Lisp Implementation Handout Page 1 of 10

Quick Guide to Lisp Implementation

Representation of basic data structures

Lisp data structures are cdled S-expressions. The representation of an S-expresgon can be broken into
two pieces, the tag (which storestype information) and the adual data. There ae two kinds of S-
expressgon, atoms and lists. The s-expression car (the aom car) would be stored as:

A ca

With the'A’ tag signifying that thisis an atom (as oppased to alist), and the symbad car being the a¢ual
atom (in most lisp systems, the string "car" would be stored somewhere dse, and the éom would just be a
pointer to that location, but to keep things $mple we will assume that the string can be stored in the data
sedion of the lisp data structure)

Sincelisp stores everything as pointers, the &om car would redly be apointer to the éove data structure.

T

A ca

Listsare built up using alist structure that has two pdnters—apointer to the first element of thelist, and a
pointer to the rest of the list. So, thelist (ab) would be represented by the foll owing:

S

Let's get alittle more complicated, and look at listsinside of lists. For example, the representation of the s-
expresgon (a(ab) (c)) is

Ny

L
/ | -
T A
Al a /
L/\ .
/ ']
Al a J Al ¢

Lisp Implementation Handout Page 2 of 10

List within Listswithin Lists

Here ae even more examples of liststhat contain lists, including the empty list:

@(0) \

L —
7
A a
(ad)e()())
\A L
/ B e L +— -
!/ T
A a
L
/ | T~ L
/ =
A b
I'/ N A e
oo
A c |

Our Friend quote
Recdl that '<sexpr> isjust a shorthand for (quote <sexpr>), so that
'a is dhorthand for (quote d and '(ab) is shorthand for (quote (a b))

Hence theinternal representation of 'aistheinternal representation of (quote g, whichis:

\»L

[

Lisp Implementation Handout Page 3 of 10

Likewise, theinternal representation of '(ab) isthe same as the internal representation of (quote (a b)),
whichis:

/T
A quote ’T/
!

Al a

Read-Eval-Print loop

Thelisp interpreter is elegant inits smplicity. An s-expresdonisreal in (and converted to the internal
representation), eval uated, and the result is printed out. So, it the user typed in:

(cons'a‘'(ab))

First, the interpreter would convert this sexpresson to the gpropriate internal representation [remember
that (cons 'a'(ab)) is $orthand for (cons (quote g (quote (b ¢)))] :

L —
L —»|

L —
AT T |
cons

i

'\
<\\|—
AN

A quote

Next, the expresson is evaluated. Sincethe expression isalist, theinterpreter first looks at the first
element of thelist (whichis) to seeif it isavalid function name.

A cons

Since onsisavalid function name, each of the agumentsto cons are evaluated. The 2 arguments to cons
arethe 2" and 3¢ elements of the list, which are:

Lisp Implementation Handout Page 4 of 10

N\ LN

L L
/| T~ L / -
A /T
A quote J A quote ‘
Al a L

g L

Taking the first argument first, thisisalist. which meansit isafunction cdl. Check the first element of the
list to make sure that it isavalid function name — and quote isavalid single agument function name. We
are cdli ng quote with asingle agument, so we ae OK so far. Quoteisaspedal function that returnsits
argument unevaluated. So, thiscdl to quote will return its one agument (the second element of the list)
whichis: —_
Al a

OK, so now we evaluate the seaond argument to cons, which isalist, which means afunction cdl. First,
ched the first element of thelist (the aom quote), which isavalid function name. The quote function
returnsits sngle agument (the second element in the list) unevaluated, to get:

S

L

g L

So, we can cdl cons, with the dove two arguments. Cons creaes a new list element, setsthe ca equal to
the first element and the cdr equal to the second element, to get:

\L

\
g L

Lisp Implementation Handout Page 5 of 10

Finaly, the interpreter prints out the result, whichis (ab c).

Getting new memory —thefreelist

How do we get a new memory location when we need ane? When consis cdled, where does that memory
locaion come from? All available memory is gored in afreelist. Thefreelistisalist of memory
locaionsthat are available. Thislistisalittl e different than astandard lisp list, like (ab ¢). To storethe
list (ab c), we need spacefor the three doms a, b, and ¢, aswell as 3 list constructs to glue everything
together. It seems awaste to use 6 memory locaions to store 3 memory locations for afreelist, so we will
use adightly different method. The freelist pointer will point to the first element of the freelist, and the
car of that element will point to the next element in the freelist, and so on. So, the freelist might look
something like:

FreeList f L | > L | > L |
v v v

L L L
! 3 3

L L L

Any time anew pieceof memory is needed, the first element of the freelist is used, and the freelist pointer
is advanced.

Memory location to use for cons, etc

FreeList \ L L L
| |
v v

L L L
¥ 3 3

L L L

Of course, eventually we ae goingto run out of memory. What happens then? The interpreter will do
mark and sweep garbage olledion. Every pieceof memory that is currently being used is marked. Then
the interpreter does a sweep through memory, adding every unmarked element to the freelist. Then the
freelist should no longer be enpty, and the interpreter will continue. Let's examine a omplete example.
Consider the function :

(defunf (xy 2)
(consx (consy (consz ()))))

Let's sy the freelist looks like the foll owing:

Lisp Implementation Handout

Page 6 of 10

FreeList B L L
2l e e M e M
\ L L L
v v v v
- I - I - I I
— v v v v
L L
and we make the function cdl (f 'a 'b'c) [which isshorthand for (f (quote § (quote b) (quote Q)]
The cdl (f 'a 'b 'c) isfirst read into memory:
FreeList L L L Al quote
T N o O a
Eval. exp —1, + + \‘ T
L L L L
T B il
Al quote Al quote L | A c
v—— v
4_
L | Al a A b L

Now we have to evaluate the expression. "f* isafunction that has been defined, so we evaluate eah of the
arguments, placethem on the stack, then cdl the function:

v

FreeList
reelLi | 4 » | L Al quote
Eval. exp + + \‘ T

. X - 1L - : T+
; v v v v

b

]

\

Thefirst argument is (quote g, which evaluates to a, the second argument is (quote b), which eval uates to
b, and the third argument is (quote ¢, which evaluatesto c

Lisp Implementation Handout Page 7 of 10

Now we cal the function f. That function returns a wns of two arguments:

FreeList L L L Al quote
| — | q

Eval.exp\\‘ + + \‘ T
X L | _ L | 1 L | _ L 4 L |

CE— v v v
- Al f Al quote Al quote L | Y A c
- e y
cons L | A Ta A b L
\\\ 1] T
cons

Thefirst argument is x, but the second argument is another cons, which neadsto be evaluated (the rather
large graphica space docaed for the first cons on the stadk is merely to make the pointers easier to see

The first argument to this consisy, but the seaond argument is another cons

FreeList L L L Al quote
| — | q

Eval.exp\\‘ + + \‘ T
X L | _ L | 1 L | _ L 4 L |

CE— v v v
_ Al f Al quote Al quote L | > A c
- e y
cons L | Al a A b L
f £
\\\ 1]
cons

cons

Lisp Implementation Handout Page 8 of 10

The agumentsto thisconsare z and () :

FreeList L > L L Al quote

Eval.exp\\‘ + + \‘ T
X L | _ L | 1 L | _ L 4 L |

L A a
cons P

cons

cons

Now that we have evaluated the aguments for the final cons, we can execute the function body. Cons
takes a new pieceof memory from the freelist, copiesthe first argument into the ca and the second
argument into the cdr, and returns this block of memory, which is used as the second argument to the

seoond cons;
v
FreeList L | N L | L Al quote

Eval. exp ~1, - - + - + \‘ - T -
. X 1 1l Ny 1l T |
- v v v v
_ Al f Al quote Al quote L | > A c
- e y ;

cons L > A a A b L

AW Y 1

cons

Lisp Implementation Handout Page 9 of 10

Now that we have evaluated bah arguments for the second cons, we can execute the ans function body.
Cons takes a new memory locdion off the freelist — but the freelist isempty! So, we need to doa garbage
colledion step. First we go through the stack and mark every pieceof memory that isreadable from
some pointer on the stack, as foll ows:

v

FreeList L | d » L | L Al quote
Eval. exp ~1, - - + - + \‘ - T -
. X € - 1L - TP |
- v v v v
_] Al f Al quote Al quote L | > A c
- - y :
cons L | Al a A b L
T T A A
\\\ 1]
cons

Of course, each memory location will need to have an extra bit reserved to store these marks. Now, we
sweeg through memory, adding everything that is not marked to the freelist (we might aswell also clea
the marks on this pass to be realy for the next time we want to dogarbage wlledion).

FreeList — P
reelLi L | L | 1 L | L Al quote
Eval. exp ~1, - - + - + \‘ - T -
. X 1 - 1L - T
. v v v v
_] Al f Al quote Al quote L | > A c
- e v ;
cons L <« | L | Al a A b L

AW Y 1

cons

Lisp Implementation Handout Page 10 of 10

Now the freelist is no longer empty, so we can finish the cdl to the second cons:

FreeList '| L ’_’ L | 4 fL | L Al quote

Eval. exp —t J + + T

X ol n I s o s B l‘ 5 T
f v v v v

y Al f Al quote Al quote L | > A c

z — + T

cons L <« | L » A a b

Finally, we can complete the cdl to the first cons, and return that value (whew!)

FreeList L L | 4l L | L Al quote
Eval. exp]] +] +] T]
- 1L - l‘ T
v v v v
Al f Al quote Al quote L | A c
— v 5
L L | Al a p A b L |

Now we @n print out the value of the expression, whichis (ab c), as expeded. Note that now the freelist
isagain empty, and there isawhole ot of garbage. The next time we want to eval uate an expression, we
will need to run mark-and-sweep garbage wlledion again, to freeup some more memory.

