Computer Science 245

Final Reveiw Do not turn in!

1. Give the $\Theta()$ running time for each of the following functions, in terms of the input parameter n:

```
(a) int f(int n) {
      int i;
      sum = 0;
                                  Theta(1)
      for (i=0; i<n; i=i+2)
                                 executed n/2 times
          sum++;
                                    Theta(1)
      return sum;
                                  Theta(1)
   }
   \Theta(n)
(b) int g(int n) {
      int i;
      sum = 0;
                                 Theta(1)
      for (i=0; i<n; i=i+1)
                                  exeucted n times
          sum += f(n);
                                     Theta(n)
                                 Theta(1)
      return sum;
   }
   \Theta(n^2)
(c) int h(int n) {
      for (i=1; i<n; i=i*2)
                                Executed lg n times
          sum += f(n);
                                    Theta(n)
                                Theta(1)
      return sum;
   }
   \Theta(n \lg n)
```

2. For each of the following recursive functions, describe what the function computes, give the recurrence relation that describes the running time for the function, and then solve the recurrence relation.

```
(a) int recursive1(int n) {
    if (n <= 1)
        return 1;
    else
        return recursive1(n-2) + recursive1(n-2);
}</pre>
```

This function computes $2^{\lfloor n/2 \rfloor}$

Recurrence relation:

$$T(0) = c_1$$

 $T(1) = c_1$
 $T(n) = 2T(n-2) + c_2$

Using the substitution method:

$$T(n) = 2T(n-2) + c_2$$

$$= 2(2T(n-4) + c_2) + c_2$$

$$= 4T(n-4) + 3c_2$$

$$= 4(2T(n-6) + c_2) + 3c_2$$

$$= 8T(n-6) + 7c_2$$

$$= 8(2T(n-8) + c_2) + 7c_2$$

$$= 16T(n-8) + 15c_2$$

$$= 16(2T(n-10) + c_2) + 15c_2$$

$$= 32T(n-10) + 31c_2$$

$$= 32(2T(n-12) + c_2) + 31c_2$$

$$= 64T(n-12) + 63c_2$$
...
$$= 2^kT(n-2k) + (2^k - 1)c_2$$

We set n - 2k = 0, or k = n/2 to get

$$T(n) = 2^{n/2}T(n-2n/2) + (2^{n/2}-1)c_2$$

$$= 2^{n/2}T(0) + 2^{n/2}c_2 - c_2$$

$$= 2^{n/2}c_1 + 2^{n/2}c_2 - c_2$$

$$\in \Theta(2^{n/2})$$

Using a recursion tree:

```
(b) int recursive2(int n) {
    if (n <= 1)
        return 1;
    else
        return 2 * recursive2(n-2);
}</pre>
```

This function also computes $2^{\lfloor n/2 \rfloor}$ (though does it a bit more efficiently ...)

Reccurence relation:

$$T(0) = c_1$$

 $T(1) = c_1$
 $T(n) = T(n-2) + c_2$

Using the substitution method:

$$T(n) = T(n-2) + c_2$$

$$= (T(n-4) + c_2) + c_2$$

$$= T(n-4)2c_2$$

$$= (T(n-6) + c_2) + 2c_2$$

$$= T(n-6) + 3c_2$$

$$= (T(n-8) + c_2) + 3c_2$$

$$= T(n-8) + 4c_2$$

$$= (T(n-10) + c_2) + 4c_2$$

$$= T(n-10) + 5c_2$$

$$= (T(n-12) + c_2) + 5c_2$$

$$= T(n-12) + 6c_2$$

$$= (T(n-14) + c_2) + 6c_2$$

$$= T(n-14) + 7c_2$$
...
$$= T(n-2k) + kc_2$$

We set n - 2k = 0, or k = n/2 to get

$$T(n) = T(n - 2(n/2)) + (n/2)c_2$$

$$= T(0) + (n/2)c_2$$

$$= c_1 + (n/2)c_2$$

$$\in \Theta(n)$$

Using a recursion tree:

$$\begin{array}{c|c} C_2 & C_2 \\ C_2 & C_2 \\ C_2 & C_2 \\ C_2 & C_2 \\ \vdots & C_2 \\ \vdots & C_2 \\ C_1 & \frac{+ C_1}{C_2*n/2+C_1}, \ \Theta(n) \end{array}$$

- 3. Consider a B-Tree with maximum degree k (that is, all interior nodes have $\lceil k/2 \rceil \dots k$ children a 2-3 tree is a B-Tree with maximim degree 3).
 - (a) What is the largest number of keys that can be stored in a B-Tree of height h with maximum degree k? If the tree is completely full, then every internal node will have k children, and every node will have k-1 keys. Thus there will be 1 node at the root, k nodes at the second level of the tree, k^2 nodes at the next level, and so on up to k^{h-1} leaves:

So, the total number of nodes is:

$$0 + k + k^{2} + k^{3} + \dots + k^{h-1} = \sum_{i=0}^{h-1} k^{i}$$

$$= \frac{k^{(h-1)+1} - 1}{k-1}$$

$$= \frac{k^{h} - 1}{k-1}$$

Since each node has k-1 keys, the total number of keys in the entire tree is just (# of keys / node) * (# of nodes):

$$(k-1) * \frac{k^h - 1}{k-1} = k^h - 1$$

(b) What is the smallest number of keys that can be stored in an B-Tree of height h with maximum degree k?

We can use similar logic to the above, however note that the root can have as few as 2 children. Each interior node (other than the root) will have $\lceil k/2 \rceil$ children, and every node (other than the root) will have $\lceil k/2 \rceil - 1$ keys.

The total number nodes is:

$$1 + 2 + 2 * \lceil k/2 \rceil + 2 * \lceil k/2 \rceil^2 + 2 * \lceil k/2 \rceil^3 \dots 2 * \lceil k/2 \rceil^{h-1} = 1 + 2 * \sum_{i=0}^{h-2} \lceil k/2 \rceil^i$$

$$= 1 + 2 * \frac{\lceil k/2 \rceil^{(h-2)+1} - 1}{\lceil k/2 \rceil - 1}$$
$$= 1 + \frac{2\lceil k/2 \rceil^{h-1} - 2}{\lceil k/2 \rceil - 1}$$

4. Consider the following directed graph:

Run the connected component algorithm on this graph. Show all discovery and finish times, as well as the depth-first forrest for the final pass of the algorithm.

After computing discovery / finsh times (there is more than one valid set of discovery / finish times, of course):

After taking transpose:

Final depth-first forrest:

5. Consider the following graph:

(a) Show the Vertex / Distance / Path table after Dijkstra's algorithm is run on this graph

Vertex	Known	Distance	Path
0	true	0	-1
1	true	1	0
2	true	3	0
3	true	4	0
4	true	4	5
5	true	2	1
6	true	9	3

(b) Show the Vertex / Distance / Path table after Prim's algorithm is run on th this graph

Vertex	Known	Distance	Path
0	true	0	-1
1	true	1	0
2	true	3	0
3	true	4	(0 or 5)
4	true	1	5
5	true	1	1
6	true	5	3

6. Look over all the visualizations for algorithms used in the class, be sure you know how all of them work.

6