CS411-2015S-FR Final Review

FR-0: Sets & Functions

e Sets

e Membership:
o a €Xa,b,c}
o a b, c}
e ac€?{b,{a,b,c},d}
o {a,b,c} €2{b,{a,b,c},d}

FR-1: Sets & Functions

e Sets

e Membership:
e a€{a,b,c}
e ag{bc}
o a ¢ {b{a,b,c},d}
e {a,b,c} € {b,{a,b,c},d}

FR-2: Sets & Functions

e Sets

e Subset:
o {a} CNa,b,c}
o {a} €:b, ¢ {a}}
e {a,b} C{a,b,c,d}
o {a,b} C?{a,b}
o {} C{a,b,c,d}

FR-3: Sets & Functions

e Sets

e Subset:
e {a} C{a,b,c}
e {a} Z {b,c,{a}}
e {a,b} C{a,b,c,d}
o {a,b} C {a,b}
o {} C{a,b,c,d}

FR-4: Sets & Functions

e Sets

e Cross Product:
e Ax B={(a,b):a€ A be B}
o {a,b} x {a,b} =
o {a,b} x {{a,b}} =



CS411-2015S-FR Final Review

FR-5: Sets & Functions

e Sets
e Cross Product:
e Ax B={(a,b):a€ A be B}
o {a,b} x {a,b} = {(a,a), (a,b),(b,a),(b,b)}
e {a,b} x {{a,b}} = {(a,{a,b}), (b,{a,b})}

FR-6: Sets & Functions

e Sets
e Power Set:
o 24 = {§:S5C A}
o 2fab} —
o 2{a} —
° 22{11} _

FR-7: Sets & Functions

e Sets
e Power Set:
o 24 = {S§:S5C A}
o 2000 = {{} {a}, {b}, {a,b}}
o 20 = {{} {a}}
o 22 = {3 {0} ({a}} {{}. {a}}

FR-8: Sets — Partition
IT is a partition of S if:

o I1C2°

. }¢1

e VX, YET),XAY = XNY ={}
e Ull=8

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}
{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}
FR-9: Sets — Partition
In other words, a partition of a set .S is just a division of the elements of S into 1 or more groups.

e All the partitions of the set {a, b, c}?

FR-10: Sets — Partition
In other words, a partition of a set .S is just a division of the elements of .S into 1 or more groups.

e All the partitions of the set {a, b, c}?



CS411-2015S-FR Final Review

e {{a,b.ct}, {{a,b}, {c}}, {{a, ¢}, {b}}, {{a}.{b. c}}, {{a}, {b}, {c}}

FR-11: Sets & Functions

e Relation

e A relation R is a set of ordered pairs
e That’s all that a relation is

e Relation Graphs

FR-12: Sets & Functions

e Properties of Relations

e Reflexive
e Symmetric
e Transitive

e Antisymmetric
e Equivalence Relation: Reflexive, Symmetric, Transitive
e Partial Order: Reflexive, Antisymmetric, Transitive

e Total Order: Partial order, for each a,a’ € A, either (a,a’) € Ror (a’,a) € R

FR-13: Sets & Functions

e What does a graph of an Equivalence relation look like?
e What does a graph of a Total Order look like
e What does a graph of a Partial Order look like?

FR-14: Closure

e Aset A C B is closed under a relation R C ((B x B) x B) if:

e ai,a2 € AN ((a1,a2),c) ER = c€ A

e Thatis, if a; and ay are both in A, and ((a1, az2), ¢) is in the relation, then ¢ is also in A
e N is closed under addtion

e N is not closed under subtraction or division
FR-15: Closure
e Relations are also sets (of ordered pairs)

e We can talk about a relation R being closed over another relation R’

e Each element of R’ is an ordered triple of ordered pairs!

FR-16: Closure

e Relations are also sets (of ordered pairs)



CS411-2015S-FR Final Review

e We can talk about a relation R being closed over another relation R’
e Each element of R’ is an ordered triple of ordered pairs!
e Example:

e RCAXA
o R = {(((aab)v (bac))v (a’c)) ta,b,c€ A}
e If R is closed under R’, then . ..

FR-17: Closure

e Relations are also sets (of ordered pairs)

e We can talk about a relation R being closed over another relation R’
e Each element of R’ is an ordered triple of ordered pairs!

e Example:

e RCAxA
e R ={(((a,b),(b,c)),(a,c)) : a,b,c € A}

e If R is closed under R’, then R is transitive!
FR-18: Closure

o Reflexive closure of a relation R C A x A is the smallest possible superset of R which is reflexive

e Add self-loop to every node in relation
e Add (a,a)to Rforeverya € A

e Transitive Closure of a relation R C A x A is the smallest possible superset of R which is transitive

e Add direct link for every path of length 2.
e Y(a,b,c e A)if (a,b) € RA (b,c) € Radd (a,c) to R.

(examples on board) FR-19: Sets & Functions

e Functions

e Relation R over A x B
e Foreacha € A:

e Exactly one element (z,y) € Rwithz = a
FR-20: Sets & Functions
e For a function f over (A x A), what does the graph look like?
e For a function f over (A x B), what does the graph look like?
FR-21: Sets & Functions

e Functions

e one-to-one: f(a) # f(a’) when a # a’ (nothing is mapped to twice)



CS411-2015S-FR Final Review

e onto: foreach b € B, Ja such that f(a) = b (everything is mapped to)

e bijection: Both one-to-one and onto

FR-22: Sets & Functions

e For a function f over (A X B)

e What does the graph look like for a one-to-one function?
e What does the graph look like for an onto function?

e What does the graph look like for a bijection?

FR-23: Sets & Functions

e Infinite sets

e Countable, Countably infinite
e Bijection with the Natural Numbers
e Uncountable, uncountable infinite

o Infinite
e No bijection with the Natural Numbers

FR-24: Infinite Sets
e We can show that a set is countable infinite by giving a bjiection between that set an the natural numbers

e Same thing as as imposing an ordering on an infinite set

FR-25: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with N.

e Even elements of N?

FR-26: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with IN.
e Even elements of N?
o f(x)=2x

FR-27: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with IN.
o Integers (Z)?

FR-28: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with N.

o Integers (Z)?

o flz)=[3]*(=1)"



CS411-2015S-FR Final Review

FR-29: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with N.

e Union of 3 (disjoint) countable sets A, B, C?

FR-30: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with IN.

Union of 3 (disjoint) countable sets A, B, C?

az if xmod3=0

° f(x): be—l ifxmod3=1
C; if xmod3 =2
FR-31: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with IN.

e N x N?
(0,00 (0,1) (0,2) (0,3) (0,49

1,0 1,1 1,2 13 149
2,0 21 22 @3 24
3,0 31 B2 B3 34

(4,00 41 42 43) 44

FR-32: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with N.

e N x N?



CS411-2015S-FR Final Review

A4) ...

(1 (1,4) ..
( (2,3) (24) ..
( 3,3) B4 ..
40) 4,1 42 43 (44 ..

o flwy) = 4o
FR-33: Countable Sets

e A set is countable infinite (or just countable) if it is equinumerous with IN.
e Real numbers between 0 and 1 (exclusive)?

FR-34: Uncountable R

e Proof by contradiction

e Assume that R between 0 and 1 (exclusive) is countable
o (that is, assume that there is some bijection from N to R between 0 and 1)
e Show that this leads to a contradiction

e Find some element of R between 0 and 1 that is not mapped to by any element in N

FR-35: Uncountable R
e Assume that there is some bijection from N to R between 0 and 1

0.3412315569...
0.0123506541...
0.1143216751...
0.2839143215...
0.2311459412...
0.8381441234...
0.7415296413...

OB WO

FR-36: Uncountable R

e Assume that there is some bijection from N to R between 0 and 1

(0 3 \2315569...

YR WN O
Lo
DO
00 i
©
(S
w
DN
—
o1

Consider: 0.425055...
FR-37: Formal Languages



CS411-2015S-FR Final Review

Alphabet X: Set of symbols
o {0,1},{a,b,c}ete

String w: Sequence of symbols

e cat,dog, firehouse etc

Language L: Set of strings

e {cat, dog, firechouse}, {a, aa, aaa, ...}, etc

Language class: Set of Languages

e Regular languages, P, NP, etc.
FR-38: Formal Languages

e Language Hierarchy.

Context Free

Polynomial

Recursive

Recursively Enumerable

Not Recursively Enumerable

FR-39: Regular Expressions

e Regular expressions are a way to describe formal languages
e Regular expressions are defined recursively

e Base case — simple regular expressions

e Recursive case — how to build more complex regular expressions from simple regular expressions
FR-40: Regular Expressions

e ¢ is aregular expression, representing {¢}

e () is a regular expression, representing { }

e Va € X, ais aregular expression representing {a}

e if 7y and ry are regular expressions, then (r172) is a regular expression

e L[(r1r2)] = L[r1] o L[rs]



CS411-2015S-FR Final Review

e if 71 and ry are regular expressions, then (1 4 r2) is a regular expression
o L[(r1 +r2)] = L[r1] U L[rs]

e if r is regular expressions, then (r*) is a regular expression
o L{(r")] = (Llr])"

FR-41: r.e. Precedence
From highest to Lowest:

Kleene Closure *
Concatenation
Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expressions: (a+b)(a+b)) FR-42: Regular Expressions

o Intuitive Reading of Regular Expressions

e Concatenation == “is followed by”
o +=="or"
e * == ‘“zero or more occurances”

e (a+b)(a+b)(a+b)
o (atb)*
e aab(aa)*
FR-43: Regular Languages
e A language L is regular if there exists a regular expression which generates it
e Give a regular expression for:
e All strings over {a, b} that have an odd # of a’s

FR-44: Regular Languages

e A language L is regular if there exists a regular expression which generates it
e Give a regular expression for:

e All strings over {a, b} that have an odd # of a’s
b*a(b*ab*a)*b*

e All strings over {a, b} that contain exactly two occurrences of bb (bbb counts as 2 occurrences!)

FR-45: Regular Languages

e A language L is regular if there exists a regular expression which generates it



CS411-2015S-FR Final Review

e Give a regular expression for:
e All strings over {a, b} that have an odd # of a’s
b*a(b*ab*a)*b*
e All strings over {a, b} that contain exactly two occurrences of bb (bbb counts as 2 occurrences!)
a*(baa*)*bb(aa*b)*aa*bb(aa*b)*a* + a*(baa™)*bbb(aa*b)*a*
FR-46: Regular Languages
e All strings over {0, 1} that begin (or end) with 11
e All strings over {0, 1} that begin (or end) with 11, but not both
FR-47: Regular Languages
e All strings over {0, 1} that begin (or end) with 11
e 11 (0O+)*11+11
e All strings over {0, 1} that begin (or end) with 11, but not both
o 11(0+1)*0 + 11(0+1)*01 + 0(0+1)*11 + 10(0+1%)11

FR-48: Regular Languages

e Shortest string not described by following regular expressions?
e a*b*a*b*
e a*(ab)*(ba)*b*a*
e a*b*(ab)*b*a*

FR-49: Regular Languages

e Shortest string not described by following regular expressions?
e a*b*a*b*
e baba
e a*(ab)*(ba)*b*a*
e baab
e a*b*(ab)*b*a*
e baab
FR-50: Regular Languages

e English descriptions of following regular expressions:

e (aa+aaa)*
e b(atb)*b + a(atb)*a+a+b

e a*(baa*)*bb(aa*b)*a*
FR-51: Regular Languages

e A language L is regular if there exists a DFA which accepts it



CS411-2015S-FR Final Review

e DFA for all strings with exactly 2 occurrences of bb

FR-52: DFA Definition

e ADFAisa5-tuple M = (K,X%,6,s, F)

e K Set of states

e > Alphabet

e 0: (K x ¥)— K is a Transition function
e s € K Initial state

e [ C K Final states

FR-53: Regular Languages

e A language L is regular if there exists a DFA which accepts it

e DFA for all strings with exactly 2 occurrences of bb

a,b

ﬁ b
ROS OO

FR-54: Regular Languages

OO, Q)

e A language L is regular if there exists a DFA which accepts it

e DFA for all strings over {0,1} that start and end with 111

FR-55: Regular Languages

e A language L is regular if there exists a DFA which accepts it

e DFA for all strings over {0,1} that start and end with 111

FR-56: Regular Languages



CS411-2015S-FR Final Review

12

e A language L is regular if there exists a DFA which accepts it

e DFA for all strings over {0,1} that start with 110, end with 011
FR-57: Regular Languages

e A language L is regular if there exists a DFA which accepts it

e DFA for all strings over {0,1} that start with 110, end with 011

0

FR-58: Regular Languages

e Give a DFA for all strings over {0,1} that begin or end with 11
e Give a DFA for all strings over {0,1} that begin or end with 11 (but not both)

FR-59: Regular Languages

e Give a DFA for all strings over {0,1} that contain 101010
e Give a DFA for all strings over {0,1} that contain 101 or 010
e Give a DFA for all strings over {0,1} that contain 010 and 101

FR-60: DFA Configuration & -,

e Way to describe the computation of a DFA
o Configuration: What state the DFA is currently in, and what string is left to process

e c K xX*
e (g2, abba) Machine is in state g2, has abba left to process
¢ (gs, bba) Machine is in state gg, has bba left to process

e (g4, €) Machine is in state g4 at the end of the computation (accept iff g4 € F')
FR-61: DFA Configuration &
e Way to describe the computation of a DFA

e Configuration: What state the DFA is currently in, and what string is left to process

e ¢ K xX*



CS411-2015S-FR Final Review

13

e Binary relation I-5,: What machine M yields in one step
o FyC (K X X*) x (K xX*)
L4 l_]\{[: {((q17aw)7 (q27w)) 1q1,492 € K]Waw S 27\410’ S EMa ((qlaa)an) S 5]\{[}

FR-62: DFA Configuration & -,
Given the following machine M:

a,b

&

¢

a,b

o

hd ((QO7 abba)? (qQa bba)) EFI\I

e can also be written (go, abba) Fas (go, bba)

FR-63: DFA Configuration & ),

(qo,11101) #M (q1,1101)
M (g2, 101)
M (g3,01) FR-64: DFA Configuration & ),
(q07 )
M (q1,€)

(q0,10111) }_M (ql,Olll)
(q 111)
M (q1,11) FR-65: DFA Configuration & %,
M (g2, 1)
(q376)

o 3, is the reflexive, transitive closure of k-5,

e Smallest superset of |-j, that is both reflexive and transitive



CS411-2015S-FR Final Review

14

e “yields in O or more steps”

e Machine M accepts string w if:

(sar,w) Fiy (f,€) for some f € Fiy
FR-66: DFA & Languages

e Language accepted by a machine M = L[M]
o {w: (sp,w) k3 (fe) forsome f € Fa}
e DFA Languages, Lpra

o Set of all languages that can be defined by a DFA
e Lppa={L:3IM,L[M]=1L}

e To think about: How does Lpra = Lrec

FR-67: NFA Definition

e Difference between a DFA and an NFA

o DFA has exactly only transition for each state/symbol pair
e Transition function: 0 : (K x ) — K

e NFA has 0, 1 or more transitions for each state/symbol pair
e Transition relation: A C ((K x X) x K)

FR-68: NFA Definition
e ANFAisa5-tuple M = (K,%,A,s, F)

e K Set of states
> Alphabet
A : (K x X) x K is a Transition relation

e s € K Initial state
e [’ C K Final states

FR-69: Fun with NFA
Create an NFA for:

e All strings over {a, b} that start with a and end with b

(also create a DFA, and regular expression) FR-70: Fun with NFA
Create an NFA for:

e All strings over {a, b} that contain 010 or 101
FR-71: Regular Languages

e A language L is regular if there exists an NFA which accepts it

e NFA for all strings over {a, b} that contain abba



CS411-2015S-FR Final Review 15

FR-72: Regular Languages

e A language L is regular if there exists an NFA which accepts it

e NFA for all strings over {a, b} that contain abba

a.b a,b

(02022 +9)

FR-73: Regular Languages

e A language L is regular if there exists an NFA which accepts it
e NFA for all strings over {a, b} that do not contain abba
FR-74: Regular Languages

e A language L is regular if there exists an NFA which accepts it

e NFA for all strings over {a, b} that do not contain abba

FR-75: Regular Expression & NFA

e Give a regular expression for all strings over {a,b} that have an even number of a’s, and a number of b’s divisible
by 3

FR-76: Pumping Lemma

e Not all languages are Regular

e [ =all strings over {a, b, ¢} that contain more a’s than b’s and ¢’s combined
FR-77: Pumping Lemma

e To show that a language L is not regular, using the pumping lemma:

e Let n be the constant of the pumping lemma

e Create a string w € L, such that [w| > n

e For each way of breaking w = zyz such that |xy| < n, |y| > 0:
o Show that there is some ¢ such that xy’z & L



CS411-2015S-FR Final Review

16

e By the pumping lemma, L is not regular

FR-78: Pumping Lemma

e Prove L = all strings over {a, b, ¢} that contain more a’s than b’s and ¢’s combined is not regular
e Let n be the constant of the pumping lemma

e Consider w = b"a"*! € L

e If we break w = xyz such that |zy| < n, then y must be all b’s. Let |y| = &k

e Consider w' = zy?x = b"+*a". w' ¢ L for any k > 0, thus by the pumping lemma, L is not regular

FR-79: Context-Free Languages

e A language is context-free if a CFG generates it

e All strings over {a, b, ¢} with same # of a’s as b’s

FR-80: Context-Free Languages

e A language is context-free if a CFG generates it

e All strings over {a, b, ¢} with same # of a’s as b’s

— aSh
— bSa
— 5SS
—cS
— Se
— €

NN ninhnn

FR-81: Context-Free Languages

FR-

S
S
S
S
A
A
A
A
A
A

FR-

e A language is context-free if a CFG generates it

e All strings over {a, b, ¢} with more a’s than b’s

82: Context-Free Languages

e A language is context-free if a CFG generates it

e All strings over {a, b, ¢} with more a’s than b’s

— ¢S|Sc
— aSbh|bSa
— aA|Aa
— SA
— aAb
— bAa
— AA
— cAlAc
— aA|Aa
— €

83: Context-Free Languages



CS411-2015S-FR Final Review

17

e A language is context-free if a PDA accepts it
e All strings over {a, b, ¢} that contain more a’s than b’s and ¢’s combined
FR-84: Context-Free Languages

e A language is context-free if a PDA accepts it

e All strings over {a, b, ¢} that contain more a’s than b’s and ¢’s combined

(b,&,X)
(b,A,s)
(c,e,X)
(c,A)e)

@ (£,6,X) @

FR-85: Recursive Languages

(a,g,8)
(a,g,A)
(a,X,€)

e A language L is recursive if an always-halting Turing Machine accepts it

e In other words, a Turing Machine decides L

e Create a Turing Machine for all strings over {a, b, ¢} with an equal number of a’s, b’s and ¢’s.

FR-86: Recursive Languages

e Computing functions with TMs

e Give a TM that computes negation, for a 2’s complement binary number

e (flip bits, add one, discard overflow)
FR-87: Recursive Languages

e Computing functions with TMs

e Give a TM that computes negation, for a 2’s complement binary number
FR-88: Recursive Languages

e Computing functions with TMs

e Give a TM that computes negation, for a 2’s complement binary number

e (flip bits, add one, discard overflow)



CS411-2015S-FR Final Review 18

1
0
—»R"'
1
0

FR-89: r.e. Languages

e A language L is recursively enumerable if there is some Turing Machine M that halts and accepts everything in
L, and runs forever on everything not in L

e Give a TM that semi-decides L = a™b"

e Note that this language is also context-free — context-free languages are a subset of the r.e. languages
FR-90: r.e. Languages

e Enumeration Machines

e Create a Turing Machine that enumerate the language:
L = all strings of the form wecw, w € (a + b)*

FR-91: Counter Machines

e Finite automata with a counter (never negative)
e Add one, subtract 1, check for zero

e Create a 1-counter machine for all strings over {a,b} that contain the same number of a’s as b’s

FR-92: Unrestricted Grammars
G=(V,%,R,S)

e 1/ = Set of symbols, both terminals & non-terminals

e ¥ C V set of terminals (alphabet for the language being described)
e RC (V*(V =X)V* x V*) Set of rules

e S e (V —1X) Start symbol

FR-93: Unrestricted Grammars

e RC (V*¥(V =X)V* x V*) Set of rules

e In an Unrestricted Grammar, the left-hand side of a rule contains a string of terminals and non-terminals (at least
one of which must be a non-terminal)

e Rules are applied just like CFGs:



CS411-2015S-FR Final Review

19

o Find a substring that matches the LHS of some rule

e Replace with the RHS of the rule

FR-94: Unrestricted Grammars

e To generate a string with an Unrestricted Grammar:

e Start with the initial symbol
e While the string contains at least one non-terminal:

o Find a substring that matches the LHS of some rule
e Replace that substring with the RHS of the rule

FR-95: Unrestricted Grammars

e Example: Grammar for L = {a"b"c" : n > 0}

e First, generate (ABC)*
e Next, non-deterministically rearrange string

e Finally, convert to terminals (A — a, B — b, etc.), ensuring that string was reordered to form a*b*c*

FR-96: Unrestricted Grammars

S — ABCS
S - Tc
CA — AC
BA — AB
CB — BC
e Example: Grammar for L = {a"b"¢" : n >0} CT¢ — Tcc
TC — TB
BTB — TBb
Tg —Ta
ATA — TAa
TA — €
FR-97: Unrestricted Grammars
S = ABCS = AAT zbbce
= ABCABCS = AT pabbee
= ABACBCS = Tpraabbce
= AABCBCS = aabbcc
= AABBCCS
= AABBCCT¢ FR-98: Unrestricted Grammars
= AABBCT¢cc
= AABBTccc
= AABBTgcc
= AABTBgbcc

= AATgbbce



CS411-2015S-FR

Final Review

20

S = ABCS

= ABCABCS

= ABCABCABCS
= ABACBCABCS
= AABCBCABCS
= AABCBACBCS
= AABCABCBCS
= AABACBCBCS
= AAABCBCBCS
= AAABBCCBCS
= AAABBCBCCS
= AAABBBCCCS

= AAABBBBCCCTg
= AAABBBCCT¢c
= AAABBBCTccc

= AAABBBTccce

= AAABBBTgcce

= AAABBTRbcce

= AAABTgbbcce

= AAATgbbbcce

= AAAT 4bbbcce

= AAT sabbbccee

= AT paabbbcce

= Tsaaabbbcce = aaabbbece



