
Data Structures and Algorithms
CS245-2015S-FR

Final Review

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles


FR-0: Big-Oh Notation

O(f(n)) is the set of all functions that are bound from

above by f(n) p

T (n) ∈ O(f(n)) if

∃c, n0 such that T (n) ≤ c ∗ f(n) when n > n0



FR-1: Big-Oh Examples

n ∈ O(n) ?

10n ∈ O(n) ?

n ∈ O(10n) ?

n ∈ O(n2) ?

n2 ∈ O(n) ?

10n2 ∈ O(n2) ?

n lg n ∈ O(n2) ?

lnn ∈ O(2n) ?

lg n ∈ O(n) ?

3n+ 4 ∈ O(n) ?

5n2 + 10n− 2 ∈ O(n3)? O(n2) ? O(n) ?



FR-2: Big-Oh Examples

n ∈ O(n)

10n ∈ O(n)

n ∈ O(10n)

n ∈ O(n2)

n2 6∈ O(n)

10n2 ∈ O(n2)

n lg n ∈ O(n2)

lnn ∈ O(2n)

lg n ∈ O(n)

3n+ 4 ∈ O(n)

5n2 + 10n− 2 ∈ O(n3),∈ O(n2), 6∈ O(n) ?



FR-3: Big-Oh Examples II

√
n ∈ O(n) ?

lg n ∈ O(2n) ?

lg n ∈ O(n) ?

n lg n ∈ O(n) ?

n lg n ∈ O(n2) ?√
n ∈ O(lg n) ?

lg n ∈ O(
√
n) ?

n lg n ∈ O(n
3

2 ) ?

n3 + n lg n+ n
√
n ∈ O(n lg n) ?

n3 + n lg n+ n
√
n ∈ O(n3) ?

n3 + n lg n+ n
√
n ∈ O(n4) ?



FR-4: Big-Oh Examples II

√
n ∈ O(n)

lg n ∈ O(2n)

lg n ∈ O(n)

n lg n 6∈ O(n)

n lg n ∈ O(n2)√
n 6∈ O(lg n)

lg n ∈ O(
√
n)

n lg n ∈ O(n
3

2 )

n3 + n lg n+ n
√
n 6∈ O(n lg n)

n3 + n lg n+ n
√
n ∈ O(n3)

n3 + n lg n+ n
√
n ∈ O(n4)



FR-5: Big-Oh Examples III

f(n) =

{

n for n odd

n3 for n even

g(n) = n2

f(n) ∈ O(g(n)) ?

g(n) ∈ O(f(n)) ?

n ∈ O(f(n)) ?

f(n) ∈ O(n3) ?



FR-6: Big-Oh Examples III

f(n) =

{

n for n odd

n3 for n even

g(n) = n2

f(n) 6∈ O(g(n))

g(n) 6∈ O(f(n))

n ∈ O(f(n))

f(n) ∈ O(n3)



FR-7: Big-Ω Notation

Ω(f(n)) is the set of all functions that are bound from

below by f(n)

T (n) ∈ Ω(f(n)) if

∃c, n0 such that T (n) ≥ c ∗ f(n) when n > n0



FR-8: Big-Ω Notation

Ω(f(n)) is the set of all functions that are bound from

below by f(n)

T (n) ∈ Ω(f(n)) if

∃c, n0 such that T (n) ≥ c ∗ f(n) when n > n0

f(n) ∈ O(g(n)) ⇒ g(n) ∈ Ω(f(n))



FR-9: Big-Θ Notation

Θ(f(n)) is the set of all functions that are bound both

above and below by f(n). Θ is a tight bound

T (n) ∈ Θ(f(n)) if

T (n) ∈ O(f(n)) and T (n) ∈ Ω(f(n))



FR-10: Big-Oh Rules

1. If f(n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then

f(n) ∈ O(h(n))

2. If f(n) ∈ O(kg(n) for any constant k > 0, then

f(n) ∈ O(g(n))

3. If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then

f1(n) + f2(n) ∈ O(max(g1(n), g2(n)))

4. If f1(n) ∈ O(g1(n)) and f2(n) ∈ O(g2(n)), then

f1(n) ∗ f2(n) ∈ O(g1(n) ∗ g2(n))

(Also work for Ω, and hence Θ)



FR-11: Big-Oh Guidelines

Don’t include constants/low order terms in Big-Oh

Simple statements: Θ(1)

Loops: Θ(inside) * # of iterations

Nested loops work the same way

Consecutive statements: Longest Statement

Conditional (if) statements:
O(Test + longest branch)



FR-12: Calculating Big-Oh

for (i=1; i<n; i++)
for (j=1; j < n/2; j++)

sum++;



FR-13: Calculating Big-Oh

for (i=1; i<n; i++) Executed n times
for (j=1; j < n/2; j++) Executed n/2 times

sum++; O(1)

Running time: O(n2),Ω(n2),Θ(n2)



FR-14: Calculating Big-Oh

for (i=1; i<n; i=i*2)
sum++;



FR-15: Calculating Big-Oh

for (i=1; i<n; i=i*2) Executed lg n times
sum++; O(1)

Running Time: O(lg n),Ω(lg n),Θ(lg n)



FR-16: Calculating Big-Oh

for (i=1; i<n; i=i*2)
for (j=0; j < n; j = j + 1)

sum++;
for (i=n; i >1; i = i / 2)

for (j = 1; j < n; j = j * 2)
for (k = 1; k < n; k = k * 3)

sum++



FR-17: Recurrence Relations

T (n) = Time required to solve a problem of size n

Recurrence relations are used to determine the
running time of recursive programs – recurrence
relations themselves are recursive

T (0) = time to solve problem of size 0

– Base Case

T (n) = time to solve problem of size n

– Recursive Case



FR-18: Recurrence Relations

long power(long x, long n) {
if (n == 0)

return 1;
else

return x * power(x, n-1);
}

T (0) = c1 for some constant c1
T (n) = c2 + T (n− 1) for some constant c2



FR-19: Building a Better Power

long power(long x, long n) {
if (n==0) return 1;
if (n==1) return x;
if ((n % 2) == 0)

return power(x*x, n/2);
else

return power(x*x, n/2) * x;
}



FR-20: Building a Better Power

long power(long x, long n) {
if (n==0) return 1;
if (n==1) return x;
if ((n % 2) == 0)

return power(x*x, n/2);
else

return power(x*x, n/2) * x;
}

T (0) = c1
T (1) = c2
T (n) = T (n/2) + c3

(Assume n is a power of 2)



FR-21: Solving Recurrence Relations

T (n) = T (n/2) + c3 T (n/2) = T (n/4) + c3
= T (n/4) + c3 + c3
= T (n/4)2c3 T (n/4) = T (n/8) + c3
= T (n/8) + c3 + 2c3
= T (n/8)3c3 T (n/8) = T (n/16) + c3
= T (n/16) + c3 + 3c3
= T (n/16) + 4c3 T (n/16) = T (n/32) + c3
= T (n/32) + c3 + 4c3
= T (n/32) + 5c3
= . . .

= T (n/2k) + kc3



FR-22: Solving Recurrence Relations

T (0) = c1
T (1) = c2
T (n) = T (n/2) + c3

T (n) = T (n/2k) + kc3

We want to get rid of T (n/2k). Since we know T (1) ...

n/2k = 1

n = 2k

lg n = k



FR-23: Solving Recurrence Relations

T (1) = c2
T (n) = T (n/2k) + kc3

T (n) = T (n/2lg n) + lg nc3
= T (1) + c3 lg n

= c2 + c3 lg n

∈ Θ(lg n)



FR-24: Abstract Data Types

An Abstract Data Type is a definition of a type
based on the operations that can be performed on
it.

An ADT is an interface

Data in an ADT cannot be manipulated directly –
only through operations defined in the interface



FR-25: Stack

A Stack is a Last-In, First-Out (LIFO) data structure.

Stack Operations:

Add an element to the top of the stack

Remove the top element

Check if the stack is empty



FR-26: Stack Implementation

Array:

Stack elements are stored in an array

Top of the stack is the end of the array

If the top of the stack was the beginning of the
array, a push or pop would require moving all
elements in the array

Push: data[top++] = elem

Pop: elem = data[--top]



FR-27: Stack Implementation

Linked List:

Stack elements are stored in a linked list

Top of the stack is the front of the linked list

push: top = new Link(elem, top)

pop: elem = top.element(); top = top.next()



FR-28: Queue

A Queue is a Last-In, First-Out (FIFO) data structure.

Queue Operations:

Add an element to the end (tail) of the Queue

Remove an element from the front (head) of the
Queue

Check if the Queue is empty



FR-29: Queue Implementation

Linked List:

Maintain a pointer to the first and last element in
the Linked List

Add elements to the back of the Linked List

Remove elements from the front of the linked list

Enqueue: tail.setNext(new link(elem,null));

tail = tail.next()

Dequeue: elem = head.element();

head = head.next();



FR-30: Queue Implementation

Array:

Store queue elements in a circular array

Maintain the index of the first element (head) and
the next location to be inserted (tail)

Enqueue: data[tail] = elem;

tail = (tail + 1) % size

Dequeue: elem = data[head];

head = (head + 1) % size



FR-31: Binary Trees

Binary Trees are Recursive Data Structures

Base Case: Empty Tree

Recursive Case: Node, consiting of:

Left Child (Tree)

Right Child (Tree)

Data



FR-32: Binary Tree Examples

The following are all Binary Trees (Though not Binary
Search Trees)

A

B C

D E

F

A

B

C

D

A

B C

F GD E



FR-33: Tree Terminology

Parent / Child

Leaf node

Root node

Edge (between nodes)

Path

Ancestor / Descendant

Depth of a node n

Length of path from root to n

Height of a tree

(Depth of deepest node) + 1



FR-34: Binary Search Trees

Binary Trees

For each node n, (value stored at node n) > (value
stored in left subtree)

For each node n, (value stored at node n) < (value
stored in right subtree)



FR-35: Writing a Recursive Algorithm

Determine a small version of the problem, which
can be solved immediately. This is the base case

Determine how to make the problem smaller

Once the problem has been made smaller, we can
assume that the function that we are writing will
work correctly on the smaller problem (Recursive
Leap of Faith)

Determine how to use the solution to the
smaller problem to solve the larger problem



FR-36: Finding an Element in a BST

First, the Base Case – when is it easy to determine
if an element is stored in a Binary Search Tree?

If the tree is empty, then the element can’t be
there

If the element is stored at the root, then the
element is there



FR-37: Finding an Element in a BST

Next, the Recursive Case – how do we make the
problem smaller?

Both the left and right subtrees are smaller
versions of the problem. Which one do we use?

If the element we are trying to find is < the
element stored at the root, use the left subtree.
Otherwise, use the right subtree.

How do we use the solution to the subproblem to
solve the original problem?

The solution to the subproblem is the solution
to the original problem (this is not always the
case in recursive algorithms)



FR-38: Printing out a BST

To print out all element in a BST:

Print all elements in the left subtree, in order

Print out the element at the root of the tree

Print all elements in the right subtree, in order

Each subproblem is a smaller version of the
original problem – we can assume that a
recursive call will work!



FR-39: Printing out a BST

void print(Node tree) {
if (tree != null) {

print(tree.left());
System.out.prinln(tree.element());
print(tree.right());

}
}



FR-40: Inserting e into BST T

Base case – T is empty:

Create a new tree, containing the element e

Recursive Case:

If e is less than the element at the root of T ,
insert e into left subtree

If e is greater than the element at the root of T ,
insert e into the right subtree



FR-41: Inserting e into BST T

Node insert(Node tree, Comparable elem) {
if (tree == null) {

return new Node(elem);
if (elem.compareTo(tree.element() < 0)) {

tree.setLeft(insert(tree.left(), elem));
return tree;

} else {
tree.setRight(insert(tree.right(), elem));
return tree;

}
}



FR-42: Deleting From a BST

Removing a leaf:

Remove element immediately

Removing a node with one child:

Just like removing from a linked list

Make parent point to child

Removing a node with two children:

Replace node with largest element in left
subtree, or the smallest element in the right
subtree



FR-43: Priority Queue ADT

Operations

Add an element / priority pair

Return (and remove) element with highest priority

Implementation:

Heap

Add Element O(lg n)

Remove Higest Priority O(lg n)



FR-44: Heap Definition

Complete Binary Tree

Heap Property

For every subtree in a tree, each value in the
subtree is <= value stored at the root of the
subtree



FR-45: Heap Examples

1

2 4

7 3 14 15

9 8 5 4

Valid Heap



FR-46: Heap Examples

1

8 5

2 9 4 14

5 7 10 13

Invalid Heap



FR-47: Heap Insert

There is only one place we can insert an element
into a heap, so that the heap remains a complete
binary tree

Inserting an element at the “end” of the heap might
break the heap property

Swap the inserted value up the tree



FR-48: Heap Remove Largest

Removing the Root of the heap is hard

Removing the element at the “end” of the heap is
easy

Move last element into root
Shift the root down, until heap property is
satisfied



FR-49: Representing Heaps

A Complete Binary Tree can be stored in an array:

1

2 14

5 3 16 15

7 6 8 9

1 2 14 5 3 16 15 7 6 8 9
0 1 2 3 4 5 6 7 8 9 10 11 12 13



FR-50: CBTs as Arrays

The root is stored at index 0

For the node stored at index i:

Left child is stored at index 2 ∗ i+ 1

Right child is stored at index 2 ∗ i+ 2

Parent is stored at index ⌊(i− 1)/2⌋



FR-51: Trees with > 2 children

How can we implement trees with nodes that have > 2
children?



FR-52: Trees with > 2 children

Array of Children



FR-53: Trees with > 2 children

Linked List of Children



FR-54: Left Child / Right Sibling

We can integrate the linked lists with the nodes
themselves:



FR-55: Serializing Binary Trees

Printing out nodes, in order that they would appear
in a PREORDER traversal does not work, because
we don’t know when we’ve hit a null pointer

Store null pointers, too!

A

B C

D E

G

F

ABD//EG///C/F//



FR-56: Serializing Binary Trees

In most trees, more null pointers than internal
nodes

Instead of marking null pointers, mark internal
nodes

Still need to mark some nulls, for nodes with 1 child

A

B C

D E

G

F



FR-57: Serializing General Trees

Store an “end of children” marker

A

B D

E F I

C

G H J

K



FR-58: Main Memory Sorting

All data elements can be stored in memory at the
same time

Data stored in an array, indexed from 0 . . . n− 1,
where n is the number of elements

Each element has a key value (accessed with a
key() method)

We can compare keys for <, >, =

For illustration, we will use arrays of integers –
though often keys will be strings, other
Comparable types



FR-59: Stable Sorting

A sorting algorithm is Stable if the relative order of
duplicates is preserved

The order of duplicates matters if the keys are
duplicated, but the records are not.

3  1  2  1  1  2  3
B
o
b

J
o
e

E
d

A
m
y

S
u
e

A
l

B
u
d

Key

Data

1  1  1  2  2  3  3
A
m
y

J
o
e

S
u
e

E
d

A
l

B
o
b

B
u
d

Key

Data

A non-Stable sort



FR-60: Insertion Sort

Separate list into sorted portion, and unsorted
portion

Initially, sorted portion contains first element in the
list, unsorted portion is the rest of the list

(A list of one element is always sorted)

Repeatedly insert an element from the unsorted
list into the sorted list, until the list is sorted



FR-61: Bubble Sort

Scan list from the last index to index 0, swapping
the smallest element to the front of the list

Scan the list from the last index to index 1,
swapping the second smallest element to index 1

Scan the list from the last index to index 2,
swapping the third smallest element to index 2
. . .

Swap the second largest element into position

(n− 2)



FR-62: Selection Sort

Scan through the list, and find the smallest element

Swap smallest element into position 0

Scan through the list, and find the second smallest
element

Swap second smallest element into position 1
. . .

Scan through the list, and find the second largest
element

Swap smallest largest into position n− 2



FR-63: Shell Sort

Sort n/2 sublists of length 2, using insertion sort

Sort n/4 sublists of length 4, using insertion sort

Sort n/8 sublists of length 8, using insertion sort
. . .

Sort 2 sublists of length n/2, using insertion sort

Sort 1 sublist of length n, using insertion sort



FR-64: Merge Sort

Base Case:

A list of length 1 or length 0 is already sorted

Recursive Case:

Split the list in half

Recursively sort two halves

Merge sorted halves together

Example: 5 1 8 2 6 4 3 7



FR-65: Divide & Conquer

Quick Sort:

Divide the list two parts

Some work required – Small elements in left
sublist, large elements in right sublist

Recursively sort two parts

Combine sorted lists into one list

No work required!



FR-66: Quick Sort

Pick a pivot element

Reorder the list:

All elements < pivot

Pivot element

All elements > pivot

Recursively sort elements < pivot

Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6



FR-67: Comparison Sorting

Comparison sorts work by comparing elements

Can only compare 2 elements at a time

Check for <, >, =.

All the sorts we have seen so far (Insertion, Quick,
Merge, Heap, etc.) are comparison sorts

If we know nothing about the list to be sorted, we
need to use a comparison sort



FR-68: Sorting Lower Bound

All comparison sorting algorithms can be
represented by a decision tree with n! leaves

Worst-case number of comparisons required by a
sorting algorithm represented by a decision tree is
the height of the tree

A decision tree with n! leaves must have a height
of at least n lg n

All comparison sorting algorithms have worst-case

running time Ω(n lg n)



FR-69: Binsort

Sort n elements, in the range 1 . . . m

Keep a list of m linked lists

Insert each element into the appropriate linked lists

Collect the lists together



FR-70: Bucket Sort

Modify binsort so thtat each list can hold a range of
values

Need to keep each bucket sorted



FR-71: Counting Sort

for(i=0; i<A.length; i++)
C[A[i].key()]++;

for(i=1; i<C.length; i++)
C[i] = C[i] + C[i-1];

for (i=A.length - 1; i>=0; i++) {
B[C[A[i].key()]] = A[i];
C[A[i].key()]--;

}

for (i=0; i<A.length; i++)
A[i] = B[i];



FR-72: Radix Sort

Sort a list of numbers one digit at a time

Sort by 1st digit, then 2nd digit, etc

Each sort can be done in linear time, using
counting sort

First Try: Sort by most significant digit, then the
next most significant digit, and so on

Need to keep track of a lot of sublists



FR-73: Radix Sort

Second Try:

Sort by least significant digit first

Then sort by next-least significant digit, using a
Stable sort
. . .

Sort by most significant digit, using a Stable sort

At the end, the list will be completely sorted.



FR-74: Searching & Selecting

Maintian a Database (keys and associated data)

Operations:

Add a key / value pair to the database

Remove a key (and associated value) from the
database

Find the value associated with a key



FR-75: Hash Function

What if we had a “magic function” –

Takes a key as input

Returns the index in the array where the key
can be found, if the key is in the array

To add an element

Put the key through the magic function, to get a
location

Store element in that location

To find an element

Put the key through the magic function, to get a
location

See if the key is stored in that location



FR-76: Hash Function

The “magic function” is called a Hash function

If hash(key) = i, we say that the key hashes to
the value i

We’d like to ensure that different keys will always
hash to different values.

Not possible – too many possible keys



FR-77: Integer Hash Function

When two keys hash to the same value, a collision
occurs.

We cannot avoid collisions, but we can minimize
them by picking a hash function that distributes
keys evenly through the array.

Example: Keys are integers

Keys are in range 1 . . . m

Array indices are in range 1 . . . n

n << m

hash(k) = kmodn



FR-78: String Hash Function

Hash tables are usually used to store string values

If we can convert a string into an integer, we can
use the integer hash function

How can we convert a string into an integer?

Concatenate ASCII digits together

keysize−1
∑

k=0

key[k] ∗ 256keysize−k−1



FR-79: String Hash Function

Concatenating digits does not work, since numbers
get big too fast. Solutions:

Overlap digits a little (use base of 32 instead of
256)

Ignore early characters (shift them off the left
side of the string)

static long hash(String key, int tablesize) {
long h = 0;
int i;
for (i=0; i<key.length(); i++)

h = (h << 4) + (int) key.charAt(i);
return h % tablesize;

}



FR-80: ElfHash

For each new character, the hash value is shifted
to the left, and the new character is added to the
accumulated value.

If the string is long, the early characters will “fall
off” the end of the hash value when it is shifted

Early characters will not affect the hash value of
large strings

Instead of falling off the end of the string, the most
significant bits can be shifted to the middle of the
string, and XOR’ed.

Every character will influence the value of the hash
function.



FR-81: Collisions

When two keys hash to the same value, a collision
occurs

A collision strategy tells us what to do when a
collision occurs

Two basic collision strategies:

Open Hashing (Closed Addressing, Separate
Chaining)

Closed Hashing (Open Addressing)



FR-82: Closed Hashing

To add element X to a closed hash table:

Find the smallest i, such that Array[hash(x) +
f(i)] is empty (wrap around if necessary)

Add X to Array[hash(x) + f(i)]

If f(i) = i, linear probing



FR-83: Closed Hashing

Quadradic probing

Find the smallest i, such that Array[hash(x) +
f(i)] is empty

Add X to Array[hash(x) + f(i)]

f(i) = i2



FR-84: Closed Hashing

Multiple keys hash to the same element

Secondary clustering

Double Hashing

Use a secondary hash function to determine
how far ahead to look

f(i) = i * hash2(key)



FR-85: Disjoint Sets

Elements will be integers (for now)

Operations:

CreateSets(n) – Create n sets, for integers
0..(n-1)

Union(x,y) – merge the set containing x and the
set containing y

Find(x) – return a representation of x’s set
Find(x) = Find(y) iff x,y are in the same set



FR-86: Implementing Disjoint Sets

Find: (pseudo-Java)

int Find(x) {
while (Parent[x] > 0)

x = Parent[x]
return x

}



FR-87: Implementing Disjoint Sets

Union(x,y) (pseudo-Java)

void Union(x,y) {
rootx = Find(x);
rooty = Find(y);
Parent[rootx] = Parent[rooty];

}



FR-88: Union by Rank

When we merge two sets:

Have the shorter tree point to the taller tree

Height of taller tree does not change

If trees have the same height, choose arbitrarily



FR-89: Path Compression

After each call to Find(x), change x’s parent
pointer to point directly at root

Also, change all parent pointers on path from x to
root



FR-90: Graphs

A graph consists of:

A set of nodes or vertices (terms are
interchangable)

A set of edges or arcs (terms are
interchangable)

Edges in graph can be either directed or undirected



FR-91: Graphs & Edges

Edges can be labeled or unlabeled

Edge labels are typically the cost assoctiated
with an edge

e.g., Nodes are cities, edges are roads
between cities, edge label is the length of road



FR-92: Graph Representations

Adjacency Matrix

Represent a graph with a two-dimensional array G

G[i][j] = 1 if there is an edge from node i to
node j

G[i][j] = 0 if there is no edge from node i to
node j

If graph is undirected, matrix is symmetric

Can represent edges labeled with a cost as well:

G[i][j] = cost of link between i and j

If there is no direct link, G[i][j] = ∞



FR-93: Adjacency Matrix

Examples:

0 1

2 3

0 1 2 3

0 0 1 0 1

1 1 0 1 1

2 0 1 0 0

3 1 1 0 0



FR-94: Adjacency Matrix

Examples:

0 1

2 3

0 1 2 3

0 0 1 0 0

1 1 0 1 1

2 0 0 0 0

3 1 0 0 0



FR-95: Graph Representations

Adjacency List

Maintain a linked-list of the neighbors of every
vertex.

n vertices

Array of n lists, one per vertex

Each list i contains a list of all vertices adjacent
to i.



FR-96: Adjacency List

Examples:

0 1

2 3

0

1

2

3

1 3

1

2



FR-97: Adjacency List

Examples:

0 1

2 3

0

1

2

3

1

3

2

0 3

1

Note – lists are not always sorted



FR-98: Topological Sort

Directed Acyclic Graph, Vertices v1 . . . vn

Create an ordering of the vertices

If there a path from vi to vj, then vi appears

before vj in the ordering

Example: Prerequisite chains



FR-99: Topological Sort

Pick a node vk with no incident edges

Add vk to the ordering

Remove vk and all edges from vk from the graph

Repeat until all nodes are picked.



FR-100: Graph Traversals

Visit every vertex, in an order defined by the
topololgy of the graph.

Two major traversals:

Depth First Search

Breadth First Search



FR-101: Depth First Search

Starting from a specific node (pseudo-code):

DFS(Edge G[], int vertex, boolean Visited[]) {
Visited[vertex] = true;
for each node w adajcent to vertex:

if (!Visited[w])
DFS(G, w, Visited);

}



FR-102: Depth First Search

class Edge {

public int neighbor;

public int next;

}

void DFS(Edge G[], int vertex, boolean Visited[]) {

Edge tmp;

Visited[vertex] = true;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

}



FR-103: Breadth First Search

DFS: Look as Deep as possible, before looking
wide

Examine all descendants of a node, before
looking at siblings

BFS: Look as Wide as possible, before looking
deep

Visit all nodes 1 away, then 2 away, then three
away, and so on



FR-104: Search Trees

Describes the order that nodes are examined in a
traversal

Directed Tree

Directed edge from v1 to v2 if the edge (v1, v2)
was followed during the traversal



FR-105: Computing Shortest Path

Given a directed weighted graph G (all weights
non-negative) and two vertices x and y, find the
least-cost path from x to y in G.

Undirected graph is a special case of a directed
graph, with symmetric edges

Least-cost path may not be the path containing the
fewest edges

“shortest path” == “least cost path”

“path containing fewest edges” = “path
containing fewest edges”



FR-106: Single Source Shortest Path

If all edges have unit weight,

We can use Breadth First Search to compute the
shortest path

BFS Spanning Tree contains shortest path to each
node in the graph

Need to do some more work to create & save
BFS spanning tree

When edges have differing weights, this obviously
will not work



FR-107: Single Source Shortest Path

Divide the vertices into two sets:

Vertices whose shortest path from the initial
vertex is known

Vertices whose shortest path from the initial
vertex is not known

Initially, only the initial vertex is known

Move vertices one at a time from the unknown set
to the known set, until all vertices are known



FR-108: Dijkstra’s Algorithm

Keep a table that contains, for each vertex

Is the distance to that vertex known?

What is the best distance we’ve found so far?

Repeat:

Pick the smallest unknown distance

mark it as known

update the distance of all unknown neighbors of
that node

Until all vertices are known



FR-109: Floyd’s Algorithm

Vertices numbered from 1..n

k-path from vertex v to vertex u is a path whose
intermediate vertices (other than v and u) contain
only vertices numbered k or less

0-path is a direct link



FR-110: Floyd’s Algorithm

Shortest n-path = Shortest path

Shortest 0-path:

∞ if there is no direct link

Cost of the direct link, otherwise

If we could use the shortest k-path to find the
shortest (k + 1) path, we would be set



FR-111: Floyd’s Algorithm

Shortest k-path from v to u either goes through
vertex k, or it does not

If not:

Shortest k-path = shortest (k − 1)-path

If so:

Shortest k-path = shortest k − 1 path from v to
k, followed by the shortest k − 1 path from k to
w



FR-112: Floyd’s Algorithm

If we had the shortest k-path for all pairs (v,w), we
could obtain the shortest k + 1-path for all pairs

For each pair v, w, compare:
length of the k-path from v to w
length of the k-path from v to k appended to
the k-path from k to w

Set the k + 1 path from v to w to be the
minimum of the two paths above



FR-113: Floyd’s Algorithm

Let Dk[v, w] be the length of the shortest k-path
from v to w.

D0[v, w] = cost of arc from v to w (∞ if no direct
link)

Dk[v, w] = MIN(Dk−1[v, w], Dk−1[v, k] +Dk−1[k, w])

Create D0, use D0 to create D1, use D1 to create
D2, and so on – until we have Dn



FR-114: Spanning Trees

Given a connected, undirected graph G

A subgraph of G contains a subset of the
vertices and edges in G

A Spanning Tree T of G is:
subgraph of G
contains all vertices in G
connected
acyclic



FR-115: Spanning Tree Examples

Graph

0 1

2 3 4

5 6



FR-116: Spanning Tree Examples

Spanning Tree

0 1

2 3 4

5 6



FR-117: Minimal Cost Spanning Tree

Minimal Cost Spanning Tree

Given a weighted, undirected graph G

Spanning tree of G which minimizes the sum of
all weights on edges of spanning tree



FR-118: Kruskal’s Algorithm

Start with an empty graph (no edges)

Sort the edges by cost

For each edge e (in increasing order of cost)

Add e to G if it would not cause a cycle



FR-119: Kruskal’s Algorithm

We need to:

Put each vertex in its own tree

Given any two vertices v1 and v2, determine if
they are in the same tree

Given any two vertices v1 and v2, merge the
tree containing v1 and the tree containing v2

... sound familiar?



FR-120: Kruskal’s Algorithm

Disjoint sets!

Create a list of all edges

Sort list of edges

For each edge e = (v1, v2) in the list

if FIND(v1) != FIND(v2)
Add e to spanning tree
UNION(v1, v2)



FR-121: Prim’s Algorithm

Grow that spanning tree out from an initial vertex

Divide the graph into two sets of vertices

vertices in the spanning tree

vertices not in the spanning tree

Initially, Start vertex is in the spanning tree, all
other vertices are not in the tree

Pick the initial vertex arbitrarily



FR-122: Prim’s Algorithm

While there are vertices not in the spanning tree

Add the cheapest vertex to the spanning tree



FR-123: Indexing

Operations:

Add an element

Remove an element

Find an element, using a key

Find all elements in a range of key values



FR-124: 2-3 Trees

Generalized Binary Search Tree

Each node has 1 or 2 keys

Each (non-leaf) node has 2-3 children
hence the name, 2-3 Trees

All leaves are at the same depth



FR-125: Finding in 2-3 Trees

How can we find an element in a 2-3 tree?

If the tree is empty, return false

If the element is stored at the root, return true

Otherwise, recursively find in the appropriate
subtree



FR-126: Inserting into 2-3 Trees

Always insert at the leaves

To insert an element:

Find the leaf where the element would live, if it
was in the tree

Add the element to that leaf
What if the leaf already has 2 elements?
Split!



FR-127: Splitting nodes

To split a node in a 2-3 tree that has 3 elements:

Split nodes into two nodes
One node contains the smallest element
Other node contains the largest element

Add median element to parent
Parent can then handle the extra pointer



FR-128: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1



FR-129: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 2



FR-130: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 2 3

Too many keys,
need to split



FR-131: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3



FR-132: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4



FR-133: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2

3 4 5

Too many keys,
need to split



FR-134: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5



FR-135: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5 6



FR-136: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4

3 5 6 7

Too many keys
need to split



FR-137: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1

2  4  6

3 5 7

Too many keys
need to split



FR-138: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7

4

2 6



FR-139: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8

4

2 6



FR-140: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5 7 8 9

4

2 6

Too many keys
need to split



FR-141: 2-3 Tree Example

Inserting elements 1-9 (in order) into a 2-3 tree

1 3 5

4

2 6  8

7 9



FR-142: Deleting Leaves

If leaf contains 2 keys

Can safely remove a key



FR-143: Deleting Leaves

4  8

3 5   7 11

Deleting 7



FR-144: Deleting Leaves

4  8

3 5   11

Deleting 7



FR-145: Deleting Leaves

If leaf contains 1 key

Cannot remove key without making leaf empty

Try to steal extra key from sibling



FR-146: Deleting Leaves

4  8

 5  7 11

Steal key from sibling through parent



FR-147: Deleting Leaves

5  8

    7 114

Steal key from sibling through parent



FR-148: Deleting Leaves

If leaf contains 1 key, and no sibling contains extra
keys

Cannot remove key without making leaf empty

Cannot steal a key from a sibling

Merge with sibling
split in reverse



FR-149: Merging Nodes

5  8

7 114

Removing the 4



FR-150: Merging Nodes

5  8

7 11

Removing the 4

Combine 5, 7 into one node



FR-151: Deleting Interior Keys

How can we delete keys from non-leaf nodes?

Replace key with smallest element subtree to
right of key

Recursivly delete smallest element from
subtree to right of key

(can also use largest element in subtree to left of
key)



FR-152: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

Deleting the 4



FR-153: Deleting Interior Keys

1 3 5 6 8 9

4

2 7

Deleting the 4

Replace 4 with smallest element in tree to right of 4



FR-154: Deleting Interior Keys

1 3   6 8 9

5

2 7



FR-155: Deleting Interior Keys

1 3  6 8 9

5

2 7

Deleting the 5



FR-156: Deleting Interior Keys

1 3  6 8 9

5

2 7

Deleting the 5

Replace the 5 with the smallest element in tree to
right of 5



FR-157: Deleting Interior Keys

1 3 8 9

6

2 7

Deleting the 5

Replace the 5 with the smallest element in tree to
right of 5

Node with two few keys



FR-158: Deleting Interior Keys

1 3 8 9

6

2 7

Node with two few keys

Steal a key from a sibling



FR-159: Deleting Interior Keys

1 3   9

6

2 8

7



FR-160: Deleting Interior Keys

1 3   9

6  10

2 8

7  13

11

12

Removing the 6



FR-161: Deleting Interior Keys

1 3   9

6  10

2 8

7  13

11

12

Removing the 6

Replace the 6 with the smallest element in the tree
to the right of the 6



FR-162: Deleting Interior Keys

1 3   9

7  10

2 8

 13

11

12

Node with too few keys

Can’t steal key from sibling

Merge with sibling



FR-163: Deleting Interior Keys

1 3 8 9

7  10

2

 13

11

12

Node with too few keys

Can’t steal key from sibling

Merge with sibling

(arbitrarily pick right sibling to merge with)



FR-164: Deleting Interior Keys

1 3 8 9

7  

2

 13

10  11

12



FR-165: Generalizing 2-3 Trees

In 2-3 Trees:

Each node has 1 or 2 keys

Each interior node has 2 or 3 children

We can generalize 2-3 trees to allow more keys /
node



FR-166: B-Trees

A B-Tree of maximum degree k:

All interior nodes have ⌈k/2⌉ . . . k children

All nodes have ⌈k/2⌉ − 1 . . . k − 1 keys

2-3 Tree is a B-Tree of maximum degree 3



FR-167: B-Trees

5   11   16   19

1   3 7  8  9 12  15 17  18 22   23

B-Tree with maximum degree 5

Interior nodes have 3 – 5 children

All nodes have 2-4 keys



FR-168: Connected Components

Subgraph (subset of the vertices) that is strongly
connected.

71

2

3

4

5

6 8



FR-169: Connected Components

Subgraph (subset of the vertices) that is strongly
connected.

71

2

3

4

5

6 8



FR-170: Connected Components

Subgraph (subset of the vertices) that is strongly
connected.

71

2

3

4

5

6 8



FR-171: Connected Components

Subgraph (subset of the vertices) that is strongly
connected.

71

2

3

4

5

6 8



FR-172: DFS Revisited

We can keep track of the order in which we visit
the elements in a Depth-First Search

For any vertex v in a DFS:

d[v] = Discovery time – when the vertex is first
visited

f[v] = Finishing time – when we have finished
with a vertex (and all of its children



FR-173: DFS Revisited

class Edge {

public int neighbor;

public int next;

}

void DFS(Edge G[], int vertex, boolean Visited[], int d[], int f[]) {

Edge tmp;

Visited[vertex] = true;

d[vertex] = time++;

for (tmp = G[vertex]; tmp != null; tmp = tmp.next) {

if (!Visited[tmp.neighbor])

DFS(G, tmp.neighbor, Visited);

}

f[vertex] = time++;

}



FR-174: DFS Example

71

2

3

4

5

6 8



FR-175: DFS Example

71

2

3

4

5

6 8

d
f

d
f

d
f

d
f

d
f

d
f

d
f

d
f



FR-176: DFS Example

71

2

3

4

5

6 8

d 1
f

d
f

d
f

d
f

d
f

d
f

d
f

d
f



FR-177: DFS Example

71

2

3

4

5

6 8

d 1
f

d
f

d
f

d
f

d 2
f

d
f

d
f

d
f



FR-178: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d
f

d
f

d
f



FR-179: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d
f

d
f



FR-180: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d 5
f

d
f



FR-181: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f

d 5
f 6

d
f



FR-182: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f

d
f

d
f

d 2
f

d 4
f 7

d 5
f 6

d
f



FR-183: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f 8

d
f

d
f

d 2
f

d 4
f 7

d 5
f 6

d
f



FR-184: DFS Example

71

2

3

4

5

6 8

d 1
f

d 3
f 8

d
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f



FR-185: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f



FR-186: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f



FR-187: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f

d 2
f 9

d 4
f 7

d 5
f 6

d
f



FR-188: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d
f



FR-189: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f



FR-190: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f 15



FR-191: DFS Example

71

2

3

4

5

6 8

d 1
f 10

d 3
f 8

d 11
f 16

d 12
f 13

d 2
f 9

d 4
f 7

d 5
f 6

d 14
f 15



FR-192: Using d[] & f[]

Given two vertices v1 and v2, what do we know if
f [v2] < f [v1]?

Either:
Path from v1 to v2
• Start from v1
• Eventually visit v2
• Finish v2
• Finish v1



FR-193: Using d[] & f[]

Given two vertices v1 and v2, what do we know if
f [v2] < f [v1]?

Either:
Path from v1 to v2
No path from v2 to v1
• Start from v2
• Eventually finish v2
• Start from v1
• Eventually finish v1



FR-194: Using d[] & f[]

If f [v2] < f [v1]:

Either a path from v1 to v2, or no path from v2 to
v1
If there is a path from v2 to v1, then there must
be a path from v1 to v2

f [v2] < f [v1] and a path from v2 to v1 ⇒ v1 and v2
are in the same connected component



FR-195: Connected Components

Run DFS on G, calculating f[] times

Compute GT

Run DFS on GT – examining nodes in inverse
order of finishing times from first DFS

Any nodes that are in the same DFS search tree in

GT must be in the same connected component



FR-196: Dynamic Programming

Simple, recursive solution to a problem

Naive solution recalculates same value many times

Leads to exponential running time



FR-197: Dynamic Programming

Recalculating values can lead to unacceptable run
times

Even if the total number of values that needs to
be calculated is small

Solution: Don’t recalculate values

Calculate each value once

Store results in a table

Use the table to calculate larger results



FR-198: Faster Fibonacci

int Fibonacci(int n) {

int[] FIB = new int[n+1];

FIB[0] = 1;
FIB[1] = 1;

for (i=2; i<=n; i++)
FIB[i] = FIB[i-1] + FIB[i-2];

return FIB[n];
}



FR-199: Dynamic Programming

To create a dynamic programming solution to a
problem:

Create a simple recursive solution (that may
require a large number of repeat calculations

Design a table to hold partial results

Fill the table such that whenever a partial result
is needed, it is already in the table



FR-200: Memoization

Can be difficult to determine order to fill the table

We can use a table together with recursive solution

Initialize table with sentinel value

In recursive function:
Check table – if entry is there, use it
Otherwise, call function recursively

Set appropriate table value
return table value



FR-201: Fibonacci Memoized

int Fibonacci(int n) {

if (n == 0)
return 1;

if (n == 1)
return 1;

if (T[n] == -1)
T[n] = Fibonacci(n-1) + Fibonacci(n-2);

return T[n];
}



FR-202: Hard Problems

Some algorithms take exponential time

Simple version of Fibonacci

Faster versions of Fibonacci that take linear
time

Some Problems take exponential time

All algorithms that solve the problem take
exponential time

Towers of Hanoi



FR-203: Reductions

A reduction from Problem 1 to Problem 2 allows us
to solve Problem 1 in terms of Problem 2

Given an instance of Problem 1, create an
instance of Problem 2

Solve the instance of Problem 2

Use the solution of Problem 2 to create a
solution to Problem 1



FR-204: Reductions

We can use a Reduction to compare problems

If there is a reduction from problem A to problem B
that can be done quickly

Problem B is known to be hard (cannot be solved
quickly)

Problem A cannot be solved quickly, either



FR-205: NP Problems

A problem is NP if a solution can be verified easily

Traveling Salesman Problem (TSP)
Given a graph with weighted vertices, and a
cost bound k
Is there a cycle that contains all vertices in
the graph, that has a total cost less than k?

Given any potential solution to the TSP, we can
easily verify that the solution is correct



FR-206: Non-Deterministic Machine

Two Definitions of Non-Deterministic Machines:

“Oracle” – allows machine to magically make a
correct guess

Massively parallel – simultaneously try to verify
all possible solutions

Try all permutations of vertices in a graph,
see if any form a cycle with cost < k
Try all colorings of a graph with up to k
colors, see if any are legal
Try all permutations of a list, see if any are
sorted



FR-207: NP vs. P

A problem is NP if a non-deterministic machine
can solve it in polynomial time

Of course, we have no real non-deterministic
machines

A problem is in P (Polynomial), if a deterministic
machine can solve it in polynomial time

Sorting is in P – can sort a list in polynomial
time

All problems in P are also in NP
Ignore the oracle



FR-208: NP-Complete

An NP problem is “NP-Complete” if there is a
reduction from any NP problem to that problem

For example, Traveling Salesman (TSP) is
NP-Complete

We can reduce any NP problem to TSP

If we could solve TSP in polynomial time, we
could solve all NP problems in polynomial time

TSP is not unique – many NP-Complete problems



FR-209: NP =? P

If we could solve any NP-Complete problem
quickly (polynomial time), we could solve all NP
problems quickly

If that is the case, then NP=P

P is set of problems that can be solved by a
standard machine in polynomial time

Most everyone believes that NP 6= P, and all
NP-Complete problems require exponential time
on standard computers – not yet been proven



FR-210: NP-Completeness

What can we do, if we need to solve a problem that
is NP-Complete?

If the problem we need to solve is very small (<
20), an exponential solution might be OK

We can solve an approximation of the problem
Color a graph using an non-optimal number
of colors
Find a Traveling Salesman tour that is not
optimal



FR-211: Impossible Problems

Some problems are “easy” – require a fairly small
amount of time to solve

Sorting

Some problems are “probably hard” – believed to
require exponential time to solve

TSP, Graph Coloring, etc

Some problems are “hard” – known to require an
exponential amount of time to solve

Towers of Hanoi

Some problems are impossible – cannot be solved



FR-212: Halting Problem

Program is running – seems to be taking a long
time

We’d like to know if the program will eventually
finish, or if it is in an infinite loop

Great debugging tool:

Takes as input the source code to a program p,
and an input i

Determines if p will run forever when run on i

No such tool can exist!



FR-213: Halting Problem

boolean halt(char [] program, char [] input) {

/* code to determine if the program
halts when run on the input */

if (program halts on input)
return true;

else
return false;

}



FR-214: Halting Problem

boolean selfhalt(char [] program) {
if (halt(program, program))

return true;
else

return false;
}

void contrary(char [] program) {
if (selfhalt(program)

while(true); /* infinite loop */
}

what happens when we call contrary, passing in its
own source code as input?



FR-215: Binomial Trees

B0 is a tree containing a single node

To build Bk:

Start with Bk−1

Add Bk−1 as left subtree



FR-216: Binomial Trees

B
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B
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B
2

B
3

B
4



FR-217: Binomial Trees

B
0

B
1

B
2

B
3

B
4



FR-218: Binomial Trees

Equivalent defintion

B0 is a binomial heap with a single node

Bk is a binomial heap with k children:
B0 . . . Bk−1



FR-219: Binomial Trees

B
0

B
1

B
2

B
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B
4



FR-220: Binomial Trees

B
0

B
1

B
2

B
3

B
4



FR-221: Binomial Heaps

A Binomial Heap is:

Set of binomial trees, each of which has the
heap property

Each node in every tree is <= all of its
children

All trees in the set have a different root degree
Can’t have two B3’s, for instance
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FR-223: Binomial Heaps

Representing Binomial Heaps

Each node contains:
left child, right sibling, parent pointers
degreee (is the tree rooted at this node B0,
B1, etc.)
data

Each list of children sorted by degree
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FR-225: Binomial Heaps

How can we find the minimum element in a
binomial heap?

Look at the root of each tree in the list, find
smallest value

How long does it take?

Heap has n elements

Represent n as a binary number

Bk is in heap iff kth binary digit of n is 1

Number of trees in heap ∈ O(lg n)



FR-226: Binomial Heaps

Merging Heaps H1 and H2

Merge root lists of H1 and H2

Could now have two trees with same degree

Go through list from smallest degree to largest
degree

If two trees have same degree, combine
them into one tree of larger degree
If three trees have same degree (how can
this happen?) leave one, combine other two
into tree of larger degree
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FR-228: Binomial Heaps
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FR-229: Binomial Heaps
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FR-230: Binomial Heaps
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FR-231: Binomial Heaps
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FR-232: Binomial Heaps

Removing minimum element

Find tree T that has minimum value at root,
remove T from the list

Remove the root of T
Leaving a list of smaller trees

Reverse list of smaller trees

Merge two lists of trees together
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Removing minimum element
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FR-234: Binomial Heaps

Removing minimum element
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FR-235: Binomial Heaps

Removing minimum element
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FR-236: Binomial Heaps

Removing minimum element

10 5

722

25

12

1513

17

8

159

20

11

6 14

30



FR-237: Binomial Heaps

Removing minimum element
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FR-238: Binomial Heaps

Removing minimum element
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Removing minimum element
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FR-240: Binomial Heaps

Removing minimum element

Time?
Find the smallest element: O(lg n)
Reverse list of children O(lg n)
Merge heaps O(lg n)
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