P4-0: Overview

- Example games (board splitting, chess, Network)
- Min/Max trees
- Alpha-Beta Pruning
- Evaluation Functions

P4-1: Two player games

- Board-Splitting Game
 - \bullet Two players, V & H
 - ullet V splits the board vertically, selects one half
 - H splits the board horizontally, selects one half
 - ullet V tries to maximize the final value, H tries to minimize the final value

14	5	11	4
12	13	9	7
15	13	10	8
16	1	6	2

P4-2: Two player games

- Board-Splitting Game
 - We assume that both players are rational (make the best possible move)
 - How can we determine who will win the game?

P4-3: **Two player games**

- Board-Splitting Game
 - We assume that both players are rational (make the best possible move)
 - How can we determine who will win the game?
 - Examine all possible games!

P4-4: Two player games

P4-5: Two player games

P4-6: Two player games

P4-7: Two player games

- Game playing agent can do this to figure out which move to make
 - Examine all possible moves
 - Examine all possible responses to each move
 - ... all the way to the last move
 - Caclulate the value of each move (assuming opponent plays perfectly)

•

P4-8: Minimax Algorithm

```
Max(node)
if terminal(node)
return utility(node)
maxVal = MIN_VALUE
children = successors(node)
for child in children
maxVal = max(maxVal, Min(child))
return maxVal

Min(node)
if terminal(node)
return utility(node)
minVal = MAX_VALUE
children = successors(node)
for child in children
minVal = min(minVal, Max(child))
return minVal
```

P4-9: Minimax Algorithm

• Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?

P4-10: Minimax Algorithm

• Branching factor of b, game length of d moves, what are the time and space requirements for Minimax?

Time: O(b^d)
 Space: O(d)

- Not managable for any real games chess has an average b of 35, can't search the entire tree
- Need to make this more managable

P4-11: Alpha-Beta Pruning

• Does it matter what value is in the yellow circle?

P4-12: Alpha-Beta Pruning

- If the yellow leaf has a value > 5, parent won't pick it
- If the yellow leaf has a value < 12, grandparent won't pick it
- To affect the root, value must be < 5 and > 12

P4-13: Alpha-Beta Pruning

• Value of nodes in neither yellow circle matter. Are there more?

P4-14: Alpha-Beta Pruning

• Value of nodes in none of the yellow circles matter.

P4-15: Alpha-Beta Pruning