
CS414-2017S-01 Compiler Basics & Lexical Analysis 1

01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Projects

• Teams of up to 2

• Grading Policies

• Questions?

01-1: Notes on the Class

• I tend to talk quickly. Don’t be afraid to ask me to slow down!

• We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.

ASK QUESTIONS

• While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always

happy to stop, re-explain a topic in a different way.

• If you are confused, I can guarantee that at least 1 other person in the class would benefit from more

explanation

01-2: Notes on the Class

• Projects are non-trivial

• Using new tools (lex, yacc)

• Managing a large scale project

• Lots of pointer chasing, with large, complex data structures

01-3: Notes on the Class

• Projects are non-trivial

• Using new tools (lex, yacc)

• Managing a large scale project

• Lots of pointer chasing, with large, complex data structures

• START EARLY!

• Projects will take longer than you think (especially starting with the semantic analyzer project)

• ASK QUESTIONS!

CS414-2017S-01 Compiler Basics & Lexical Analysis 2

01-4: What is a compiler?

Source Program Compiler Machine code

Simplified View

01-5: What is a compiler?

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

More Accurate View

01-6: What is a compiler?

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

Front end

Back End

01-7: What is a compiler?

CS414-2017S-01 Compiler Basics & Lexical Analysis 3

ParserLexical Analyzer

Linker

Source
File

Token
Stream

Semantic Analyzer

Assembly Tree
Generator

Abstract
Assembly
Tree

Abstract
Syntax Tree

Code GeneratorAssembly

Assembler
Relocatable
Object
Code

Libraries

Machine code

Covered in
this course

01-8: Why Use Decomposition?

01-9: Why Use Decomposition?

Software Engineering!

• Smaller units are easier to write, test and debug

• Code Reuse

• Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

• Create a new language – want compilers available for several platforms

01-10: Lexical Analysis

• Converting input file to stream of tokens

void main() {

print(4);

}

01-11: Lexical Analysis

• Converting input file to stream of tokens

void main() { IDENTIFIER(void)

print(4); IDENTIFIER(main)

} LEFT-PARENTHESIS

RIGHT-PARENTHESIS

LEFT-BRACE

IDENTIFIER(print)

LEFT-PARENTHESIS

INTEGER-LITERAL(4)

RIGHT-PARENTHESIS

SEMICOLON

RIGHT-BRACE

01-12: Lexical Analysis

Brute-Force Approach

• Lots of nested if statements

CS414-2017S-01 Compiler Basics & Lexical Analysis 4

if (c = nextchar() == ’P’) {

if (c = nextchar() == ’R’) {

if (c = nextchar() == ’0’) {

if (c = nextchar() == ’G’) {

/* Code to handle the rest of either

PROGRAM or any identifier that starts

with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either

PROCEDURE or any identifier that starts

with PROC

*/

...

01-13: Lexical Analysis

Brute-Force Approach

• Break the input file into words, separated by spaces or tabs

• This can be tricky – not all tokens are separated by whitespace

• Use string comparison to determine tokens

01-14: Deterministic Finite Automata

• Set of states

• Initial State

• Final State(s)

• Transitions

DFA for else, end, identifiers

Combine DFA 01-15: DFAs and Lexical Analyzers

• Given a DFA, it is easy to create C code to implement it

• DFAs are easier to understand than C code

• Visual – almost like structure charts

• ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs

We’d like a tool:

• Describe the tokens in the language

• Automatically create DFA for tokens

• Then, automatically create C code that implements the DFA

We need a method for describing tokens

01-17: Formal Languages

• Alphabet Σ: Set of all possible symbols (characters) in the input file

• Think of Σ as the set of symbols on the keyboard

• String w: Sequence of symbols from an alphabet

CS414-2017S-01 Compiler Basics & Lexical Analysis 5

• String length |w| Number of characters in a string: |car| = 3, |abba| = 4

• Empty String ǫ: String of length 0: |ǫ| = 0

• Formal Language: Set of strings over an alphabet

Formal Language 6= Programming language – Formal Language is only a set of strings.

01-18: Formal Languages

Example formal languages:

• Integers {0, 23, 44, . . .}

• Floating Point Numbers {3.4, 5.97, . . .}

• Identifiers {foo, bar, . . .}

01-19: Language Concatenation

• Language Concatenation Given two formal languages L1 and L2, the concatenation of L1 and L2, L1L2 =
{xy|x ∈ L1, y ∈ L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog}
01-20: Kleene Closure Given a formal language L:

L0 = {ǫ}
L1 = L

L2 = LL

L3 = LLL

L4 = LLLL

L∗ = L0
⋃

L1
⋃

L2
⋃

. . .
⋃

Ln

⋃
. . .

01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet Σ:

Regular Expression Language

ǫ L[ǫ] = {ǫ}
a ∈ Σ L[a] = {a}
(MR) L[MR] = L[M]L[R]
(M |R) L[(M |R)] = L[M]

⋃
L[R]

(M∗) L[(M∗)] = L[M]∗
01-22: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation |

ab*c|e = (a(b*)c) | e

01-23: Regular Expression Examples

CS414-2017S-01 Compiler Basics & Lexical Analysis 6

(a|b)* all strings over {a,b}
(0|1)* binary integers (with leading zeroes)

a(a|b)*a all strings over {a,b} that

begin and end with a

(a|b)*aa(a|b)* all strings over {a,b} that

contain aa

b*(abb*)*(a|ǫ) all strings over {a,b} that

do not contain aa

01-24: r.e. Shorthand
[abcd] = (a|b|c|d)

[b-g] = [befg] = (b|e|f|g)

[b-gM-O] = [befgMNO] = (b|e|f|g|M|N|O)

M? = (M | ǫ)
M+ = MM*

. = Any character except newline

”vc” = The string vc exactly

4”.”5 = String 4.5 (not 4¡any¿5)

01-25: r.e. Shorthand Examples

Regular Expression Langauge

if {if}
[a-z][0-9a-z]* Set of legal identifiers

[0-9] Set of integers (with leading zeroes)

([0-9]+”.”[0-9]*)| Set of real numbers

([0-9]*”.”[0-9]+)

01-26: Lexical Analyzer Generator

Lex is a lexical analyzer generator

• Input: Set of regular expressions (each of which describes a type of token in the language)

• Output: A lexical analyzer, which reads an input file and separates it into tokens

01-27: Structure of lex file

%{

/* C declarations */

%}

/* Lex definitions */

%%

/* Regular expressions and actions */

01-28: How Lex Works

• Lex creates a function int yylex(), which does the following:

while(true) {

<find a rule that matches the next

section of the input>

CS414-2017S-01 Compiler Basics & Lexical Analysis 7

<execute action associated with

that rule>

}

• Thus, a call to yylex() will keep matching rules and performing actions, until an action contains a return state-

ment

01-29: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

01-30: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

01-31: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

" " { }

\n { }

01-32: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

CS414-2017S-01 Compiler Basics & Lexical Analysis 8

"," { return COMMA; }

" " { }

\n { }

[0-9]+ { return INTEGER_LITERAL; }

01-33: Lex Example

%{

#include <string.h>

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

" " { }

\n { }

[0-9]+ { yylval.integer_value.value =

atoi(yytex);

return INTEGER_LITERAL; }

01-34: Lex Loop Lex creates a function yylex, which does the following:

• Find regular expression that matches the input

• Execute the action associated with that regular expression

• Repeat, until a return statement is reached – return the appropriate value

01-35: Lex Matching What if more than one regular expression matches?

• Find the longest possible match

• if382 returns an IDENTIFIER, not an IF followed by an INTEGER LITERAL

• If two matches are the same length, match the string that appears earliest in the file.

• if returns an IF, not an IDENTIFIER (as long as the rule for IDENTIFIER appears after the rule for IF)

01-36: Lex States

• We can label each regular expression/action pair with a “state”

• Unlabeled regular expression/action pairs are assumed to be in the default INITIAL state

• Lex will only match regular expressions for the current state

• Can switch between states with a BEGIN action

01-37: Using Lex States

CS414-2017S-01 Compiler Basics & Lexical Analysis 9

%{

#include "tokens.h"

%}

%x COMMENT

%%

else { return ELSE; }

for { return FOR; }

" " { }

\n { }

"/*" { BEGIN(COMMENT); }

<COMMENT>"*/" { BEGIN(INITIAL); }

<COMMENT>\n { }

<COMMENT>. { }

%%

01-38: Token Positions

%{

#include "tokens.h"

#include <string.h>

int current_line_number = 1;

void newline() {

current_line_number++;

}

%}

%%

else { yylval.line_number = current_line_number;

return ELSE; }

" " { }

\n { newline(); }

";" { yylval.line_number = current_line_number;

return SEMICOLON; }

[a-zA-Z][a-zA-Z0-9]* { yylval.string_value.line_number = current_line_number;

yylval.string_value.value = malloc(sizeof(char) *
(strlen(yytext)+1));

strcpy(yylval.string_value.value,yytext);

return IDENTIFIER; }

01-39: Random Details

• tokens.h

• Skeleton .lex file

• Note Current Line is defined in errors.h

• errors.h file

• main (driver) program

• makefile

