## Computer Science 245

Final Reveiw
Do not turn in!

1. Give the $\Theta()$ running time for each of the following functions, in terms of the input parameter $n$ :
```
(a) int f(int n) {
        int i;
        sum = 0; Theta(1)
        for (i=0; i<n; i=i+2) executed n/2 times
            sum++;
        return sum; Theta(1)
        Theta(1)
    }
    \Theta(n)
(b) int g(int n) {
        int i;
        sum = 0; Theta(1)
        for (i=0; i<n; i=i+1) exeucted n times
            sum += f(n); Theta(n)
        return sum; Theta(1)
    }
    \Theta(n')
(c) int h(int n) {
    for (i=1; i<n; i=i*2) Executed lg n times
            sum += f(n); Theta(n)
    return sum; Theta(1)
}
\Theta(n\operatorname{lg}n)
```

2. For each of the following recursive functions, describe what the function computes, give the recurrence relation that describes the running time for the function, and then solve the recurrence relation.
```
(a) int recursive1(int n) {
    if (n <= 1)
        return 1;
    else
        return recursive1(n-2) + recursive1(n-2);
    }
```

This function computes $2^{\lfloor n / 2\rfloor}$
Recurrence relation:

$$
\begin{aligned}
T(0) & =c_{1} \\
T(1) & =c_{1} \\
T(n) & =2 T(n-2)+c_{2}
\end{aligned}
$$

Using the substitution method:

$$
\begin{aligned}
T(n) & =2 T(n-2)+c_{2} \\
& =2\left(2 T(n-4)+c_{2}\right)+c_{2} \\
& =4 T(n-4)+3 c_{2} \\
& =4\left(2 T(n-6)+c_{2}\right)+3 c_{2} \\
& =8 T(n-6)+7 c_{2} \\
& =8\left(2 T(n-8)+c_{2}\right)+7 c_{2} \\
& =16 T(n-8)+15 c_{2} \\
& =16\left(2 T(n-10)+c_{2}\right)+15 c_{2} \\
& =32 T(n-10)+31 c_{2} \\
& =32\left(2 T(n-12)+c_{2}\right)+31 c_{2} \\
& =64 T(n-12)+63 c_{2} \\
& \cdots \\
& =2^{k} T(n-2 k)+\left(2^{k}-1\right) c_{2}
\end{aligned}
$$

We set $n-2 k=0$, or $k=n / 2$ to get

$$
\begin{aligned}
T(n) & =2^{n / 2} T(n-2 n / 2)+\left(2^{n / 2}-1\right) c_{2} \\
& =2^{n / 2} T(0)+2^{n / 2} c_{2}-c_{2} \\
& =2^{n / 2} c_{1}+2^{n / 2} c_{2}-c_{2} \\
& \in \Theta\left(2^{n / 2}\right)
\end{aligned}
$$

Using a recursion tree:

$$
\begin{array}{cccccc}
\sim \\
\sim
\end{array}
$$

(b) int recursive2(int $n$ ) \{

## if ( $n<=1$ )

        return 1;
    else
        return 2 * recursive2(n-2);
    \}

This function also computes $2^{\lfloor n / 2\rfloor}$ (though does it a bit more efficiently ...)

Reccurence relation:

$$
\begin{aligned}
T(0) & =c_{1} \\
T(1) & =c_{1} \\
T(n) & =T(n-2)+c_{2}
\end{aligned}
$$

Using the substitution method:

$$
\begin{aligned}
T(n) & =T(n-2)+c_{2} \\
& =\left(T(n-4)+c_{2}\right)+c_{2} \\
& =T(n-4) 2 c_{2} \\
& =\left(T(n-6)+c_{2}\right)+2 c_{2} \\
& =T(n-6)+3 c_{2} \\
& =\left(T(n-8)+c_{2}\right)+3 c_{2} \\
& =T(n-8)+4 c_{2} \\
& =\left(T(n-10)+c_{2}\right)+4 c_{2} \\
& =T(n-10)+5 c_{2} \\
& =\left(T(n-12)+c_{2}\right)+5 c_{2} \\
& =T(n-12)+6 c_{2} \\
& =\left(T(n-14)+c_{2}\right)+6 c_{2} \\
& =T(n-14)+7 c_{2} \\
& \cdots \\
& =T(n-2 k)+k c_{2}
\end{aligned}
$$

We set $n-2 k=0$, or $k=n / 2$ to get

$$
\begin{aligned}
T(n) & =T(n-2(n / 2))+(n / 2) c_{2} \\
& =T(0)+(n / 2) c_{2} \\
& =c_{1}+(n / 2) c_{2} \\
& \in \Theta(n)
\end{aligned}
$$

Using a recursion tree:
$\mathrm{C}_{2}$
$\mathrm{C}_{2}$
$\mathrm{C}_{2}$
$\mathrm{C}_{2}$
$\vdots$
$\mathrm{C}_{2}$
$\mathrm{C}_{1}$
3. Consider a B-Tree with maximum degree $k$ (that is, all interior nodes have $\lceil k / 2\rceil \ldots k$ children - a 2-3 tree is a B-Tree with maximim degree 3).
(a) What is the largest number of keys that can be stored in a B-Tree of height $h$ with maximum degree $k$ ? If the tree is completely full, then every internal node will have $k$ children, and every node will have $k-1$ keys. Thus there will be 1 node at the root, $k$ nodes at the second level of the tree, $k^{2}$ nodes at the next level, and so on - up to $k^{h-1}$ leaves:


So, the total number of nodes is:

$$
\begin{aligned}
0+k+k^{2}+k^{3}+\ldots+k^{h-1} & =\sum_{i=0}^{h-1} k^{i} \\
& =\frac{k^{(h-1)+1}-1}{k-1} \\
& =\frac{k^{h}-1}{k-1}
\end{aligned}
$$

Since each node has $k-1$ keys, the total number of keys in the entire tree is just (\# of keys / node) * (\# of nodes):

$$
(k-1) * \frac{k^{h}-1}{k-1}=k^{h}-1
$$

(b) What is the smallest number of keys that can be stored in an B-Tree of height $h$ with maximum degree $k$ ?
We can use similar logic to the above, however note that the root can have as few as 2 children. Each interior node (other than the root) will have $\lceil k / 2\rceil$ children, and every node (other than the root) will have $\lceil k / 2\rceil-1$ keys.


The total number nodes is:

$$
1+2+2 *\lceil k / 2\rceil+2 *\lceil k / 2\rceil^{2}+2 *\lceil k / 2\rceil^{3} \ldots 2 *\lceil k / 2\rceil^{h-1}=1+2 * \sum_{i=0}^{h-2}\lceil k / 2\rceil^{i}
$$

$$
\begin{aligned}
& =1+2 * \frac{\lceil k / 2\rceil^{(h-2)+1}-1}{\lceil k / 2\rceil-1} \\
& =1+\frac{2\lceil k / 2\rceil^{h-1}-2}{\lceil k / 2\rceil-1}
\end{aligned}
$$

4. Consider the following directed graph:


Run the connected component algorithm on this graph. Show all discovery and finish times, as well as the depth-first forrest for the final pass of the algorithm.
After computing discovery / finsh times (there is more than one valid set of discovery / finish times, of course):
$\begin{array}{lll}\mathrm{d}=1 & \mathrm{~d}=2 & \mathrm{~d}=3 \\ \mathrm{f}=16 & \mathrm{f}=9 & \mathrm{f}=8\end{array}$


$$
\begin{array}{ll}
\mathrm{d}=12 & \mathrm{~d}=11 \\
\mathrm{f}=13 & \mathrm{f}=14
\end{array}
$$

After taking transpose:

$$
\begin{array}{lll}
\mathrm{d}=1 & \mathrm{~d}=2 & \mathrm{~d}=3 \\
\mathrm{f}=16 & \mathrm{f}=9 & \mathrm{f}=8
\end{array}
$$



$$
\begin{array}{ll}
\mathrm{d}=12 & \mathrm{~d}=11 \\
\mathrm{f}=13 & \mathrm{f}=14
\end{array}
$$

Final depth-first forrest:

5. Consider the following graph:

(a) Show the Vertex / Distance / Path table after Dijkstra's algorithm is run on this graph

| Vertex | Known | Distance | Path |
| :---: | :---: | :---: | :---: |
| 0 | true | 0 | -1 |
| 1 | true | 1 | 0 |
| 2 | true | 3 | 0 |
| 3 | true | 4 | 0 |
| 4 | true | 4 | 5 |
| 5 | true | 2 | 1 |
| 6 | true | 9 | 3 |

(b) Show the Vertex / Distance / Path table after Prim's algorithm is run on th this graph

| Vertex | Known | Distance | Path |
| :---: | :---: | :---: | :---: |
| 0 | true | 0 | -1 |
| 1 | true | 1 | 0 |
| 2 | true | 3 | 0 |
| 3 | true | 4 | $(0$ or 5$)$ |
| 4 | true | 1 | 5 |
| 5 | true | 1 | 1 |
| 6 | true | 5 | 3 |

6. Look over all the visualizations for algorithms used in the class, be sure you know how all of them work.
