
Quick Guide to Prolog

Program Structure:

A Prolog program is a collection rules of the form:

<predicate name>(<list of terms>).

and rules of the form:

<predicate name>(<list of terms>) :- <predicate name> (<list of terms>),
<predicate name> (<list of terms>),

...
<predicate name> (<list of terms>).

Terms

Terms represent objects in the world. They are used as the “arguments” to predicates. They can be simple
constant terms, like:

 john
mike
male
penguin

Or complex terms. A complex term is built from other terms in the following way:

<term name>(<list of terms>)

some examples of complex terms:
s(0)
s(s(0))
color(sweater)

Complex terms look a lot like predicates, but they are different. Terms (both simple and complex) represent
objects in the world, while predicates represent relations among terms. So, if it represents an object, it’s a term, and
if it represents a true/false statement about a group of terms, it is a predicate.

ALL PREDICATES AND TERMS NEED TO BEGIN WITH A LOWER CASE LETTER. PROLOG ASSUMES
THAT ANYTHING THAT BEGINS WITH AN UPPER CASE LETTER IS A VARIABLE

Example Program :

parent(john, sue).
parent(john, mike)
parent(betty, sue).
parent(betty, mike).
parent(sue, linda).
parent(mark, linda).

male(john).
male(mike).
male(mark).
female(sue).
female(betty).
female(linda).

father(X,Y) :- parent(X,Y), male(X).
mother(X,Y) :- parent(X,Y), female(X).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).

Once a program is loaded into memory, you can query it:

?- parent(john, sue).
yes

?- parent(X,sue).
X = john ; The ‘ ;’ is a way to ask if there are any other possible answers
no

?- parent(john, X).
X = sue ;
X = mike ;
no

?- ancestor(X, linda).
X = sue ;
X = mark ;
X = john ;
X = betty ;
no

Lists

Lists are a special type of complex term. Some examples are:

[betty, john, mark]
[sue, mike]
[john]
[]

There is a special form for lists which can be used in predicates :

[First | Rest]

This form will match with any non-empty list: First gets bound to the first element in the list, and rest gets
bound to the rest of the list (not unlike car and cdr from lisp).

This can be more easily seen with an example. Assume there is the fact:

list([a,b,c,d]).

then the query list([First | Rest]) will give the following result:

?- list([First | Rest])
First = a
Rest = [b, c, d]

More Programming Examples:

One predicate that is useful is the equali ty predicate, true when two terms are the same. It is very easy to write:

equal(X,X).

List programming

Now we’ ll l ook at some list programming examples:

/* first(Elem,Lst) True if Lst is a list, and Elem is the first element of that list * /

Like many predicates that deal with lists, first will use the [X | Xs] form:

first(Elem,Lst) :- equal(Lst, [FirstElem | Rest]),
equal(Elem, FirstElem).

Now, this is a perfectly good definition of first, but the equals are actually not necessary, and first can
be written more simply as:

first(FirstElem , [FirstElem | Rest]).

Now we’ ll l ook at a slightly more complicated predicate :

/* member(Elem,Lst) True if Lst is a list, and Elem is a member of Lst */

This rule will be recursive, and we need to think of what the base case and the recursive case are.

Base case : Elem is the first element of Lst
Recursive case : Elem is a member of the rest of Lst

So, looking at each of these cases:

member(Elem, Lst) :- first(Elem,Lst).
member(Elem, Lst) :- equal(Lst, [First | Rest]),

 member(Elem, Rest).

As before, it turns out that we don’ t actuall y need the equals predicate, and member can be rewritten as:

member(Elem, [Elem | Rest]).
member(Elem, [First | Rest]) :- member(Elem, Rest).

The Programming Environment

Prolog programs are a collection of facts and rules. You can write your prolog programs using any text editor
that you like. Once you have written your Prolog code, you need to be able to test it, by giving it queries. Here are
the steps:

• Compose your Prolog program in a text editor, save it as <filename>
• Start the Prolog interpreter, gprolog
• Load your code into the interpreter with the command ?- consult(‘ filename’).
• Query your code
• When you are done, the command ?- halt. will exit Prolog

Once you start querying your code, you will find that it probably doesn’ t work quite the way that you want. So,
make changes to your code file, save the changes, and then reconsult the file.

Comments

Anything in your source code surrounded by /* * / is considered a comment, and is ignored by the
interpreter.

Warnings & Errors

 Any time a variable occurs only once in a rule, you will get a warning. So consulting the following example

first(Elem, [Elem | Rest]).

will give the warning :

compiling /.automount/nexus/n/home/galles/cs345/tst.pl for byte code...
/.automount/nexus/n/home/galles/cs345/tst.pl:2 warning: singleton variables [Rest] for first/2
/.automount/nexus/n/home/galles/cs345/tst.pl compiled, 15 lines read - 1455 bytes written, 27 ms

This warning says that in the rule for the predicate first, which takes two terms, the variable Rest only appears
once. It is unusual for a variable to appear only once in a rule – the interpreter gives you a warning because
you might have made a mistake typing in the code. The code still works fine, even with the warning. You can
avoid these warnings by beginning each variable that appears only once with an underscore:

first(Elem, [Elem | _Rest]).

 Variables that begin with an underscore are called anonymous variables, because you don’ t care what their
value is. Basically, you are tell ing the interpreter “ I know that this variable only appears once, don’ t warn me
about it”

Quitting Prolog

 You can quit the prolog interpreter with the command:
?- halt.

 An end of file symbol (control-d) will also quit the interpreter.

