
CS411-2015S-FR Final Review 1

FR-0: Sets & Functions

• Sets

• Membership:

• a ∈?{a, b, c}

• a ∈?{b, c}

• a ∈?{b, {a, b, c}, d}

• {a, b, c} ∈?{b, {a, b, c}, d}

FR-1: Sets & Functions

• Sets

• Membership:

• a ∈ {a, b, c}

• a 6∈ {b, c}

• a 6∈ {b, {a, b, c}, d}

• {a, b, c} ∈ {b, {a, b, c}, d}

FR-2: Sets & Functions

• Sets

• Subset:

• {a} ⊆?{a, b, c}

• {a} ⊆?{b, c, {a}}

• {a, b} ⊆?{a, b, c, d}

• {a, b} ⊆?{a, b}

• {} ⊆ {a, b, c, d}

FR-3: Sets & Functions

• Sets

• Subset:

• {a} ⊆ {a, b, c}

• {a} 6⊆ {b, c, {a}}

• {a, b} ⊆ {a, b, c, d}

• {a, b} ⊆ {a, b}

• {} ⊆ {a, b, c, d}

FR-4: Sets & Functions

• Sets

• Cross Product:

• A×B = {(a, b) : a ∈ A, b ∈ B}

• {a, b} × {a, b} =

• {a, b} × {{a, b}} =

CS411-2015S-FR Final Review 2

FR-5: Sets & Functions

• Sets

• Cross Product:

• A×B = {(a, b) : a ∈ A, b ∈ B}

• {a, b} × {a, b} = {(a, a), (a, b), (b, a), (b, b)}

• {a, b} × {{a, b}} = {(a, {a, b}), (b, {a, b})}

FR-6: Sets & Functions

• Sets

• Power Set:

• 2A = {S : S ⊆ A}

• 2{a,b} =

• 2{a} =

• 22
{a}

=

FR-7: Sets & Functions

• Sets

• Power Set:

• 2A = {S : S ⊆ A}

• 2{a,b} = {{}, {a}, {b}, {a, b}}

• 2{a} = {{}, {a}}

• 22
{a}

= {{}, {{}}, {{a}}, {{}, {a}}

FR-8: Sets – Partition

Π is a partition of S if:

• Π ⊂ 2S

• {} 6∈ Π

• ∀(X,Y ∈ Π), X 6= Y =⇒ X ∩ Y = {}

•
⋃

Π = S

{{a, c}, {b, d, e}, {f}} is a partition of {a,b,c,d,e,f}
{{a, b, c, d, e, f}} is a partition of {a,b,c,d,e,f}
{{a, b, c}, {d, e, f}} is a partition of {a,b,c,d,e,f}
FR-9: Sets – Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

• All the partitions of the set {a, b, c}?

FR-10: Sets – Partition

In other words, a partition of a set S is just a division of the elements of S into 1 or more groups.

• All the partitions of the set {a, b, c}?

CS411-2015S-FR Final Review 3

• {{a, b, c}}, {{a, b}, {c}}, {{a, c}, {b}}, {{a},{b, c}}, {{a}, {b}, {c}}

FR-11: Sets & Functions

• Relation

• A relation R is a set of ordered pairs

• That’s all that a relation is

• Relation Graphs

FR-12: Sets & Functions

• Properties of Relations

• Reflexive

• Symmetric

• Transitive

• Antisymmetric

• Equivalence Relation: Reflexive, Symmetric, Transitive

• Partial Order: Reflexive, Antisymmetric, Transitive

• Total Order: Partial order, for each a, a′ ∈ A, either (a, a′) ∈ R or (a′, a) ∈ R

FR-13: Sets & Functions

• What does a graph of an Equivalence relation look like?

• What does a graph of a Total Order look like

• What does a graph of a Partial Order look like?

FR-14: Closure

• A set A ⊆ B is closed under a relation R ⊆ ((B ×B)×B) if:

• a1, a2 ∈ A ∧ ((a1, a2), c) ∈ R =⇒ c ∈ A

• That is, if a1 and a2 are both in A, and ((a1, a2), c) is in the relation, then c is also in A

• N is closed under addtion

• N is not closed under subtraction or division

FR-15: Closure

• Relations are also sets (of ordered pairs)

• We can talk about a relation R being closed over another relation R′

• Each element of R′ is an ordered triple of ordered pairs!

FR-16: Closure

• Relations are also sets (of ordered pairs)

CS411-2015S-FR Final Review 4

• We can talk about a relation R being closed over another relation R′

• Each element of R′ is an ordered triple of ordered pairs!

• Example:

• R ⊆ A×A

• R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

• If R is closed under R′, then . . .

FR-17: Closure

• Relations are also sets (of ordered pairs)

• We can talk about a relation R being closed over another relation R′

• Each element of R′ is an ordered triple of ordered pairs!

• Example:

• R ⊆ A×A

• R′ = {(((a, b), (b, c)), (a, c)) : a, b, c ∈ A}

• If R is closed under R′, then R is transitive!

FR-18: Closure

• Reflexive closure of a relation R ⊆ A×A is the smallest possible superset of R which is reflexive

• Add self-loop to every node in relation

• Add (a,a) to R for every a ∈ A

• Transitive Closure of a relation R ⊆ A×A is the smallest possible superset of R which is transitive

• Add direct link for every path of length 2.

• ∀(a, b, c ∈ A) if (a, b) ∈ R ∧ (b, c) ∈ R add (a, c) to R.

(examples on board) FR-19: Sets & Functions

• Functions

• Relation R over A×B

• For each a ∈ A:

• Exactly one element (x, y) ∈ R with x = a

FR-20: Sets & Functions

• For a function f over (A×A), what does the graph look like?

• For a function f over (A×B), what does the graph look like?

FR-21: Sets & Functions

• Functions

• one-to-one: f(a) 6= f(a′) when a 6= a′ (nothing is mapped to twice)

CS411-2015S-FR Final Review 5

• onto: for each b ∈ B, ∃a such that f(a) = b (everything is mapped to)

• bijection: Both one-to-one and onto

FR-22: Sets & Functions

• For a function f over (A×B)

• What does the graph look like for a one-to-one function?

• What does the graph look like for an onto function?

• What does the graph look like for a bijection?

FR-23: Sets & Functions

• Infinite sets

• Countable, Countably infinite

• Bijection with the Natural Numbers

• Uncountable, uncountable infinite

• Infinite

• No bijection with the Natural Numbers

FR-24: Infinite Sets

• We can show that a set is countable infinite by giving a bjiection between that set an the natural numbers

• Same thing as as imposing an ordering on an infinite set

FR-25: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Even elements of N?

FR-26: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Even elements of N?

• f(x) = 2x

FR-27: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Integers (Z)?

FR-28: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Integers (Z)?

• f(x) = ⌈x
2 ⌉ ∗ (−1)x

CS411-2015S-FR Final Review 6

-4 -3 -2 -1 0 1 2 3 4

...

FR-29: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Union of 3 (disjoint) countable sets A, B, C?

FR-30: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Union of 3 (disjoint) countable sets A, B, C?

a0 a1 a2 a3 a4 ...

b0 b1 b2 b3 b4 ...

c0 c1 c2 c3 c4 ...

• f(x) =







a x

3
if x mod 3 = 0

b x−1

3

if x mod 3 = 1

c x−2

3

if x mod 3 = 2

FR-31: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• N×N?

(0,0) (0,1) (0,2) (0,3) (0,4) ...

(1,0) (1,1) (1,2) (1,3) (1,4) ...

(2,0) (2,1) (2,2) (2,3) (2,4) ...

(3,0) (3,1) (3,2) (3,3) (3,4) ...

(4,0) (4,1) (4,2) (4,3) (4,4) ...

...

......

...

...

...

FR-32: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• N×N?

CS411-2015S-FR Final Review 7

(0,0) (0,1) (0,2) (0,3) (0,4) ...

(1,0) (1,1) (1,2) (1,3) (1,4) ...

(2,0) (2,1) (2,2) (2,3) (2,4) ...

(3,0) (3,1) (3,2) (3,3) (3,4) ...

(4,0) (4,1) (4,2) (4,3) (4,4) ...

...

......

...

...

...

• f((x, y)) = (x+y)∗(x+y+1)
2 + x

FR-33: Countable Sets

• A set is countable infinite (or just countable) if it is equinumerous with N.

• Real numbers between 0 and 1 (exclusive)?

FR-34: Uncountable R

• Proof by contradiction

• Assume that R between 0 and 1 (exclusive) is countable

• (that is, assume that there is some bijection from N to R between 0 and 1)

• Show that this leads to a contradiction

• Find some element of R between 0 and 1 that is not mapped to by any element in N

FR-35: Uncountable R

• Assume that there is some bijection from N to R between 0 and 1

0 0.3412315569...
1 0.0123506541...
2 0.1143216751...
3 0.2839143215...
4 0.2311459412...
5 0.8381441234...
6 0.7415296413...

...

...

FR-36: Uncountable R

• Assume that there is some bijection from N to R between 0 and 1

0 0.3412315569...
1 0.0123506541...
2 0.1143216751...
3 0.2839143215...
4 0.2311459412...
5 0.8381441234...
6 0.7415296413...

...

...

...

Consider: 0.425055...

FR-37: Formal Languages

CS411-2015S-FR Final Review 8

• Alphabet Σ: Set of symbols

• {0, 1}, {a, b, c}, etc

• String w: Sequence of symbols

• cat, dog, firehouse etc

• Language L: Set of strings

• {cat, dog, firehouse}, {a, aa, aaa, . . .}, etc

• Language class: Set of Languages

• Regular languages, P, NP, etc.

FR-38: Formal Languages

• Language Hierarchy.

Regular

Context Free

Polynomial

NP

Recursive

Recursively Enumerable

Not Recursively Enumerable

FR-39: Regular Expressions

• Regular expressions are a way to describe formal languages

• Regular expressions are defined recursively

• Base case – simple regular expressions

• Recursive case – how to build more complex regular expressions from simple regular expressions

FR-40: Regular Expressions

• ǫ is a regular expression, representing {ǫ}

• ∅ is a regular expression, representing {}

• ∀a ∈ Σ, a is a regular expression representing {a}

• if r1 and r2 are regular expressions, then (r1r2) is a regular expression

• L[(r1r2)] = L[r1] ◦ L[r2]

CS411-2015S-FR Final Review 9

• if r1 and r2 are regular expressions, then (r1 + r2) is a regular expression

• L[(r1 + r2)] = L[r1] ∪ L[r2]

• if r is regular expressions, then (r∗) is a regular expression

• L[(r∗)] = (L[r])∗

FR-41: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation +

ab*c+e = (a(b*)c) + e

(We will still need parentheses for some regular expressions: (a+b)(a+b)) FR-42: Regular Expressions

• Intuitive Reading of Regular Expressions

• Concatenation == “is followed by”

• + == “or”

• * == “zero or more occurances”

• (a+b)(a+b)(a+b)

• (a+b)*

• aab(aa)*

FR-43: Regular Languages

• A language L is regular if there exists a regular expression which generates it

• Give a regular expression for:

• All strings over {a, b} that have an odd # of a’s

FR-44: Regular Languages

• A language L is regular if there exists a regular expression which generates it

• Give a regular expression for:

• All strings over {a, b} that have an odd # of a’s

b∗a(b∗ab∗a)∗b∗

• All strings over {a, b} that contain exactly two occurrences of bb (bbb counts as 2 occurrences!)

FR-45: Regular Languages

• A language L is regular if there exists a regular expression which generates it

CS411-2015S-FR Final Review 10

• Give a regular expression for:

• All strings over {a, b} that have an odd # of a’s

b∗a(b∗ab∗a)∗b∗

• All strings over {a, b} that contain exactly two occurrences of bb (bbb counts as 2 occurrences!)

a∗(baa∗)∗bb(aa∗b)∗aa∗bb(aa∗b)∗a∗ + a∗(baa∗)∗bbb(aa∗b)∗a∗

FR-46: Regular Languages

• All strings over {0, 1} that begin (or end) with 11

• All strings over {0, 1} that begin (or end) with 11, but not both

FR-47: Regular Languages

• All strings over {0, 1} that begin (or end) with 11

• 11 (0+1)* 11 + 11

• All strings over {0, 1} that begin (or end) with 11, but not both

• 11(0+1)*0 + 11(0+1)*01 + 0(0+1)*11 + 10(0+1*)11

FR-48: Regular Languages

• Shortest string not described by following regular expressions?

• a*b*a*b*

• a*(ab)*(ba)*b*a*

• a*b*(ab)*b*a*

FR-49: Regular Languages

• Shortest string not described by following regular expressions?

• a*b*a*b*

• baba

• a*(ab)*(ba)*b*a*

• baab

• a*b*(ab)*b*a*

• baab

FR-50: Regular Languages

• English descriptions of following regular expressions:

• (aa+aaa)*

• b(a+b)*b + a(a+b)*a + a + b

• a*(baa*)*bb(aa*b)*a*

FR-51: Regular Languages

• A language L is regular if there exists a DFA which accepts it

CS411-2015S-FR Final Review 11

• DFA for all strings with exactly 2 occurrences of bb

FR-52: DFA Definition

• A DFA is a 5-tuple M = (K,Σ, δ, s, F)

• K Set of states

• Σ Alphabet

• δ : (K × Σ) 7→ K is a Transition function

• s ∈ K Initial state

• F ⊆ K Final states

FR-53: Regular Languages

• A language L is regular if there exists a DFA which accepts it

• DFA for all strings with exactly 2 occurrences of bb

b

a

0
b

1
a

2 4 6
b

a

b
5

a

7
a

b

a
3

a,b

b

b

FR-54: Regular Languages

• A language L is regular if there exists a DFA which accepts it

• DFA for all strings over {0,1} that start and end with 111

FR-55: Regular Languages

• A language L is regular if there exists a DFA which accepts it

• DFA for all strings over {0,1} that start and end with 111

0 1 2 4 6
0

3

0,1

1
5

1 1

1

1

0

0

64

1

1

0

1

0

FR-56: Regular Languages

CS411-2015S-FR Final Review 12

• A language L is regular if there exists a DFA which accepts it

• DFA for all strings over {0,1} that start with 110, end with 011

FR-57: Regular Languages

• A language L is regular if there exists a DFA which accepts it

• DFA for all strings over {0,1} that start with 110, end with 011

0 1 2 4 6
1

3

0,1

1
5

1 1

0

0

0
0

7

1

0
10 0

1

FR-58: Regular Languages

• Give a DFA for all strings over {0,1} that begin or end with 11

• Give a DFA for all strings over {0,1} that begin or end with 11 (but not both)

FR-59: Regular Languages

• Give a DFA for all strings over {0,1} that contain 101010

• Give a DFA for all strings over {0,1} that contain 101 or 010

• Give a DFA for all strings over {0,1} that contain 010 and 101

FR-60: DFA Configuration & ⊢M

• Way to describe the computation of a DFA

• Configuration: What state the DFA is currently in, and what string is left to process

• ∈ K × Σ∗

• (q2, abba) Machine is in state q2, has abba left to process

• (q8, bba) Machine is in state q8, has bba left to process

• (q4, ǫ) Machine is in state q4 at the end of the computation (accept iff q4 ∈ F)

FR-61: DFA Configuration & ⊢M

• Way to describe the computation of a DFA

• Configuration: What state the DFA is currently in, and what string is left to process

• ∈ K × Σ∗

CS411-2015S-FR Final Review 13

• Binary relation ⊢M : What machine M yields in one step

• ⊢M⊆ (K × Σ∗)× (K × Σ∗)

• ⊢M= {((q1, aw), (q2, w)) : q1, q2 ∈ KM , w ∈ Σ∗
M , a ∈ ΣM , ((q1, a), q2) ∈ δM}

FR-62: DFA Configuration & ⊢M

Given the following machine M :

a

a,b

b

a,b

0

1

2

• ((q0, abba), (q2, bba)) ∈⊢M

• can also be written (q0, abba) ⊢M (q2, bba)

FR-63: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 11101) ⊢M (q1, 1101)
⊢M (q2, 101)
⊢M (q3, 01)
⊢M (q0, 1)
⊢M (q1, ǫ)

FR-64: DFA Configuration & ⊢M

0
1 1

1
1

2 3

0 0 0

0 1

(q0, 10111) ⊢M (q1, 0111)
⊢M (q0, 111)
⊢M (q1, 11)
⊢M (q2, 1)
⊢M (q3, ǫ)

FR-65: DFA Configuration & ⊢∗
M

• ⊢∗
M is the reflexive, transitive closure of ⊢M

• Smallest superset of ⊢M that is both reflexive and transitive

CS411-2015S-FR Final Review 14

• “yields in 0 or more steps”

• Machine M accepts string w if:

(sM , w) ⊢∗
M (f, ǫ) for some f ∈ FM

FR-66: DFA & Languages

• Language accepted by a machine M = L[M]

• {w : (sM , w) ⊢∗
M (f, ǫ) for some f ∈ FM}

• DFA Languages, LDFA

• Set of all languages that can be defined by a DFA

• LDFA = {L : ∃M,L[M] = L}

• To think about: How does LDFA = LREG

FR-67: NFA Definition

• Difference between a DFA and an NFA

• DFA has exactly only transition for each state/symbol pair

• Transition function: δ : (K × Σ) 7→ K

• NFA has 0, 1 or more transitions for each state/symbol pair

• Transition relation: ∆ ⊆ ((K × Σ)×K)

FR-68: NFA Definition

• A NFA is a 5-tuple M = (K,Σ,∆, s, F)

• K Set of states

• Σ Alphabet

• ∆ : (K × Σ)×K is a Transition relation

• s ∈ K Initial state

• F ⊆ K Final states

FR-69: Fun with NFA

Create an NFA for:

• All strings over {a, b} that start with a and end with b

(also create a DFA, and regular expression) FR-70: Fun with NFA

Create an NFA for:

• All strings over {a, b} that contain 010 or 101

FR-71: Regular Languages

• A language L is regular if there exists an NFA which accepts it

• NFA for all strings over {a, b} that contain abba

CS411-2015S-FR Final Review 15

FR-72: Regular Languages

• A language L is regular if there exists an NFA which accepts it

• NFA for all strings over {a, b} that contain abba

0 1 2 3 4
aa b b

a,b a,b

FR-73: Regular Languages

• A language L is regular if there exists an NFA which accepts it

• NFA for all strings over {a, b} that do not contain abba

FR-74: Regular Languages

• A language L is regular if there exists an NFA which accepts it

• NFA for all strings over {a, b} that do not contain abba

0 1 2 3
a b b

b a

a
b

FR-75: Regular Expression & NFA

• Give a regular expression for all strings over {a,b} that have an even number of a’s, and a number of b’s divisible

by 3

FR-76: Pumping Lemma

• Not all languages are Regular

• L = all strings over {a, b, c} that contain more a’s than b’s and c’s combined

FR-77: Pumping Lemma

• To show that a language L is not regular, using the pumping lemma:

• Let n be the constant of the pumping lemma

• Create a string w ∈ L, such that |w| > n

• For each way of breaking w = xyz such that |xy| ≤ n, |y| > 0:

• Show that there is some i such that xyiz 6∈ L

CS411-2015S-FR Final Review 16

• By the pumping lemma, L is not regular

FR-78: Pumping Lemma

• Prove L = all strings over {a, b, c} that contain more a’s than b’s and c’s combined is not regular

• Let n be the constant of the pumping lemma

• Consider w = bnan+1 ∈ L

• If we break w = xyz such that |xy| ≤ n, then y must be all b’s. Let |y| = k

• Consider w′ = xy2x = bn+kan. w′ 6∈ L for any k > 0, thus by the pumping lemma, L is not regular

FR-79: Context-Free Languages

• A language is context-free if a CFG generates it

• All strings over {a, b, c} with same # of a’s as b’s

FR-80: Context-Free Languages

• A language is context-free if a CFG generates it

• All strings over {a, b, c} with same # of a’s as b’s

S → aSb

S → bSa

S → SS

S → cS

S → Sc

S → ǫ

FR-81: Context-Free Languages

• A language is context-free if a CFG generates it

• All strings over {a, b, c} with more a’s than b’s

FR-82: Context-Free Languages

• A language is context-free if a CFG generates it

• All strings over {a, b, c} with more a’s than b’s

S → cS|Sc
S → aSb|bSa
S → aA|Aa
S → SA

A → aAb

A → bAa

A → AA

A → cA|Ac
A → aA|Aa
A → ǫ

FR-83: Context-Free Languages

CS411-2015S-FR Final Review 17

• A language is context-free if a PDA accepts it

• All strings over {a, b, c} that contain more a’s than b’s and c’s combined

FR-84: Context-Free Languages

• A language is context-free if a PDA accepts it

• All strings over {a, b, c} that contain more a’s than b’s and c’s combined

0 1
(ε,ε,X)

(a,ε,ε)

(a,ε,A)

(a,X,ε)

(b,ε,X)

(b,A,ε)

(c,ε,X)

(c,A,ε)

FR-85: Recursive Languages

• A language L is recursive if an always-halting Turing Machine accepts it

• In other words, a Turing Machine decides L

• Create a Turing Machine for all strings over {a, b, c} with an equal number of a’s, b’s and c’s.

FR-86: Recursive Languages

• Computing functions with TMs

• Give a TM that computes negation, for a 2’s complement binary number

• (flip bits, add one, discard overflow)

FR-87: Recursive Languages

• Computing functions with TMs

• Give a TM that computes negation, for a 2’s complement binary number

FR-88: Recursive Languages

• Computing functions with TMs

• Give a TM that computes negation, for a 2’s complement binary number

• (flip bits, add one, discard overflow)

CS411-2015S-FR Final Review 18

R

1

0

L

0

1R

0

0

1
1

yes

FR-89: r.e. Languages

• A language L is recursively enumerable if there is some Turing Machine M that halts and accepts everything in

L, and runs forever on everything not in L

• Give a TM that semi-decides L = anbn

• Note that this language is also context-free – context-free languages are a subset of the r.e. languages

FR-90: r.e. Languages

• Enumeration Machines

• Create a Turing Machine that enumerate the language:

L = all strings of the form wcw, w ∈ (a+ b)∗

FR-91: Counter Machines

• Finite automata with a counter (never negative)

• Add one, subtract 1, check for zero

• Create a 1-counter machine for all strings over {a,b} that contain the same number of a’s as b’s

FR-92: Unrestricted Grammars

G = (V,Σ, R, S)

• V = Set of symbols, both terminals & non-terminals

• Σ ⊂ V set of terminals (alphabet for the language being described)

• R ⊂ (V ∗(V − Σ)V ∗ × V ∗) Set of rules

• S ∈ (V − Σ) Start symbol

FR-93: Unrestricted Grammars

• R ⊂ (V ∗(V − Σ)V ∗ × V ∗) Set of rules

• In an Unrestricted Grammar, the left-hand side of a rule contains a string of terminals and non-terminals (at least

one of which must be a non-terminal)

• Rules are applied just like CFGs:

CS411-2015S-FR Final Review 19

• Find a substring that matches the LHS of some rule

• Replace with the RHS of the rule

FR-94: Unrestricted Grammars

• To generate a string with an Unrestricted Grammar:

• Start with the initial symbol

• While the string contains at least one non-terminal:

• Find a substring that matches the LHS of some rule

• Replace that substring with the RHS of the rule

FR-95: Unrestricted Grammars

• Example: Grammar for L = {anbncn : n > 0}

• First, generate (ABC)∗

• Next, non-deterministically rearrange string

• Finally, convert to terminals (A → a,B → b, etc.), ensuring that string was reordered to form a∗b∗c∗

FR-96: Unrestricted Grammars

• Example: Grammar for L = {anbncn : n > 0}

S → ABCS

S → TC

CA → AC

BA → AB

CB → BC

CTC → TCc

TC → TB

BTB → TBb

TB → TA

ATA → TAa

TA → ǫ

FR-97: Unrestricted Grammars
S ⇒ ABCS ⇒ AATAbbcc

⇒ ABCABCS ⇒ ATAabbcc

⇒ ABACBCS ⇒ TAaabbcc

⇒ AABCBCS ⇒ aabbcc

⇒ AABBCCS

⇒ AABBCCTC

⇒ AABBCTCc

⇒ AABBTCcc

⇒ AABBTBcc

⇒ AABTBbcc

⇒ AATBbbcc

FR-98: Unrestricted Grammars

CS411-2015S-FR Final Review 20

S ⇒ ABCS ⇒ AAABBBBCCCTC

⇒ ABCABCS ⇒ AAABBBCCTCc

⇒ ABCABCABCS ⇒ AAABBBCTCcc

⇒ ABACBCABCS ⇒ AAABBBTCccc

⇒ AABCBCABCS ⇒ AAABBBTBccc

⇒ AABCBACBCS ⇒ AAABBTBbccc

⇒ AABCABCBCS ⇒ AAABTBbbccc

⇒ AABACBCBCS ⇒ AAATBbbbccc

⇒ AAABCBCBCS ⇒ AAATAbbbccc

⇒ AAABBCCBCS ⇒ AATAabbbccc

⇒ AAABBCBCCS ⇒ ATAaabbbccc

⇒ AAABBBCCCS ⇒ TAaaabbbccc ⇒ aaabbbccc

