
CS245-2015S-08 Priority Queues – Heaps 1

08-0: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key

Keys are “priorities”, with smaller keys having a “better” priority

08-1: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key

Implementation:

• Sorted Array

Add Element

Remove Smallest Key

08-2: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key

Implementation:

• Sorted Array

Add Element O(n)
Remove Smallest Key O(1)

(using circular array)

08-3: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key

Implementation:

• Binary Search Tree

Add Element

Remove Smallest Key

08-4: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key



CS245-2015S-08 Priority Queues – Heaps 2

Implementation:

• Binary Search Tree

Add Element O(lg n)
Remove Smallest Key O(lg n)

If the tree is balanced

08-5: Priority Queue ADT

Operations

• Add an element / key pair

• Return (and remove) element with smallest key

Implementation:

• Binary Search Tree

Add Element O(n)
Remove Smallest Key O(n)

Computer Scientists are Pessimists

(Murphy was right)

08-6: Heap Definition

• Complete Binary Tree

• Heap Property

• For every subtree in a tree, each value in the subtree is ≥ value stored at the root of the subtree

08-7: Heap Examples

1

2 4

7 3 14 15

9 8 5 4
Valid Heap

08-8: Heap Examples



CS245-2015S-08 Priority Queues – Heaps 3

1

8 5

2 9 4 14

5 7 10 13
Invalid Heap

08-9: Heap Insert

• What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

08-10: Heap Insert

• What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

• “End” of the tree – as a child of the shallowest leaf that is farthest to the left

• Will the resulting tree still be a heap?

08-11: Heap Insert

• What is the only place we can insert an element in a heap, and maintain the complete binary tree property?

• “End” of the tree – as a child of the shallowest leaf that is farthest to the left

• Inserting an element at the “end” of the heap may break the heap property

• Swap the value up the tree (examples)

08-12: Heap Insert

• Running time for Insert?

08-13: Heap Insert

• Running time for Insert?

• Place element at end of tree: O(1) (We’ll see a clever way to find the “end” of the tree in a bit)

• Swap element up the tree: O(height of tree) (Worst case, swap all the way up to the root)

• Height of a Complete Binary Tree with n nodes?

08-14: Heap Insert

• Running time for Insert?

• Place element at end of tree: O(1) (We’ll see a clever way to find the “end” of the tree in a bit

• Swap element up the tree: O(height of tree) (Worst case, swap all the way up to the root)



CS245-2015S-08 Priority Queues – Heaps 4

• Height of a Complete Binary Tree with n nodes = Θ(lgn)

• Total running time: Θ(lg n) in the worst case

08-15: Heap Remove Smallest

• Finding the smallest element is easy – at the root of the tree

• Removing the Root of the heap is hard

• What element is easy to remove? How could this help us?

08-16: Heap Remove Smallest

• Finding the smallest element is easy – at the root of the tree

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Copy last element of heap into root

• Remove the last element

• Problem?

08-17: Heap Remove Smallest

• Finding the smallest element is easy – at the root of the tree

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Copy last element of heap into root

• Remove the last element

• May break the heap property

08-18: Heap Remove Smallest

• Finding the smallest element is easy – at the root of the tree

• Removing the Root of the heap is hard

• Removing the element at the “end” of the heap is easy

• Copy last element of heap into root

• Remove the last element

• Push the root down, until heap property is satisfied

08-19: Heap Remove Smallest

• Running time for remove smallest?

08-20: Heap Remove Smallest

• Running time for remove smallest?



CS245-2015S-08 Priority Queues – Heaps 5

• Copy last element into root, remove last element: O(1), given a O(1) time method to find the last element

• Push the root down: O(height of the tree) (Worst case, push element all the way down)

• As before, Complete Binary Tree with n elements has height Θ(lgn)

• Total time: Θ(lg n) in the worst case

08-21: Representing Heaps

• Represent heaps using pointers, much like BSTs

• Need to add parent pointers for insert to work correctly

• Need to maintain a pointer to the location to insert the next element (this could be hard to update &

maintain)

• Space needed to store pointers – 3 per node – could be greater than the space need to store the data in the

heap!

• Memory allocation and deallocation is slow

• There is a better way!

08-22: Representing Heaps

A Complete Binary Tree can be stored in an array:

1

2 14

5 3 16 15

7 6 8 9

1 2 14 5 3 16 15 7 6 8 9
0 1 2 3 4 5 6 7 8 9 10 11 12 13

08-23: CBTs as Arrays

• The root is stored at index 1

• For the node stored at index i:

• Left child is stored at index 2 ∗ i

• Right child is stored at index 2 ∗ i+ 1

• Parent is stored at index ⌊i/2⌋

08-24: CBTs as Arrays

Finding the parent of a node

int parent(int n) {

return (n / 2);

}



CS245-2015S-08 Priority Queues – Heaps 6

Finding the left child of a node

int leftchild(int n) {

return 2 * n;

}

Finding the right child of a node

int rightchild(int n) {

return 2 * n + 1;

}

08-25: Building a Heap

Build a heap out of n elements

08-26: Building a Heap

Build a heap out of n elements

• Start with an empty heap

• Do n insertions into the heap

MinHeap H = new MinHeap();

for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time?

08-27: Building a Heap

Build a heap out of n elements

• Start with an empty heap

• Do n insertions into the heap

MinHeap H = new MinHeap();

for(i=0 < i<A.size(); i++)

H.insert(A[i]);

Running time? O(n lg n) – is this bound tight?

08-28: Building a Heap Total time: c1 +
∑n

i=1
c2 lg i

c1 +

n∑

i=1

c2 lg i ≥

n∑

i=n/2

c2 lg i

≥

n∑

i=n/2

c2 lg(n/2)

= (n/2)c2 lg(n/2)

= (n/2)c2((lg n)− 1)

∈ Ω(n lg n)

Running Time: Θ(n lgn)
08-29: Building a Heap

Build a heap from the bottom up



CS245-2015S-08 Priority Queues – Heaps 7

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋

08-30: Building a Heap

Build a heap from the bottom up

• Place elements into a heap array

• Each leaf is a legal heap

• First potential problem is at location ⌊i/2⌋

for(i=n/2; i>=0; i--)

pushdown(i);

08-31: Building a Heap

How many swaps, worst case? If every pushdown has to swap all the way to a leaf:

n/4 elements 1 swap

n/8 elements 2 swaps

n/16 elements 3 swaps

n/32 elements 4 swaps

. . .
Total # of swaps:

n/4 + 2n/8 + 3n/16 + 4n/32 + . . .+ (lg n)n/n

08-32: Decreasing a Key

• Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?

• Examples

08-33: Decreasing a Key

• Given a specific element in a heap, how can we decrease the key of that element, and maintain the heap property?

• Examples

• Push the element up the tree, just like after an insert

• Examples

08-34: Decreasing a Key

• Decrease the key of a specific element in a heap:

• Decrease the key value

• Push the element up the tree, just like after an insert

• Time required?

08-35: Decreasing a Key

• Decrease the key of a specific element in a heap:



CS245-2015S-08 Priority Queues – Heaps 8

• Decrease the key value

• Push the element up the tree, just like after an insert

• Time required: Θ(lg n), in the worst case.

08-36: Removing an Element

• Given a specific element in a heap, how can we remove that element, and maintain the heap property?

• Examples

08-37: Removing an Element

• Given a specific element in a heap, how can we remove that element, and maintain the heap property?

• Examples

• Decrease key to a value < root

• Remove smallest element

08-38: Removing an Element

• Given a specific element in a heap, how can we remove that element, and maintain the heap property?

• Examples

• Decrease key to a value < root. Time Θ(lg n) worst case

• Remove smallest element. Time Θ(lgn) worst case

08-39: Java Specifics

• When inserting an element, push value up until it reaches the root, or it’s ≥ its parent

• Our while statement will have two tests

• We can insert a sentinel value at index 0, guaranteed to be ≤ any element in the heap

• Now our while loop only requires a single test


