER Examples
06-43: BST Minimal Element
To find the minimal element in a BST:

- Base Case: When is it easy to find the smallest element in a BST?
- Recursive Case: How can we make the problem smaller?

How can we use the solution to the smaller problem to solve the original problem?
06-44: BST Minimal Element
To find the minimal element in a BST:
Base Case:

- When is it easy to find the smallest element in a BST?

06-45: BST Minimal Element
To find the minimal element in a BST:
Base Case:

- When is it easy to find the smallest element in a BST?
- When the left subtree is empty, then the element stored at the root is the smallest element in the tree.

06-46: BST Minimal Element

To find the minimal element in a BST:
Recursive Case:

- How can we make the problem smaller?

06-47: BST Minimal Element
To find the minimal element in a BST:
Recursive Case:

- How can we make the problem smaller?
- Both the left and right subtrees are smaller versions of the same problem
- How can we use the solution to a smaller problem to solve the original problem?

06-48: BST Minimal Element

To find the minimal element in a BST:
Recursive Case:

- How can we make the problem smaller?
- Both the left and right subtrees are smaller versions of the same problem
- How can we use the solution to a smaller problem to solve the original problem?
- The smallest element in the left subtree is the smallest element in the tree

06-49: BST Minimal Element

```
Comparable minimum(Node tree) {
    if (tree == null)
        return null;
    if (tree.left() == null)
        return tree.element();
    else
        return minimum(tree.left());
}
```

06-50: BST Minimal Element

Iterative Version

```
Comparable minimum(Node tree) {
    if (tree == null)
        return null;
    while (tree.left() != null)
        tree = tree.left();
    return tree.element();
}
```

06-51: Inserting e into BST T

- What is the base case - an easy tree to insert an element into?

06-52: Inserting e into BST T

- What is the base case - an easy tree to insert an element into?
- An empty tree
- Create a new tree, containing the element e

06-53: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?

06-54: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?
- The left and right subtrees are smaller versions of the same problem.
- How do we use these smaller versions of the problem?

06-55: Inserting e into BST T

- Recursive Case: How do we make the problem smaller?
- The left and right subtrees are smaller versions of the same problem
- Insert the element into the left subtree if $e \leq$ value stored at the root, and insert the element into the right subtree if $e>$ value stored at the root

06-56: Inserting e into BST T

- Base case $-T$ is empty:
- Create a new tree, containing the element e
- Recursive Case:
- If e is less than the element at the root of T, insert e into left subtree
- If e is greater than the element at the root of T, insert e into the right subtree

06-57: Tree Manipulation in Java

- Tree manipulation functions return trees
- Insert method takes as input the old tree and the element to insert, and returns the new tree, with the element inserted
- Old value (pre-insertion) of tree will be destroyed
- To insert an element e into a tree T :
- $T=i n s e r t(T, ~ e) ;$

06-58: Inserting e into BST T

```
Node insert(Node tree, Comparable elem) {
    if (tree == null) {
        return new Node(elem);
    if (elem.compareTo(tree.element() <= 0)) {
        tree.setLeft(insert(tree.left(), elem));
        return tree;
    } else {
        tree.setRight(insert(tree.right(), elem));
        return tree;
    }
}
```


06-59: Deleting From a BST

- Removing a leaf:

06-60: Deleting From a BST

- Removing a leaf:
- Remove element immediately

06-61: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:

06-62: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child

06-63: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child
- Removing a node with two children:

06-64: Deleting From a BST

- Removing a leaf:
- Remove element immediately
- Removing a node with one child:
- Just like removing from a linked list
- Make parent point to child
- Removing a node with two children:
- Replace node with largest element in left subtree, or the smallest element in the right subtree

06-65: Comparable vs. .key() method

- We have been storing "Comparable" elements in BSTs
- Alternately, could use a "key()" method - elements stored in BSTs must implement a key() method, which returns an integer.
- We can combine the two methods
- Each element stored in the tree has a key() method
- key() method returns Comparable class

06-66: BST Implementation Details

- Use BSTs to implement Ordered List ADT
- Operations
- Insert
- Find
- Remove
- Print in Order
- The specification (interface) should not specify an implementation
- Allow several different implementations of the same interface

06-67: BST Implementation Details

- BST functions require the root of the tree be sent in as a parameter
- Ordered list functions should not contain implementation details!
- What should we do?

06-68: BST Implementation Details

- BST functions require the root of the tree be sent in as a parameter
- Ordered list functions should not contain implementation details!
- What should we do?
- Private variable, holds root of the tree
- Private recursive methods, require root as an argument
- Public methods call private methods, passing in private root

