CS414-2017S-01 Compiler Basics & Lexical Analysis 1

01-0: Syllabus

e Office Hours

Course Text

Prerequisites

Test Dates & Testing Policies

Projects

e Teams of up to 2

Grading Policies
e Questions?

01-1: Notes on the Class

e [tend to talk quickly. Don’t be afraid to ask me to slow down!

e We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.
ASK QUESTIONS

e While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always
happy to stop, re-explain a topic in a different way.

e If you are confused, I can guarantee that at least 1 other person in the class would benefit from more
explanation

01-2: Notes on the Class

e Projects are non-trivial

e Using new tools (lex, yacc)
e Managing a large scale project

e Lots of pointer chasing, with large, complex data structures
01-3: Notes on the Class
e Projects are non-trivial

e Using new tools (lex, yacc)
e Managing a large scale project

e Lots of pointer chasing, with large, complex data structures
e START EARLY!
e Projects will take longer than you think (especially starting with the semantic analyzer project)

o ASK QUESTIONS!

CS414-2017S-01 Compiler Basics & Lexical Analysis

01-4: What is a compiler?

Source Program —— Conpil er |—— Machi ne code

Simplified View
01-5: What is a compiler?

Sour ce - Token IMst ract
File _'| Lexi cal Anal yzer Stream Syntax Tree

Abst r act -
Assenbl y <—|Oode Gener at or |<— Assenbl y <—|Semant| ¢ Anal yzer
Tree

Assenbly Tree
Cener at or

Rel ocat abl e
& oo Mechine code

Code
Li braries
More Accurate View
01-6: What is a compiler?
Front end
Sour ce - Token Abst r act
File _'lLeX' cal Anal yzer Stream Syntax Tree

Abstract -
Senmantic Anal yzer
Assenbl y Code Gener at or Assenbl y ‘_| y Back End

Tree

Assenbly Tree
Gener at or

Rel ocat abl e
&) oot Michine code
d

Code

Li braries

01-7: What is a compiler?

CS414-2017S-01 Compiler Basics & Lexical Analysis

Sour ce - Token Abst ract
File —>|LeX| cal Anal yzer Stream Syntax Tree

Covered in
this course

Abstract -
poserly Aoserply *—{Semantic Anal yzer

Tree
Assenbly Tree
Gener at or
Rel ocat abl e
Assenbl er |—>ng ect Machi ne code
Code

Libraries
01-8: Why Use Decomposition?
01-9: Why Use Decomposition?
Software Engineering!

e Smaller units are easier to write, test and debug
e Code Reuse

e Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

e Create a new language — want compilers available for several platforms
01-10: Lexical Analysis
e Converting input file to stream of tokens

void main () {
print (4);
}

01-11: Lexical Analysis

e Converting input file to stream of tokens

void main () { IDENTIFIER (void)
print (4); IDENTIFIER (main)
} LEFT-PARENTHESIS
RIGHT-PARENTHESIS
LEFT-BRACE

IDENTIFIER (print)
LEFT-PARENTHESIS
INTEGER-LITERAL (4)
RIGHT-PARENTHESIS
SEMICOLON
RIGHT-BRACE

01-12: Lexical Analysis
Brute-Force Approach

e [ots of nested if statements

CS414-2017S-01 Compiler Basics & Lexical Analysis

if (c = nextchar() == 'P’) {
if (c = nextchar() == 'R’) {
if (c = nextchar() == '0") {
if (c = nextchar() == /G’) {

/+ Code to handle the rest of either
PROGRAM or any identifier that starts
with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either
PROCEDURE or any identifier that starts
with PROC

/

01-13: Lexical Analysis
Brute-Force Approach

e Break the input file into words, separated by spaces or tabs
e This can be tricky — not all tokens are separated by whitespace
e Use string comparison to determine tokens

01-14: Deterministic Finite Automata

e Set of states

o Initial State

e Final State(s)

e Transitions

DFA for else, end, identifiers
Combine DFA 01-15: DFAs and Lexical Analyzers

e Given a DFA, it is easy to create C code to implement it
e DFAs are easier to understand than C code
e Visual — almost like structure charts

e ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs
We’d like a tool:

e Describe the tokens in the language
e Automatically create DFA for tokens

e Then, automatically create C code that implements the DFA

We need a method for describing tokens
01-17: Formal Languages

e Alphabet 3: Set of all possible symbols (characters) in the input file
e Think of X as the set of symbols on the keyboard

e String w: Sequence of symbols from an alphabet

CS414-2017S-01 Compiler Basics & Lexical Analysis 5

e String length |w| Number of characters in a string: |car| = 3, |abba| =
e Empty String ¢: String of length 0: |¢| = 0
e Formal Language: Set of strings over an alphabet

Formal Language # Programming language — Formal Language is only a set of strings.
01-18: Formal Languages
Example formal languages:

e Integers {0, 23,44, ...}
e Floating Point Numbers {3.4,5.97,...}

e Identifiers {foo, bar, ...}
01-19: Language Concatenation

e Language Concatenation Given two formal languages L, and Lo, the concatenation of Ly and Lo, L1 Ly =
{zylz € L1,y € L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog }
01-20: Kleene Closure Given a formal language L:

LY = A{e}

L' =

2 = LL

¥ = LLL
L* = LLLL

r=rJrryry...yry. .-
01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet >:

Regular Expression Language

€ Ll ={e}
ae¥ [Lla]={a}
(MR) LIMR] = LIM]L[R]
(M|R) L[(M|R)] = L[M]{J L[R]
(Mx) L[(Mx)] = L[M]+

01-22: r.e. Precedence
From highest to Lowest:

Kleene Closure *
Concatenation
Alternation |

ab*cle = (a(b*)c) | e
01-23: Regular Expression Examples

CS414-2017S-01

Compiler Basics & Lexical Analysis

(a|b)* all strings over {a,b}
O] 1)* binary integers (with leading zeroes)
a(ab)*a all strings over {a,b} that

begin and end with a
(alb)*aa(alb)* all strings over {a,b} that
contain aa
b*(abb*)*(ale) all strings over {a,b} that
do not contain aa

01-24: r.e. Shorthand

[abcd] = (a|blc|d)
[b-g] = [befg]=(blelflg)
[b-gM-O] = [befgMNO] = (ble|f|g[M|N|O)
1\1\//[[: ; 1(\1/\1/[1\/}:) 01-25: r.e. Shorthand Examples
.= Any character except newline
”v¢” = The string vc exactly
47”5 = String 4.5 (not 4jany;5)
Regular Expression | Langauge
if | {if}
[a-z][0-9a-z]* | Set of legal identifiers
[0-9] | Set of integers (with leading zeroes)

([0-91+7°[0-91%)]
([0-91%"°[0-91+)

Set of real numbers

01-26: Lexical Analyzer Generator
Lex is a lexical analyzer generator

e Input: Set of regular expressions (each of which describes a type of token in the language)

e Output: A lexical analyzer, which reads an input file and separates it into tokens

01-27: Structure of lex file

/* C declarations =*/

/* Lex definitions =*/

/+ Regular expressions and actions =/

01-28: How Lex Works

e Lex creates a function int yylex(), which does the following:

while (true) {

<find a rule that matches the next
section of the input>

CS414-2017S-01 Compiler Basics & Lexical Analysis 7

<execute action associated with
that rule>
}

e Thus, a call to yylex() will keep matching rules and performing actions, until an action contains a return state-
ment

01-29: Lex Example

% {
#include "tokens.h"

5}

o\
o\

for { return FOR; }
if { return IF; }

01-30: Lex Example

% {
#include "tokens.h"

5}

o\°
o\

for { return FOR; }
if { return IF; }
" { return COMMA; }

01-31: Lex Example

%1
#include "tokens.h"

5}

for { return FOR; }
if { return IF; }
" { return COMMA; }
n n { }

\n { 1

01-32: Lex Example

%1
#include "tokens.h"

5}

o\°
o\°

for { return FOR; }
if { return IF; }

CS414-2017S-01 Compiler Basics & Lexical Analysis

\n
[0-91+

{
{
{
{

return COMMA; }
}

}
return INTEGER_LITERAL; }

01-33: Lex Example

5 {

#include <string.h>
"tokens.h"

#include

i e e i e

return FOR; }
return IF; }
return COMMA; }
}
}

yylval.integer_value.value =
atoi (yytex);
return INTEGER_LITERAL; }

01-34: Lex Loop Lex creates a function yylex, which does the following:

e Find regular expression that matches the input

e Execute the action associated with that regular expression

e Repeat, until a return statement is reached — return the appropriate value

01-35: Lex Matching What if more than one regular expression matches?

e Find the longest possible match

e if382 returns an IDENTIFIER, not an IF followed by an INTEGER_LITERAL
e If two matches are the same length, match the string that appears earliest in the file.

e if returns an IF, not an IDENTIFIER (as long as the rule for IDENTIFIER appears after the rule for IF)

01-36: Lex States

e We can label each regular expression/action pair with a “state”

o Unlabeled regular expression/action pairs are assumed to be in the default INITTAL state

e [ex will only match regular expressions for the current state

e Can switch between states with a BEGIN action

01-37: Using Lex States

CS414-2017S-01 Compiler Basics & Lexical Analysis

% {
#include "tokens.h"

5}

%x COMMENT

return ELSE; }
return FOR; }
}
}

~
i e e e e e

n/gm BEGIN (COMMENT) ;
<COMMENT>"=x/" BEGIN (INITIAL);
<COMMENT>\n }
<COMMENT> . }

01-38: Token Positions

%

#include "tokens.h"

#include <string.h>

int current_line_number = 1;

void newline() {
current_line_number++;

}

%}

else { yylval.line_ number = current_line_number;
return ELSE; }

wow (}

\n { newline(); }

yylval.line_number = current_line_number;

return SEMICOLON; }

[a-zA-Z] [a-zA-Z0-9]* { yylval.string_value.line_number = current_line_number;

yylval.string_value.value = malloc (sizeof (char)
(strlen(yytext)+1));

strepy (yylval.string_value.value, yytext);

return IDENTIFIER; }

01-39: Random Details

tokens.h

Skeleton .lex file

e Note Current_Line is defined in errors.h

errors.h file

main (driver) program

makefile

}
}

