
CS414-2017S-01 Compiler Basics & Lexical Analysis 1

01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Projects

• Teams of up to 2

• Grading Policies

• Questions?

01-1: Notes on the Class

• Don’t be afraid to ask me to slow down!

• We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.

ASK QUESTIONS

• While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always

happy to stop, re-explain a topic in a different way.

• If you are confused, I can guarantee that at least one other person in the class would benefit from more

explanation

01-2: Notes on the Class

• Projects are non-trivial

• Using new tools (JavaCC)

• Managing a large scale project

• Lots of complex classes & advanced programming techniques.

01-3: Notes on the Class

• Projects are non-trivial

• Using new tools (JavaCC)

• Managing a large scale project

• Lots of complex classes & advanced programming techniques.

• START EARLY!

• Projects will take longer than you think (especially starting with the semantic analyzer project)

• ASK QUESTIONS!

CS414-2017S-01 Compiler Basics & Lexical Analysis 2

01-4: What is a compiler?

Source Program Compiler Machine code

Simplified View

01-5: What is a compiler?

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

More Accurate View

01-6: What is a compiler?

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

Front end

Back End

01-7: What is a compiler?

CS414-2017S-01 Compiler Basics & Lexical Analysis 3

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

Covered in
this course

01-8: Why Use Decomposition?

01-9: Why Use Decomposition?

Software Engineering!

• Smaller units are easier to write, test and debug

• Code Reuse

• Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

• Create a new language – want compilers available for several platforms

01-10: Lexical Analysis

• Converting input file to stream of tokens

void main() {

print(4);

}

01-11: Lexical Analysis

• Converting input file to stream of tokens

void main() { IDENTIFIER(void)

print(4); IDENTIFIER(main)

} LEFT-PARENTHESIS

RIGHT-PARENTHESIS

LEFT-BRACE

IDENTIFIER(print)

LEFT-PARENTHESIS

INTEGER-LITERAL(4)

RIGHT-PARENTHESIS

SEMICOLON

RIGHT-BRACE

01-12: Lexical Analysis

Brute-Force Approach

• Lots of nested if statements

CS414-2017S-01 Compiler Basics & Lexical Analysis 4

if (c = nextchar() == ’P’) {

if (c = nextchar() == ’R’) {

if (c = nextchar() == ’0’) {

if (c = nextchar() == ’G’) {

/* Code to handle the rest of either

PROGRAM or any identifier that starts

with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either

PROCEDURE or any identifier that starts

with PROC

*/

...

01-13: Lexical Analysis

Brute-Force Approach

• Break the input file into words, separated by spaces or tabs

• This can be tricky – not all tokens are separated by whitespace

• Use string comparison to determine tokens

01-14: Deterministic Finite Automata

• Set of states

• Initial State

• Final State(s)

• Transitions

DFA for else, end, identifiers

Combine DFA 01-15: DFAs and Lexical Analyzers

• Given a DFA, it is easy to create C code to implement it

• DFAs are easier to understand than C code

• Visual – almost like structure charts

• ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs

We’d like a tool:

• Describe the tokens in the language

• Automatically create DFA for tokens

• Then, automatically create C code that implements the DFA

We need a method for describing tokens

01-17: Formal Languages

• Alphabet Σ: Set of all possible symbols (characters) in the input file

• Think of Σ as the set of symbols on the keyboard

• String w: Sequence of symbols from an alphabet

CS414-2017S-01 Compiler Basics & Lexical Analysis 5

• String length |w| Number of characters in a string: |car| = 3, |abba| = 4

• Empty String ǫ: String of length 0: |ǫ| = 0

• Formal Language: Set of strings over an alphabet

Formal Language 6= Programming language – Formal Language is only a set of strings.

01-18: Formal Languages

Example formal languages:

• Integers {0, 23, 44, . . .}

• Floating Point Numbers {3.4, 5.97, . . .}

• Identifiers {foo, bar, . . .}

01-19: Language Concatenation

• Language Concatenation Given two formal languages L1 and L2, the concatenation of L1 and L2, L1L2 =
{xy|x ∈ L1, y ∈ L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog}
01-20: Kleene Closure Given a formal language L:

L0 = {ǫ}
L1 = L

L2 = LL

L3 = LLL

L4 = LLLL

L∗ = L0
⋃

L1
⋃

L2
⋃

. . .
⋃

Ln

⋃
. . .

01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet Σ:

Regular Expression Language

ǫ L[ǫ] = {ǫ}
a ∈ Σ L[a] = {a}
(MR) L[MR] = L[M]L[R]
(M |R) L[(M |R)] = L[M]

⋃
L[R]

(M∗) L[(M∗)] = L[M]∗
01-22: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation |

ab*c|e = (a(b*)c) | e

01-23: Regular Expression Examples

CS414-2017S-01 Compiler Basics & Lexical Analysis 6

all strings over {a,b}
binary integers (with leading zeroes)

all strings over {a,b} that

begin and end with a

all strings over {a,b} that

contain aa

all strings over {a,b} that

do not contain aa
01-24: Regular Expression Examples

all strings over {a,b} (a|b)*

binary integers (with leading zeroes) (0|1)(0|1)*

all strings over {a,b} that a(a|b)*a

begin and end with a

all strings over {a,b} that (a|b)*aa(a|b)*

contain aa

all strings over {a,b} that b*(abb*)*(a|ǫ)
do not contain aa

01-25: Reg. Exp. Shorthand

[a,b,c,d] = (a|b|c|d)

[d-g] = [d,e,f,g] = (b|e|f|g)

[d-f,M-O] = [d,e,f,M,N,O]

= (d|e|f|M|N|O)

(α)? = Optionally α (i.e., (α | ǫ))
(α)+ = α(α)*

01-26: Regular Expressions & Unix

• Many unix tools use regular expressions

• Example: grep ’<reg exp>’ filename

• Prints all lines that contain a match to the regular expression

• Special characters:

• ˆ beginning of line

• $ end of line

• (grep examples on other screen)

01-27: JavaCC Regular Expressions

• All characters & strings must be in quotation marks

• "else"

• "+"

• ("a"|"b")

• All regular expressions involving * must be parenthesized

• ("a")*, not "a"*

01-28: JavaCC Shorthand

CS414-2017S-01 Compiler Basics & Lexical Analysis 7

[”a”,”b”,”c”,”d”] = (”a”|”b”|”c”|”d”)

[”d”-”g”] = [”d”,”e”,”f”,”g”] = (”b”|”e”|”f”|”g”)

[”d”-”f”,”M”-”O”] = [”d”,”e”,”f”,”M”,”N”,”O”]

= (”d”|”e”|”f”|”M”|”N”|”O”)

(α)? = Optionally α (i.e., (α | ǫ))
(α)+ = α(α)*

(˜[”a”,”b”]) = Any character except “a” or “b”.

Can only be used with [] notation

˜(a(a—b)*b) is not legal

01-29: r.e. Shorthand Examples

Regular Expression Langauge

{if}
Set of legal identifiers

Set of integer literals

(leading zeroes allowed)

Set of real literals

01-30: r.e. Shorthand Examples

Regular Expression Langauge

”if” {if}
[”a”-”z”]([”0”-”9”,”a”-”z”])* Set of legal identifiers

[”0”-”9”] Set of integer literals

(leading zeroes allowed)

([”0”-”9”]+”.”([”0”-”9”]*))| Set of real literals

(([”0”-”9”])*”.”[”0”-”9”]+)
01-31: Lexical Analyzer Generator

JavaCC is a Lexical Analyzer Generator and a Parser Generator

• Input: Set of regular expressions (each of which describes a type of token in the language)

• Output: A lexical analyzer, which reads an input file and separates it into tokens

01-32: Structure of a JavaCC file

options{

/* Code to set various options flags */

}

PARSER_BEGIN(foo)

public class foo {

/* This segment is often empty */

}

PARSER_END(foo)

TOKEN_MGR_DECLS :

{

/* Declarations used by lexical analyzer */

}

/* Token Rules & Actions */

01-33: Token Rules in JavaCC

• Tokens are described by rules with the following syntax:

TOKEN :

{

<TOKEN_NAME: RegularExpression>

}

• TOKEN NAME is the name of the token being described

CS414-2017S-01 Compiler Basics & Lexical Analysis 8

• RegularExpression is a regular expression that describes the token

01-34: Token Rules in JavaCC

• Token rule examples:

TOKEN :

{

<ELSE: "else">

}

TOKEN :

{

<INTEGER_LITERAL: (["0"-"9"])+>

}

01-35: Token Rules in JavaCC

• Several different tokens can be described in the same TOKEN block, with token descriptions separated by |.

TOKEN :

{

<ELSE: "else">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <SEMICOLON: ";">

}

01-36: getNextToken

• When we run javacc on the input file foo.jj, it creates the class fooTokenManager

• The class fooTokenManager contains the static method getNextToken()

• Every call to getNextToken() returns the next token in the input stream.

01-37: getNextToken

• When getNextToken is called, a regular expression is found that matches the next characters in the input

stream.

• What if more than one regular expression matches?

TOKEN :

{

<ELSE: "else">

| <IDENTIFIER: (["a"-"z"])+>

}

01-38: getNextToken

• When more than one regular expression matches the input stream:

• Use the longest match

• “elsed” should match to IDENTIFIER, not to ELSE followed by the identifier “d”

CS414-2017S-01 Compiler Basics & Lexical Analysis 9

• If two matches have the same length, use the rule that appears first in the .jj file

• “else” should match to ELSE, not IDENTIFIER

01-39: JavaCC Example

PARSER_BEGIN(simple)

public class simple {

}

PARSER_END(simple)

TOKEN :

{

<ELSE: "else">

| <SEMICOLON: ";">

| <FOR: "for">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <IDENTIFIER: ["a"-"z"](["a"-"z","0"-"9"])*>

}

else;ford for 01-40: SKIP Rules

• Tell JavaCC what to ignore (typically whitespace) using SKIP rules

• SKIP rule is just like a TOKEN rule, except that no TOKEN is returned.

SKIP:

{

< regularexpression1 >

| < regularexpression2 >

| ...

| < regularexpressionn >

}

01-41: Example SKIP Rules

PARSER_BEGIN(simple2)

public class simple2 {

}

PARSER_END(simple2)

SKIP :

{

< " " >

| < "\n" >

| < "\t" >

}

TOKEN :

{

<ELSE: "else">

| <SEMICOLON: ";">

| <FOR: "for">

| <INTEGER_LITERAL: (["0"-"9"])+>

| <IDENTIFIER: ["A"-"Z"](["A"-"Z","0"-"9"])*>

}

01-42: JavaCC States

• Comments can be dealt with using SKIP rules

• How could we skip over 1-line C++ Style comments?

// This is a comment

01-43: JavaCC States

• Comments can be dealt with using SKIP rules

• How we could skip over 1-line C++ Style comments:

CS414-2017S-01 Compiler Basics & Lexical Analysis 10

// This is a comment

• Using a SKIP rule

SKIP :

{

< "//" (˜["\n"])* "\n" >

}

01-44: JavaCC States

• Writing a regular expression to match multi-line comments (using /* and */) is much more difficult

• Writing a regular expression to match nested comments is impossible (take Automata Theory for a proof :))

• What can we do?

• Use JavaCC States

01-45: JavaCC States

• We can label each TOKEN and SKIP rule with a “state”

• Unlabeled TOKEN and SKIP rules are assumed to be in the default state (named DEFAULT, unsurprisingly

enough)

• Can switch to a new state after matching a TOKEN or SKIP rule using the : NEWSTATE notation

01-46: JavaCC States

SKIP :

{

< " " >

| < "\n" >

| < "\t" >

}

SKIP :

{

< "/*" > : IN_COMMENT

}

<IN_COMMENT>

SKIP :

{

< "*/" > : DEFAULT

| < ˜[] >

}

TOKEN :

{

<ELSE: "else">

| ... (etc)

}

01-47: Actions in TOKEN & SKIP

• We can add Java code to any SKIP or TOKEN rule

• That code will be executed when the SKIP or TOKEN rule is matched.

• Any methods / variables defined in the TOKEN MGR DECLS section can be used by these actions

01-48: Actions in TOKEN & SKIP

CS414-2017S-01 Compiler Basics & Lexical Analysis 11

PARSER_BEGIN(remComments)

public class remComments { }

PARSER_END(remComments)

TOKEN_MGR_DECLS :

{

public static int numcomments = 0;

}

SKIP :

{

< "/*" > : IN_COMMENT

}

SKIP :

{

< "//" (˜["\n"])* "\n" > { numcomments++; }

}

01-49: Actions in TOKEN & SKIP

<IN_COMMENT>

SKIP :

{

< "*/" > { numcomments++; SwitchTo(DEFAULT);}

}

<IN_COMMENT>

SKIP :

{

< ˜[] >

}

TOKEN :

{

<ANY: ˜[]>

}

01-50: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:

• public int kind; The type of token. When javacc is run on the file foo.jj, a file fooConstants.java

is created, which contains the symbolic names for each constant

public interface simplejavaConstants {

int EOF = 0;

int CLASSS = 8;

int DO = 9;

int ELSE = 10;

...

01-51: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:

• public int beginLine, beginColumn, endLine, endColumn; The location of the to-

ken in the input file

01-52: Tokens

• Each call to getNextToken returns a “Token” object

• Token class is automatically created by javaCC.

• Variables of type Token contain the following public variables:

CS414-2017S-01 Compiler Basics & Lexical Analysis 12

• public String image; The text that was matched to create the token.

01-53: Generated TokenManager

class TokenTest {

public static void main(String args[]) {

Token t;

Java.io.InputStream infile;

pascalTokenManager tm;

boolean loop = true;

if (args.length < 1) {

System.out.print("Enter filename as command line argument");

return;

}

try {

infile = new Java.io.FileInputStream(args[0]);

} catch (Java.io.FileNotFoundException e) {

System.out.println("File " + args[0] + " not found.");

return;

}

tm = new sjavaTokenManager(new SimpleCharStream(infile));

01-54: Generated TokenManager

t = tm.getNextToken();

while(t.kind != sjavaConstants.EOF) {

System.out.println("Token : "+ t + " : ");

System.out.println(pascalConstants.tokenImage[t.kind]);

}

}

}

01-55: Lexer Project

• Write a .jj file for simpleJava tokens

• Need to handle all whitespace (tabs, spaces, end-of-line)

• Need to handle nested comments (to an arbitrary nesting level)

01-56: Project Details

• JavaCC is available at https://javacc.dev.java.net/

• To compile your project

% javacc simplejava.jj

% javac *.java

• To test your project

% java TokenTest <test filename>

• To submit your program: Create a branch:

https://www.cs.usfca.edu/svn/<username>/cs414/lexer/

