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01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Projects

• Teams of up to 2

• Grading Policies

• Questions?

01-1: Notes on the Class

• Don’t be afraid to ask me to slow down!

• We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.

ASK QUESTIONS

• While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always

happy to stop, re-explain a topic in a different way.

• If you are confused, I can guarantee that at least one other person in the class would benefit from more

explanation

01-2: Notes on the Class

• Projects are non-trivial

• Using new tools (JavaCC)

• Managing a large scale project

• Lots of complex classes & advanced programming techniques.

01-3: Notes on the Class

• Projects are non-trivial

• Using new tools (JavaCC)

• Managing a large scale project

• Lots of complex classes & advanced programming techniques.

• START EARLY!

• Projects will take longer than you think (especially starting with the semantic analyzer project)

• ASK QUESTIONS!
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01-4: What is a compiler?

Source Program Compiler Machine code

Simplified View

01-5: What is a compiler?
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01-7: What is a compiler?
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01-8: Why Use Decomposition?

01-9: Why Use Decomposition?

Software Engineering!

• Smaller units are easier to write, test and debug

• Code Reuse

• Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

• Create a new language – want compilers available for several platforms

01-10: Lexical Analysis

• Converting input file to stream of tokens

void main() {

print(4);

}

01-11: Lexical Analysis

• Converting input file to stream of tokens

void main() { IDENTIFIER(void)

print(4); IDENTIFIER(main)

} LEFT-PARENTHESIS

RIGHT-PARENTHESIS

LEFT-BRACE

IDENTIFIER(print)

LEFT-PARENTHESIS

INTEGER-LITERAL(4)

RIGHT-PARENTHESIS

SEMICOLON

RIGHT-BRACE

01-12: Lexical Analysis

Brute-Force Approach

• Lots of nested if statements
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if (c = nextchar() == ’P’) {

if (c = nextchar() == ’R’) {

if (c = nextchar() == ’0’) {

if (c = nextchar() == ’G’) {

/* Code to handle the rest of either

PROGRAM or any identifier that starts

with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either

PROCEDURE or any identifier that starts

with PROC

*/

...

01-13: Lexical Analysis

Brute-Force Approach

• Break the input file into words, separated by spaces or tabs

• This can be tricky – not all tokens are separated by whitespace

• Use string comparison to determine tokens

01-14: Deterministic Finite Automata

• Set of states

• Initial State

• Final State(s)

• Transitions

DFA for else, end, identifiers

Combine DFA 01-15: DFAs and Lexical Analyzers

• Given a DFA, it is easy to create C code to implement it

• DFAs are easier to understand than C code

• Visual – almost like structure charts

• ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs

We’d like a tool:

• Describe the tokens in the language

• Automatically create DFA for tokens

• Then, automatically create C code that implements the DFA

We need a method for describing tokens

01-17: Formal Languages

• Alphabet Σ: Set of all possible symbols (characters) in the input file

• Think of Σ as the set of symbols on the keyboard

• String w: Sequence of symbols from an alphabet
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• String length |w| Number of characters in a string: |car| = 3, |abba| = 4

• Empty String ǫ: String of length 0: |ǫ| = 0

• Formal Language: Set of strings over an alphabet

Formal Language 6= Programming language – Formal Language is only a set of strings.

01-18: Formal Languages

Example formal languages:

• Integers {0, 23, 44, . . .}

• Floating Point Numbers {3.4, 5.97, . . .}

• Identifiers {foo, bar, . . .}

01-19: Language Concatenation

• Language Concatenation Given two formal languages L1 and L2, the concatenation of L1 and L2, L1L2 =
{xy|x ∈ L1, y ∈ L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog}
01-20: Kleene Closure Given a formal language L:

L0 = {ǫ}
L1 = L

L2 = LL

L3 = LLL

L4 = LLLL

L∗ = L0
⋃

L1
⋃

L2
⋃

. . .
⋃

Ln

⋃
. . .

01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet Σ:

Regular Expression Language

ǫ L[ǫ] = {ǫ}
a ∈ Σ L[a] = {a}
(MR) L[MR] = L[M ]L[R]
(M |R) L[(M |R)] = L[M ]

⋃
L[R]

(M∗) L[(M∗)] = L[M ]∗
01-22: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation |

ab*c|e = (a(b*)c) | e

01-23: Regular Expression Examples
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all strings over {a,b}
binary integers (with leading zeroes)

all strings over {a,b} that

begin and end with a

all strings over {a,b} that

contain aa

all strings over {a,b} that

do not contain aa
01-24: Regular Expression Examples

all strings over {a,b} (a|b)*

binary integers (with leading zeroes) (0|1)(0|1)*

all strings over {a,b} that a(a|b)*a

begin and end with a

all strings over {a,b} that (a|b)*aa(a|b)*

contain aa

all strings over {a,b} that b*(abb*)*(a|ǫ)
do not contain aa

01-25: Reg. Exp. Shorthand

[a,b,c,d] = (a|b|c|d)

[d-g] = [d,e,f,g] = (b|e|f|g)

[d-f,M-O] = [d,e,f,M,N,O]

= (d|e|f|M|N|O)

(α)? = Optionally α (i.e., (α | ǫ))
(α)+ = α(α)*

01-26: Regular Expressions & Unix

• Many unix tools use regular expressions

• Example: grep ’<reg exp>’ filename

• Prints all lines that contain a match to the regular expression

• Special characters:

• ˆ beginning of line

• $ end of line

• (grep examples on other screen)

01-27: JavaCC Regular Expressions

• All characters & strings must be in quotation marks

• "else"

• "+"

• ("a"|"b")

• All regular expressions involving * must be parenthesized

• ("a")*, not "a"*

01-28: JavaCC Shorthand
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[”a”,”b”,”c”,”d”] = (”a”|”b”|”c”|”d”)

[”d”-”g”] = [”d”,”e”,”f”,”g”] = (”b”|”e”|”f”|”g”)

[”d”-”f”,”M”-”O”] = [”d”,”e”,”f”,”M”,”N”,”O”]

= (”d”|”e”|”f”|”M”|”N”|”O”)

(α)? = Optionally α (i.e., (α | ǫ))
(α)+ = α(α)*

(˜[”a”,”b”]) = Any character except “a” or “b”.

Can only be used with [] notation

˜(a(a—b)*b) is not legal

01-29: r.e. Shorthand Examples

Regular Expression Langauge

{if}
Set of legal identifiers

Set of integer literals

(leading zeroes allowed)

Set of real literals

01-30: r.e. Shorthand Examples

Regular Expression Langauge

”if” {if}
[”a”-”z”]([”0”-”9”,”a”-”z”])* Set of legal identifiers

[”0”-”9”] Set of integer literals

(leading zeroes allowed)

([”0”-”9”]+”.”([”0”-”9”]*))| Set of real literals

(([”0”-”9”])*”.”[”0”-”9”]+)
01-31: Lexical Analyzer Generator

JavaCC is a Lexical Analyzer Generator and a Parser Generator

• Input: Set of regular expressions (each of which describes a type of token in the language)

• Output: A lexical analyzer, which reads an input file and separates it into tokens

01-32: Structure of a JavaCC file

options{

/* Code to set various options flags */

}

PARSER_BEGIN(foo)

public class foo {

/* This segment is often empty */

}

PARSER_END(foo)

TOKEN_MGR_DECLS :

{

/* Declarations used by lexical analyzer */

}

/* Token Rules & Actions */

01-33: Token Rules in JavaCC

• Tokens are described by rules with the following syntax:

TOKEN :

{

<TOKEN_NAME: RegularExpression>

}

• TOKEN NAME is the name of the token being described
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• RegularExpression is a regular expression that describes the token

01-34: Token Rules in JavaCC

• Token rule examples:

TOKEN :

{

<ELSE: "else">

}

TOKEN :

{

<INTEGER_LITERAL: (["0"-"9"])+>

}

01-35: Token Rules in JavaCC

• Several different tokens can be described in the same TOKEN block, with token descriptions separated by |.

TOKEN :

{

<ELSE: "else">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <SEMICOLON: ";">

}

01-36: getNextToken

• When we run javacc on the input file foo.jj, it creates the class fooTokenManager

• The class fooTokenManager contains the static method getNextToken()

• Every call to getNextToken() returns the next token in the input stream.

01-37: getNextToken

• When getNextToken is called, a regular expression is found that matches the next characters in the input

stream.

• What if more than one regular expression matches?

TOKEN :

{

<ELSE: "else">

| <IDENTIFIER: (["a"-"z"])+>

}

01-38: getNextToken

• When more than one regular expression matches the input stream:

• Use the longest match

• “elsed” should match to IDENTIFIER, not to ELSE followed by the identifier “d”
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• If two matches have the same length, use the rule that appears first in the .jj file

• “else” should match to ELSE, not IDENTIFIER

01-39: JavaCC Example

PARSER_BEGIN(simple)

public class simple {

}

PARSER_END(simple)

TOKEN :

{

<ELSE: "else">

| <SEMICOLON: ";">

| <FOR: "for">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <IDENTIFIER: ["a"-"z"](["a"-"z","0"-"9"])*>

}

else;ford for 01-40: SKIP Rules

• Tell JavaCC what to ignore (typically whitespace) using SKIP rules

• SKIP rule is just like a TOKEN rule, except that no TOKEN is returned.

SKIP:

{

< regularexpression1 >

| < regularexpression2 >

| ...

| < regularexpressionn >

}

01-41: Example SKIP Rules

PARSER_BEGIN(simple2)

public class simple2 {

}

PARSER_END(simple2)

SKIP :

{

< " " >

| < "\n" >

| < "\t" >

}

TOKEN :

{

<ELSE: "else">

| <SEMICOLON: ";">

| <FOR: "for">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <IDENTIFIER: ["A"-"Z"](["A"-"Z","0"-"9"])*>

}

01-42: JavaCC States

• Comments can be dealt with using SKIP rules

• How could we skip over 1-line C++ Style comments?

// This is a comment

01-43: JavaCC States

• Comments can be dealt with using SKIP rules

• How we could skip over 1-line C++ Style comments:
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// This is a comment

• Using a SKIP rule

SKIP :

{

< "//" (˜["\n"])* "\n" >

}

01-44: JavaCC States

• Writing a regular expression to match multi-line comments (using /* and */) is much more difficult

• Writing a regular expression to match nested comments is impossible (take Automata Theory for a proof :) )

• What can we do?

• Use JavaCC States

01-45: JavaCC States

• We can label each TOKEN and SKIP rule with a “state”

• Unlabeled TOKEN and SKIP rules are assumed to be in the default state (named DEFAULT, unsurprisingly

enough)

• Can switch to a new state after matching a TOKEN or SKIP rule using the : NEWSTATE notation

01-46: JavaCC States

SKIP :

{

< " " >

| < "\n" >

| < "\t" >

}

SKIP :

{

< "/*" > : IN_COMMENT

}

<IN_COMMENT>

SKIP :

{

< "*/" > : DEFAULT

| < ˜[] >

}

TOKEN :

{

<ELSE: "else">

| ... (etc)

}

01-47: Actions in TOKEN & SKIP

• We can add Java code to any SKIP or TOKEN rule

• That code will be executed when the SKIP or TOKEN rule is matched.

• Any methods / variables defined in the TOKEN MGR DECLS section can be used by these actions

01-48: Actions in TOKEN & SKIP
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PARSER_BEGIN(remComments)

public class remComments { }

PARSER_END(remComments)

TOKEN_MGR_DECLS :

{

public static int numcomments = 0;

}

SKIP :

{

< "/*" > : IN_COMMENT

}

SKIP :

{

< "//" (˜["\n"])* "\n" > { numcomments++; }

}

01-49: Actions in TOKEN & SKIP

<IN_COMMENT>

SKIP :

{

< "*/" > { numcomments++; SwitchTo(DEFAULT);}

}

<IN_COMMENT>

SKIP :

{

< ˜[] >

}

TOKEN :

{

<ANY: ˜[]>

}

01-50: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:

• public int kind; The type of token. When javacc is run on the file foo.jj, a file fooConstants.java

is created, which contains the symbolic names for each constant

public interface simplejavaConstants {

int EOF = 0;

int CLASSS = 8;

int DO = 9;

int ELSE = 10;

...

01-51: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:

• public int beginLine, beginColumn, endLine, endColumn; The location of the to-

ken in the input file

01-52: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:
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• public String image; The text that was matched to create the token.

01-53: Generated TokenManager

class TokenTest {

public static void main(String args[]) {

Token t;

Java.io.InputStream infile;

pascalTokenManager tm;

boolean loop = true;

if (args.length < 1) {

System.out.print("Enter filename as command line argument");

return;

}

try {

infile = new Java.io.FileInputStream(args[0]);

} catch (Java.io.FileNotFoundException e) {

System.out.println("File " + args[0] + " not found.");

return;

}

tm = new sjavaTokenManager(new SimpleCharStream(infile));

01-54: Generated TokenManager

t = tm.getNextToken();

while(t.kind != sjavaConstants.EOF) {

System.out.println("Token : "+ t + " : ");

System.out.println(pascalConstants.tokenImage[t.kind]);

}

}

}

01-55: Lexer Project

• Write a .jj file for simpleJava tokens

• Need to handle all whitespace (tabs, spaces, end-of-line)

• Need to handle nested comments (to an arbitrary nesting level)

01-56: Project Details

• JavaCC is available at https://javacc.dev.java.net/

• To compile your project

% javacc simplejava.jj

% javac *.java

• To test your project

% java TokenTest <test filename>

• To submit your program: Create a branch:

https://www.cs.usfca.edu/svn/<username>/cs414/lexer/


