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01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Projects

• Teams of up to 2

• Grading Policies

• Questions?

01-1: Notes on the Class

• I tend to talk quickly. Don’t be afraid to ask me to slow down!

• We will cover some pretty complex stuff here, which can be difficult to get the first (or even the second) time.

ASK QUESTIONS

• While specific questions are always preferred, “I don’t get it” is always an acceptable question. I am always

happy to stop, re-explain a topic in a different way.

• If you are confused, I can guarantee that at least 1 other person in the class would benefit from more

explanation

01-2: Notes on the Class

• Projects are non-trivial

• Using new tools (lex, yacc)

• Managing a large scale project

• Lots of pointer chasing, with large, complex data structures

01-3: Notes on the Class

• Projects are non-trivial

• Using new tools (lex, yacc)

• Managing a large scale project

• Lots of pointer chasing, with large, complex data structures

• START EARLY!

• Projects will take longer than you think (especially starting with the semantic analyzer project)

• ASK QUESTIONS!
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01-4: What is a compiler?

Source Program Compiler Machine code

Simplified View

01-5: What is a compiler?
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01-6: What is a compiler?
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01-7: What is a compiler?
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01-8: Why Use Decomposition?

01-9: Why Use Decomposition?

Software Engineering!

• Smaller units are easier to write, test and debug

• Code Reuse

• Writing a suite of compilers (C, Fortran, C++, etc) for a new architecture

• Create a new language – want compilers available for several platforms

01-10: Lexical Analysis

• Converting input file to stream of tokens

void main() {

print(4);

}

01-11: Lexical Analysis

• Converting input file to stream of tokens

void main() { IDENTIFIER(void)

print(4); IDENTIFIER(main)

} LEFT-PARENTHESIS

RIGHT-PARENTHESIS

LEFT-BRACE

IDENTIFIER(print)

LEFT-PARENTHESIS

INTEGER-LITERAL(4)

RIGHT-PARENTHESIS

SEMICOLON

RIGHT-BRACE

01-12: Lexical Analysis

Brute-Force Approach

• Lots of nested if statements
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if (c = nextchar() == ’P’) {

if (c = nextchar() == ’R’) {

if (c = nextchar() == ’0’) {

if (c = nextchar() == ’G’) {

/* Code to handle the rest of either

PROGRAM or any identifier that starts

with PROG

*/

} else if (c == ’C’) {

/* Code to handle the rest of either

PROCEDURE or any identifier that starts

with PROC

*/

...

01-13: Lexical Analysis

Brute-Force Approach

• Break the input file into words, separated by spaces or tabs

• This can be tricky – not all tokens are separated by whitespace

• Use string comparison to determine tokens

01-14: Deterministic Finite Automata

• Set of states

• Initial State

• Final State(s)

• Transitions

DFA for else, end, identifiers

Combine DFA 01-15: DFAs and Lexical Analyzers

• Given a DFA, it is easy to create C code to implement it

• DFAs are easier to understand than C code

• Visual – almost like structure charts

• ... However, creating a DFA for a complete lexical analyzer is still complex

01-16: Automatic Creation of DFAs

We’d like a tool:

• Describe the tokens in the language

• Automatically create DFA for tokens

• Then, automatically create C code that implements the DFA

We need a method for describing tokens

01-17: Formal Languages

• Alphabet Σ: Set of all possible symbols (characters) in the input file

• Think of Σ as the set of symbols on the keyboard

• String w: Sequence of symbols from an alphabet
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• String length |w| Number of characters in a string: |car| = 3, |abba| = 4

• Empty String ǫ: String of length 0: |ǫ| = 0

• Formal Language: Set of strings over an alphabet

Formal Language 6= Programming language – Formal Language is only a set of strings.

01-18: Formal Languages

Example formal languages:

• Integers {0, 23, 44, . . .}

• Floating Point Numbers {3.4, 5.97, . . .}

• Identifiers {foo, bar, . . .}

01-19: Language Concatenation

• Language Concatenation Given two formal languages L1 and L2, the concatenation of L1 and L2, L1L2 =
{xy|x ∈ L1, y ∈ L2}

For example:

{fire, truck, car} {car, dog} =

{firecar, firedog, truckcar, truckdog, carcar, cardog}
01-20: Kleene Closure Given a formal language L:

L0 = {ǫ}
L1 = L

L2 = LL

L3 = LLL

L4 = LLLL

L∗ = L0
⋃

L1
⋃

L2
⋃

. . .
⋃

Ln

⋃
. . .

01-21: Regular Expressions

Regular expressions are use to describe formal languages over an alphabet Σ:

Regular Expression Language

ǫ L[ǫ] = {ǫ}
a ∈ Σ L[a] = {a}
(MR) L[MR] = L[M ]L[R]
(M |R) L[(M |R)] = L[M ]

⋃
L[R]

(M∗) L[(M∗)] = L[M ]∗
01-22: r.e. Precedence

From highest to Lowest:

Kleene Closure *

Concatenation

Alternation |

ab*c|e = (a(b*)c) | e

01-23: Regular Expression Examples
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(a|b)* all strings over {a,b}
(0|1)* binary integers (with leading zeroes)

a(a|b)*a all strings over {a,b} that

begin and end with a

(a|b)*aa(a|b)* all strings over {a,b} that

contain aa

b*(abb*)*(a|ǫ) all strings over {a,b} that

do not contain aa

01-24: r.e. Shorthand
[abcd] = (a|b|c|d)

[b-g] = [befg] = (b|e|f|g)

[b-gM-O] = [befgMNO] = (b|e|f|g|M|N|O)

M? = (M | ǫ)
M+ = MM*

. = Any character except newline

”vc” = The string vc exactly

4”.”5 = String 4.5 (not 4¡any¿5)

01-25: r.e. Shorthand Examples

Regular Expression Langauge

if {if}
[a-z][0-9a-z]* Set of legal identifiers

[0-9] Set of integers (with leading zeroes)

([0-9]+”.”[0-9]*)| Set of real numbers

([0-9]*”.”[0-9]+)

01-26: Lexical Analyzer Generator

Lex is a lexical analyzer generator

• Input: Set of regular expressions (each of which describes a type of token in the language)

• Output: A lexical analyzer, which reads an input file and separates it into tokens

01-27: Structure of lex file

%{

/* C declarations */

%}

/* Lex definitions */

%%

/* Regular expressions and actions */

01-28: How Lex Works

• Lex creates a function int yylex(), which does the following:

while(true) {

<find a rule that matches the next

section of the input>
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<execute action associated with

that rule>

}

• Thus, a call to yylex() will keep matching rules and performing actions, until an action contains a return state-

ment

01-29: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

01-30: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

01-31: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

" " { }

\n { }

01-32: Lex Example

%{

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }



CS414-2017S-01 Compiler Basics & Lexical Analysis 8

"," { return COMMA; }

" " { }

\n { }

[0-9]+ { return INTEGER_LITERAL; }

01-33: Lex Example

%{

#include <string.h>

#include "tokens.h"

%}

%%

for { return FOR; }

if { return IF; }

"," { return COMMA; }

" " { }

\n { }

[0-9]+ { yylval.integer_value.value =

atoi(yytex);

return INTEGER_LITERAL; }

01-34: Lex Loop Lex creates a function yylex, which does the following:

• Find regular expression that matches the input

• Execute the action associated with that regular expression

• Repeat, until a return statement is reached – return the appropriate value

01-35: Lex Matching What if more than one regular expression matches?

• Find the longest possible match

• if382 returns an IDENTIFIER, not an IF followed by an INTEGER LITERAL

• If two matches are the same length, match the string that appears earliest in the file.

• if returns an IF, not an IDENTIFIER (as long as the rule for IDENTIFIER appears after the rule for IF)

01-36: Lex States

• We can label each regular expression/action pair with a “state”

• Unlabeled regular expression/action pairs are assumed to be in the default INITIAL state

• Lex will only match regular expressions for the current state

• Can switch between states with a BEGIN action

01-37: Using Lex States
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%{

#include "tokens.h"

%}

%x COMMENT

%%

else { return ELSE; }

for { return FOR; }

" " { }

\n { }

"/*" { BEGIN(COMMENT); }

<COMMENT>"*/" { BEGIN(INITIAL); }

<COMMENT>\n { }

<COMMENT>. { }

%%

01-38: Token Positions

%{

#include "tokens.h"

#include <string.h>

int current_line_number = 1;

void newline() {

current_line_number++;

}

%}

%%

else { yylval.line_number = current_line_number;

return ELSE; }

" " { }

\n { newline(); }

";" { yylval.line_number = current_line_number;

return SEMICOLON; }

[a-zA-Z][a-zA-Z0-9]* { yylval.string_value.line_number = current_line_number;

yylval.string_value.value = malloc(sizeof(char) *
(strlen(yytext)+1));

strcpy(yylval.string_value.value,yytext);

return IDENTIFIER; }

01-39: Random Details

• tokens.h

• Skeleton .lex file

• Note Current Line is defined in errors.h

• errors.h file

• main (driver) program

• makefile


