
CS245-2015S-09 General Trees 1

09-0: Trees with > 2 children

How can we implement trees with nodes that have > 2 children?

09-1: Trees with > 2 children

• Array of Children

09-2: Trees with > 2 children

• Linked List of Children



CS245-2015S-09 General Trees 2

09-3: Left Child / Right Sibling

• We can integrate the linked lists with the nodes themselves:

09-4: Working with General Tree

class Node {

private Node leftchild_;

private Node rightsib_;

private Object element_;

Node leftchild() { void setLeftchild(Node leftchild) {

return leftchild_; leftchild_ = leftchild;

} }

Node rightsib() { void setRightsib(Node leftchild) {

return rightsib_; rightsib_ = rightsib;

} }

Node element() { void setElement(Object element) {

return element_; element_ = element;

} }

}

09-5: General Trees – NumNodes

• Returns the number of nodes in a tree



CS245-2015S-09 General Trees 3

Number of Nodes = 8 Number of Nodes = 6

09-6: General Trees – NumNodes

int numnodes(Node tree) {

int descendants = 0;

Node tmp;

if (tree == null)

return 0;

for (tmp = tree.leftchild(); tmp != null;

tmp = tmp.rightsib())

descendants = descendants + numnodes(tmp);

return descendants + 1;

}

09-7: General Trees – NumNodes II

int numnodes(Node tree) {

if (tree == null)

return 0;

return 1 + numnodes(tree.leftchild())

+ numnodes(tree.rightsib());

}

09-8: Tree Operations – Height

• Returns the height of the tree

• (Length of the path to the deepest leaf) + 1



CS245-2015S-09 General Trees 4

Height = 5 Height = 6

09-9: General Trees – Height

int height(Node tree) {

if (tree == null)

return 0;

int childHeight = 0;

for (Node tmp = tree.leftchild(); tmp != null;

tmp=tmp.rightsib())

{

childHeight = MAX(childHeight, height(tmp));

}

return childHeight + 1;

}

09-10: General Trees – Height

int height(Node tree) {

if (tree == null)

return 0;

return MAX((1 + height(tree.leftchild())),

height(tree.rightsib()));

}

09-11: General Trees

1

2 3 4

5 6 7

1

2

2 3 4

5 6 7

1

3

4

5

8 9

Tree 1 Tree 2

Tree 3



CS245-2015S-09 General Trees 5

Write numLeaves and print 09-12: General Trees – numLeaves

int numLeaves(Node tree) {

if (tree == null)

return 0;

if (tree.leftchild() == null)

return 1 + numLeaves(tree.rightsib());

return numLeaves(tree.leftchild()) +

numLeaves(tree.rightsib());

}

09-13: General Trees – numLeaves

void print(Node tree, int offset) {

if (tree != null)

{

for (int i = 0; i < offset; i++)

System.out.print("\t");

System.out.println(tree.element());

print(tree.leftchild(), offset+1);

print(tree.rightsib(), offset);

}

}

09-14: Serializing Binary Trees

• Print a tree to a file, saving structure information

• First Try: Print out nodes, in order that they would appear in a PREORDER traversal.

• Why doesn’t this work?

A

B C

D E

G

F

ABDEGCF

09-15: Serializing Binary Trees

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!



CS245-2015S-09 General Trees 6

A

B C

D E

G

F

ABD//EG///C/F//

09-16: Serializing Binary Trees

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!

A

B C

D E

G

F

09-17: Serializing Binary Trees

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!

A

B C

D E

G

F

ABD///CEG///F//

09-18: Serializing Binary Trees

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!

ABDE//G///CF/H///

09-19: Serializing Binary Trees



CS245-2015S-09 General Trees 7

• Printing out nodes, in order that they would appear in a PREORDER traversal does not work, because we don’t

know when we’ve hit a null pointer

• Store null pointers, too!

ABDE//G///CF/H///

A

B C

D

E G

F

H

09-20: Serializing Binary Trees

• If we are searializing a full binary tree (each node contains exactly 0 or 2 children), we can store a single extra

bit for each node 0 for an internal node, 1 for a leaf:

A

C

D G

B

FE

A0B1C0D0E1F1G1

09-21: Serializing Binary Trees

• If we are searializing a full binary tree (each node contains exactly 0 or 2 children), we can store a single extra

bit for each node 0 for an internal node, 1 for a leaf:

A

B

C D

E

GF

09-22: Serializing Binary Trees

• If we are searializing a full binary tree (each node contains exactly 0 or 2 children), we can store a single extra

bit for each node 0 for an internal node, 1 for a leaf:



CS245-2015S-09 General Trees 8

A

B

C D

E

GF

A0B0C1D1E0F1G1

09-23: Serializing Binary Trees

• If we are searializing a full binary tree (each node contains exactly 0 or 2 children), we can store a single extra

bit for each node 0 for an internal node, 1 for a leaf:

A0B0C1D0E1F1G1

09-24: Serializing Binary Trees

• If we are searializing a full binary tree (each node contains exactly 0 or 2 children), we can store a single extra

bit for each node 0 for an internal node, 1 for a leaf:

A0B0C1D0E1F1G1

A

B

D

E F

G

C

09-25: Serializing General Trees

• Store an “end of children” marker

A

B D

E F I

C

G H J

K

ABE)FK)))C)DG)H)I)J)))

09-26: Serializing General Trees



CS245-2015S-09 General Trees 9

• Store an “end of children” marker

A

B D E

F I

C

G H J

K
09-27: Serializing General Trees

• Store an “end of children” marker

A

B D E

F I

C

G H J

K

ABFK)))CG)H))DI)J))E))

09-28: Serializing General Trees

• Store an “end of children” marker

ABDK)))CE)F )GI)J))H)))

09-29: Serializing General Trees

• Store an “end of children” marker

ABDK)))CE)F )GI)J))H)))



CS245-2015S-09 General Trees 10

A

B

D E F

I

C

G H

JK


