Quick Guideto Prolog

Program Structure
A Prolog program is a @llecion rules of the form:
<predicate name>(<list of terms>).
and rules of the form:

<predicae name>(<list of terms>) :- <predicate name> (<list of terms>),
<predicae name> (<list of terms>),

<predicae name> (<list of terms>).

Terms

Terms represent objedsin the world. They are used asthe “arguments’ to predicates. They can be smple
constant terms, like:

john
mike
male
penguin

Or complex terms. A complex termis built from other termsin the foll owing way:
<term name>(<list of terms>)

some examples of complex terms:
S(0)
s(s(0))

color(sweder)

Complex termslook alot like predicates, but they are different. Terms (both simple and complex) represent
objects in the world, whil e predicates represent relations among terms. So, if it represents an objed, it’saterm, and
if it represents a true/fal se statement about a group of terms, it is a predicate.

ALL PREDICATES AND TERMSNEED TO BEGIN WITH A LOWER CASE LETTER. PROLOG ASSUMES
THAT ANYTHING THAT BEGINSWITH AN UPFER CASE LETTERISA VARIABLE

Example Program:

parent(john, sue).
parent(john, mike)
parent(betty, sue).
parent(betty, mike).
parent(sue, linda).
parent(mark, linda).

male(john).
male(mike).
male(mark).
female(sue).
femal e(betty).
female(linda).

father(X,Y) :- parent(X,Y), male(X).
mother(X,Y) :- parent(X,Y), female(X).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,2),
ancestor(Z,Y).

Once aprogram isloaded into memory, you can query it:

?- parent(john, sue).
yes

?- parent(X,sue).
X=john ; The'; isaway to ask if there ae ay other possble aswers
no
?- parent(john, X).
X =sue ;
X =mike
no

?- ancestor(X, linda).
X =sue ;
X =mark ;
X =john ;
X = betty ;
no

Lists
Listsare aspedal type of complex term. Some examples are:
[betty, john, mark]
[sue, mike]
[john]
I
Thereisaspedal form for lists which can be used in predicaes:

[First | Rest]

Thisform will match with any non-empty list: First gets bound to the first element in the list, and rest gets
bound to the rest of thelist (not unlike ca and cdr from lisp).

This can be more eaily seen with an example. Assumethereisthe fad:
list([a,b,c,d]).

then the query list([First | Rest]) will give the foll owing resullt:

?- list([First | Rest])

Firss=a
Rest =[b, c, d]

More Programming Examples:
One predicae that is useful isthe eguality predicae, true when two terms are the same. It isvery easy to write:
equal (X, X).
List programming
Now we'll look at some list programming examples:
* first(Elem,L st) Trueif Lstisalist, and Elem isthe first element of that list */
Like many predicatesthat ded with lists, first will usethe[X | Xs] form:

first(Elem,Lst) :- equal(Lst, [FirstElem | Rest]),
equal (Elem, FirstElem).

Now, thisis a perfedly good cEfinition of first, but the equals are adually not necessary, and first can
be written more ssimply as:

first(FirstElem , [FirstElem | Rest]).

Now we'll ook at a dightly more complicaed predicae:

/* member (Elem,L st) Trueif Lstisalist, and Elem isamember of Lst */
Thisrule will be reaursive, and we nedl to think of what the base cae and the recursive cae ae.

Base case: Elemisthefirst element of Lst
Recursive case : Elem is amember of therest of Lst

So, looking at each of these cases:

member(Elem, Lt) :- first(Elem,Lst).
member(Elem, Lst) :- equal(Lst, [First | Rest]),
member(Elem, Rest).

Asbefore, it turns out that we dor't adually need the equals predicate, and member can be rewritten as:

member(Elem, [Elem | Rest]).
member(Elem, [First | Rest]) :- member(Elem, Rest).

The Programming Environment

Prolog programs are a olledion of fads and rules. Y ou can write your prolog programs using any text editor
that you like. Onceyou have written your Prolog code, you need to be aleto test it, by giving it queries. Here ae
the steps:

e Compose your Prolog program in atext editor, save it as <fil ename>

» Start the Prolog interpreter, gprolog

e Load your code into the interpreter with the command ?- consult(*fil ename’).
e Query your code

* When you are done, the ammmand ?- halt. will exit Prolog

Onceyou start querying your code, you will find that it probably doesn’t work quite the way that you want. So,
make changes to your code fil e, save the changes, and then reconsult the file.

Comments

Anything in your source @de surrounded by /* */ isconsidered a omment, and isignored by the
interpreter.

Warnings& Errors
Any time avariable occurs only oncein arule, you will get awarning. So consulting the foll owing example
first(Elem, [Elem | Rest]).
will give the warning :
compiling /.automount/nexus/n/fhome/gall es/cs345/tst.pl for byte cde...
.automount/nexus/n/home/gall es/cs345/tst.pl: 2 warning: singleton variables [Rest] for first/2
/.automount/nexus/n/home/gall es/cs345tst.pl compiled, 15linesread - 1455 tytes written, 27 ms
This warning says that in the rule for the predicae first, which takes two terms, the variable Rest only appeas
once Itisunusual for avariableto appea only oncein arule —the interpreter gives you awarning becaise
you might have made amistake typingin the code. The mde still works fine, even with the warning. You can
avoid these warnings by beginning ead variable that appeas only once with an urderscore:
first(Elem, [Elem | _Rest]).
Variables that begin with an underscore ae cal ed anonymous variables, becaise you don't care what their

valueis. Basicdly, you are telling the interpreter “I know that this variable only appeas once, don’t warn me
about it”

Quitting Prolog

Y ou can quit the prolog interpreter with the command:
?- halt.

Anend o file symbal (control-d) will also quit the interpreter.

