Proving Programs Corred Page 1l of 9

Proving Programs Corred

How can we be sure that a pieceof code does what we want it to dd? One way isto try testing the code on alarge group of
data. Another isto formally prove that the programis corred. Thishandout will cover corrednessproofs— how to prove that
aprogram does what we want it to da We will adually be doing partial corrednessproofs — proving that if a program does
not run forever, then it will producethe arred output. This emslike arather subtle point, but it is crucial to getting our
proofsto work corredly.

Invariants

Aninvariant is a statement about the state of the program that are true every time aprogram reades a catain point of
exeadtion. For example, consider the foll owing Pascd statement:

X:= 4

After these this statement is executed, we know that the value of x must be 4. So, avalid invariant for right after this
assgnment statement isx = 4. We will writeinvariantsinside braces{ }, like so:

=4,
{x=4}
To prove that a pieceof code does what we want it to dg we ned to first describe what we want the ade to do. We will do
thisin terms of preconditions and postconditions. If we can prove that whenever the preconditi ons hold, the postconditions
must as well, then we have proven that the code does what we want. The way we will dothisisto start with the
postconditions — what do we want to be true a the end of the code? We will then "badk up" the pastconditi ons through the

code, using a set of rulesthat allow usto move invariants over statements. That is, for an invariant to be true dter a statement
is executed, what needsto be true before the statement is exeauted?

Rules for badking-up invariants

Assignment Statements :
Consider an assgnment statement
x:=E

where E isan arbitrary expression (we will assume that expresson evaluation has no side-effeds). After the assgnment
statement, we know that x will have the value E

We dso know that any invariant involving x will be true after the expresson is evaluated, if that same invariant, with x
replaced with E, will be true before the invariant.

{Q[E/X]} x:=E {Q}
Where Q[E/x] means " Q with every occurence of x replacead with E"
Thisleadsto our first rule
Ruleto back an invariant over an assignment statement:

To badk an invariant Q over an assignment statement x := E, replace & occurrences of x in Q with E

Proving Programs Corred Page2 of 9

Here ae some examples

o { >0}
ji= i T ji= i
{j>0} {j>0}
{ i-1>0}
j= i-1 E— ji=i-1
{i>0} {j>0}
{i-1>0}
j=j-1 —_— > j=j-1
{i>0} {i>0}
* -1
Z:=X*y —> {XZZy:>X*)}
{z>-1} {z>-1}

We can consider input and output statementsto be nothing more than assignment statements. read(x) isthe same & x := input.
If we have multiple inputs and outputs, then we aan use inputl, input2, etc.

example:

{ (inputl > 0) and (input2 > 0) }
read(x);

{ (x> 0) and (input2 > 0) }
read(y);

{(x>0)and (y>0)}
write(x);

{ (outputl > 0) and (y > 0) }
write(y);

{ (outputl > 0) and (output2 > 0) }

If Statements:
Consider an if statement
if E then Stm1 else Stm2

If the expresson E istrue before the if statement, then S1 will be exeauted, and if the expression is false before the if
statement, then S2 will be exeauted. What if we know that:

1. if invariant P and expresson E are both true before Stm1, then invariant Q must be true after Stm1,
2. if invariant Pistrue and E is false before Stm2 is executed, then Q must be true dter Stm2 is exeauted

What can we say about the if statement? Well, if invariant P and expresson E are both true before the if statement, then S1
will be exeauted, and Q will betrue dter the if statement. If Pistrue and Q is false before the if statement, then S2 will be
exeauted and Q will be true dter the if statement. So, if Pistrue before theif statement, then Q must be true after the if
statement.

{PandE} S1{Q} and{Pand~E} S2 {Q} implies{P} if Ethen Sl else S2 {Q}

Thisleadsto our second rule

Proving Programs Corred

Ruleto back an invariant over an if statement:

To badk aninvariant Q over an if statement if E then S1 else S2:

First, back Q up over S1 to get Q1
Then, badk Q up over S2 to get Q2
Finally, the badked-up invariant is:
(Eand Q1) or (not E and Q2)
Let's e ad example:

if (x >=y) then
max := X

else
max =y

{(max = x or max =y) and (max >= x and max >=y)}
First, we badk the invariant over

max = X
to get

(x=xorx=y)and (x >=x and x >=y)
which simplifies nicdy to

(x>=y)

Next, we badk the invariant over
max =y

to get
(y=xory=y)and (y>=xandy>=y)

which simplifies nicdy to
(y>=x)

So, the final badked-up invariant is ((E and Q1) or (not E and Q2))
((x>=y) and (x>=y)) or ((y > x) and (y >= x))
Which simplifiesto
(x>=y)or(y>x)

Which simplifies even further to

true
So, we have
{true }
if (x >=y) then
max = X
else
max =y

{ (max = x or max =y) and (max >= x and max >=vy) }

Page 3 of 9

Proving Programs Corred Page 4 of 9

What does it mean when the baded-up invariant istrue? It meansthat there ae no restrictions on what needsto be true
before the amde exeautes for the postcondtion to be true after the awde exeautes.

Let'stry another example with if statements, this time when thereis no else:

if (x > y) then begin

temp :=x;
X =Y,
y :=temp
end
{x<=y}
First, we badk up theinvariant (x <=vy) through the body of the if statement, to get (y <= x) , asfollows:
if (x > y) then begin
{y<=x}
temp :=x;
{y<=temp}
X:ZY;
{x<=temp}
y :=temp
{x<=y}
end
{x<=y}
Next, we bad the statement up through the dse dause (which is non-existent), toget {y <= x } . S0, the badked up

invariant is then (E and Q1) or (not E and Q2) :
(x>y)and (y <= x)) or ((x <=y) and (x <= y))
which simplifiesto
(x>y)or(x<=y))
which simplifiesagainto true , leaving

{true }
if (x > y) then begin
{y<=x}
temp == x;
{y<=temp}
X=Y,;
{x<=temp}
y = temp
{x<=y}
end
{x<=y}

While loops :

Consider awhileloop

while (E) do
Stm

Proving Programs Corred Page5of 9

We know that after the loopfinishes, E will be false.

while (E) do
Stm
{notE}

Whil e true, this does not redly help us prove what we need to prove. We need something alittl e stronger. What if there was
some invariant P, that would be true & the end of the loopif it was true a the beginning. That is, what if we knew that

{Pand E}
Stm

{P}

If theloopis never executed, then if P istrue before the loop, it will be true after the loop. Sincethe loop dd not exeaute, E
must be false. So, after the loop P must be true and E must be false

What if the loopis exeauted once? When the loop bod starts, E must be true (el se we would not enter the loop). If Pand E
aretrue & the start of the loop, then after Stm is exeauted P will still betrue. Theloopends, and Pis gill true while E must be
false (or the loopwould not terminate). So Pistrue and E isfalse.

What if the loopis exeauted twice? When the loop bog starts, E must be true (else we would not enter the loop). If Pand E
aretrue & the start of the loop, then after Stmis exeauted P will still be true. The loop continues, so E must be true. If Pand E
are true before Stm is executed the second time, then P must be true after Stm is executed the second time. The loop ends, so
E must be false. After theloop Pistrue and E isfalse.

So, if we can provethat Pisaloop invariant (that is, { P and E } <loop body> { P}), then if P istrue before the
loop starts, then after the loopfinishes P will still be true and E will be false.

({ PandE} Stm{P}) implies{P} while E doStm{ P and not E}
Thisleadsto our third rule
Ruleto back an invariant over a while loop:

To badk an invariant Q over awhile loopwhile E do Stm:
First, pick aloopinvariant P
Then, show that Pisaloopinvariant
badk up P through the loop bog to get P
show that (P and E) implies P
Finally, show that (P and (not E)) implies Q
The badked-up invariant isP

Here ae some examples:

while (x > 0) do

X = x-1;
end;
{x=0}
First, we neal to choose aloopinvariant. Thisisthe hardest part of proving code crred —choosingaloopinvariant. Welll
choosefor P: (x >=0) . Now, we badk P up over theloop bog to get
{x>=1} (Since x-1>=0 isequivalentto x>=1)
X = Xx-1;

{x>=0}

Proving Programs Corred Page 6 of 9

Next, we need to show that P and not E imply P. That is, that

((x>0) and (x >= 0)) implies (x >=1)

Simplifying, we get
(x>0) implies (x >=1)

which istrue for integers. Finally, we need to show that P and (not E) implies Q
((x>=0) and (x <= 0)) implies (x = 0)

Simplifying, we get
(x=0) implies (x =0)

which istrue.

So, the prodf in its entirety:

while (x > 0) do Loop invariant: { x >= 0}
{x>=1} (x>0) and (x >= 0) implies (x >=1)
X = X-1; (x >=0) and (x <= 0) implies (x = 0)
{x>=0}
end;
{x=0}

What happensif x is negative before the loop starts? Well, the program will run forever. Isthat aproblem? It means
that the proof isonly valid if computation terminates. So these proofs are partial correanessproafs, not complete
correanessproofs. They only say that if the program terminates, it gives the corred answer. They say nothing about
whether or not the program will runforever. In Automata Theory you will lean that in general it is not possble to
prove that a program does not run forever.

Let'slook at another proof.

while x =! 0 do begin
X =X-2;
yi=y-2
end;
{x>yandx=0}

Here we go:
{x>y}
while x =! 0 do begin Loop Invariant: (x >y)
{x-2>y-2} (x>y) and (x = 0) implies (x > y)
Xi=X-2; (x>y) and (x = 0) implies (x >y) and (x = 0)
{x>y-2}
yi=y-2
{x>y}
end;

{x>yandx=0}

Proving Programs Corred Page 7 of 9

Let'snow look at an extended example
We want to prove the foll owing:

{inputl >0 and input2 >0}
begin
read(x);
read(y);
div :=0;
while (x >=y) do begin
div :=div + 1;
X=X-Yy
end;
write(div);
write(x);
end;
{ (inputl = outputl*input2+output?2) and (0 =< output2 < input2) }

Notice how the program computes integer division and mod, and the postconditi on invariant describes how output = inputl
div input2 and output2 = inputl mod input2

First, we bad the invariant over afew assignment statements:

{inputl >0 and input2 >0}

begin
read(x);
read(y);
div :=0;
while (x >=y) do begin
div :=div + 1;
XI=X-Y
end;
{ (inputl = div * input2 + x) and (0 =< x < input2) }
write(div);
{ (inputl = outputl * input2 + x) and (0 =< x < input2) }
write(x);
end;

{ (inpu'él = outputl * input2 + output?2) and (0 =< output2 < input2) }

Now we cmmeto theloop We need to pick aloopinvariant P, prove that P isaloopinvariant, and then show that P and
(not (x >=y)) implies{(inputl = div * input 2 +x)and (0 =< x < input2)}

Now we need aloopinvariant. One choiceis
L1:{inputl =div*y +x}

For thisto be accetable, it must pass two tests:
L1 must adually be aloopinvariant, thatis(Llandx >=y) implies L1
L1 and (not (x >=y)) must imply
{ (inputl = div * input2 + x) and (0 =< x < input2) }

Proving Programs Corred Page 8 of 9

First, let's sow that L1 isaloopinvariant, by badking it up throuch the body of the while loop:

{inputl=(div+1)*y+(x-vy)}
div :=div + 1;

{inputl =div*y+ (x-vy)}
X:i=X-y

{inputl =div*y +x}

Since ({inputl =div*y+x}and{(x>=y)}implies
{inputl=(div+1)*y+(x-vy)}

L1 must be aloopinvariant. Next test:
DoesL1 and not E imply { (inputl = div * input2 + x) and (0=<x<input2)}?

{inputl =div*y +x}and { (x <y) } does not imply
{ (inputl = div * input2 + x) and (0 =< x < input2) }

So L1, while aloopinvariant, it doesn't help us. Let'stry somethingelse:
L2: (inputl = div * input2 + x) and (0 =< x < input2)
First, we'l try to show that L2 isin fad aloopinvariant, by badingit up through the body of the while loop
{ (inputl = (div + 1) *input2 + x - y) and (0 =< x - y < input2) }
div :=div + 1;
{ (inputl = div * input2 + x - y) and (0 =< x - y < input2) }
X=X-Yy
{ (inputl = div * input2 + x) and (0 =< x < input2) }
Unfortunately, we now seethat L2 isnot in fact aloopinvariant, since
(inputl = div * input2 + x) and (0 =< x < input2) and (x >=y)

does not imply
(inputl = (div + 1) *input2 + x - y) and (0 =< x - y < input2)

So, L1 was an invariant, but was not sufficient to show Q, and L2 was sufficient to show Q but was not aloopinvariant. So
welll try one more time with

L3: inputl =div*y +x and x >=0 and y = input2

{inputl=(div+1)*y+x-yand x—y>=0andy =input2 }

div :=div + 1;
{in putl=div*y+x-yand x—y>=0andy =input2 }
X=X-Yy

{inputl =div*y +xand x>=0andy = input2 }
We now test to seeif (L3 and E) impliesL3'

(inputl =div*y + xand x >=0 and y = input2 and x >=y) implies
(inputl = (div+1)*y+x-yand x—y>=0andy = input2)

Simplifying a bit:

(inputl =div*y + xand x >=0 and y = input2 and x >=y) implies
(inputl = (div *y +x and x >=yandy = input2

Proving Programs Corred Page 9 of 9

whichisclealy corred. Finally, we need to test if L3 and (not E) implies Q:

inputl =div*y +xand x>=0andy =input2 and x <y implies
(inputl = div * input2 + x) and (0 =< x < input2)

It does, so we ae done. To complete the proof, we need to badk the loopinvariant up past the rest of the mde:

{iinputl = inputl and inputl >= 0 and input2 = input2 }

read(x);

{inputl =x and x >= 0 and input2 = input2 }
read(y);

{inputl=xand x>=0andy = input2 }
div :=0;

{inputl =div*y +xand x>=0andy = input2 }
And voila, we aedone. Let'stake alook at the complete proof, in al its glory:

{inputl >=0}
read(x);
{inputl=xand x>=0}
read(y);
{inputl=xand x>=0andy = input2 }
div :=0;
{inputl =div*y +xand x>=0andy = input2 }

{ Looplnvariant: inputl =div*y+xand x >=0 andy = input2
(inputl =div*y + xand x >=0 and y = input2) and (x >=y) implies
(inputl =div*y +x and x >=y andy = input2)

(inputl =div*y + xand x >=0 and y = input2) and (x <y) implies
(inputl = div * input2 + x) and (0 =< x < input2) }

while (x >=y) do begin
{inputl=(div+1)*y+x-yand x-y>=0andy =input2 }

div :=div + 1;
{inputl=div*y+x-yand x-y>=0andy =input2}
X=X—Y
{inputl =div*y+xand x>=0andy =input? }
end;
{ (inputl = div * input2 + x) and (0 =< x < input2) }
write(div);
{ (inputl = outputl * input2 + x) and (0 =< x < input2) }
write(x);

end;
{ (inputl = outputl * input2 + output?2) and (0 =< output2 < input2) }

