CS414-2017-03 Parsing 1

03-0: Parsing

e Once we have broken an input file into a sequence of tokens, the next step is to determine if that sequence of
tokens forms a syntactically correct program — parsing

e Parsing a sequence of tokens == determining if the string of tokens could be generated by a Context-Free
Grammar.

03-1: CFG Example
S — print(E);
S — while (£) S
S—{L}
E — identifier
E — integer _literal
L— SL
L—e¢

Examples / Parse Trees

03-2: Recursive Descent Parser

e Write Java code that repeatedly calls getNextToken(), and determines if the stream of returned tokens can be
generated by the CFG

e If so, end normally

e If not, call an error function

03-3: Recursive Descent Parser

A Recursive Descent Parser is implemented as a suite of recursive functions, one for each non-terminal in the
grammar:

e ParseS will terminate normally if the next tokens in the input stream can be derived from the non-terminal .S
e ParseL will terminate normally if the next tokens in the input stream can be derived from the non-terminal L
e ParseE will terminate normally if the next tokens in the input stream can be derived from the non-terminal £

03-4: Recursive Descent Parser
S — print(E);
S — while (E) S
S—{L}
FE — identifier
E — integer _literal
L— SL
L —e¢

Code for Parser.java.html on web browser
03-5: LL(1) Parsers

These recursive descent parsers are also known as LL(1) parsers, for Left-to-right, Leftmost derivation, with 1
symbol lookahead

e The input file is read from left to right (starting with the first symbol in the input stream, and proceeding to the
last symbol).

e The parser ensures that a string can be derived by the grammar by building a leftmost derivation.

CS414-2017-03 Parsing

e Which rule to apply at each step is decided upon after looking at just 1 symbol.

03-6: Building LL(1) Parsers
S — S$
S — AB
S — Ch
A —ef
A—e
B —hg
C —- DD
C —fi
D—g

ParseS userule S — ABone,h
use therule S — Chonf, g
03-7: First sets

First(.S) is the set of all terminals that can start strings derived from S (plus ¢, if S can produce €)

S" — 5% First(S’) =
S — AB First(S) =
S — Ch First(A) =
A —ef First(B) =
A—e First(C') =
B —hg First(D) =
C —-DD

C —fi

D—g

03-8: First sets
First(,9) is the set of all terminals that can start strings derived from S (plus ¢, if S can produce €)

S’ — S$ First(S") = {e, f, g, h}
S — AB First(S) = {e, f, g, h}
S — Ch First(A) = {e, ¢}

A —ef First(B) = {h}
A—e First(C) = {f, g}

B —hg First(D) = {g}

C - DD

C =1

D—g

03-9: First sets
We can expand the definition of First sets to include strings of terminals and non-terminals

S" — 5% First(aB) =

S — AB First(BC') =
S — Ch First(AbC) =
A —ef First(AC) =
A—e¢ First(abS) =
B —hg First(tDDA) =
C —-DD

C —fi

D—g

03-10: First sets
We can expand the definition of First sets to include strings of terminals and non-terminals

CS414-2017-03 Parsing

S’ — S$ First(aB) = {a}

S — AB First(BC) = {h}

S — Ch First(AbC) = {e, b}
A —ef First(AC) = {e, f, g}
A—e First(abS) = {a}

B —hg Firstt DD A) = {g}
C — DD

C—fi

D—g

03-11: Calculating First sets

e For each non-terminal S, set First(S) = {}
e For each rule of the form S — ~y, add First() to First(.S)

e Repeat until no changes are made

03-12: Calculating First sets
Example:

S — S$

S — AB

S — Ch

A —ef
A—e

B —hg

C —- DD
C—fi
D—g

03-13: Follow Sets
Follow(.S) is the set of all terminals that can follow S in a (partial) derivation.

S" — 5% Follow(S") =
S — AB Follow(S) =
S — Ch Follow(A) =
A —ef Follow(B) =
A—e Follow(C') =
B —hg Follow(D) =
C — DD

C —fi

D—g

03-14: Follow Sets
Follow(.S) is the set of all terminals that can follow S in a (partial) derivation.

S’ — S$ Follow(S")={ }

S — AB Follow(S) = {$}

S — Ch Follow(A) = {h}
A —ef Follow(B) = {$}
A—e Follow(C) = {h}
B —hg Follow(D) = {h, g}
C — DD

C—fi

D—g

CS414-2017-03 Parsing 4

03-15: Calculating Follow sets

e For each non-terminal S, set Follow(S) = {}
e For each rule of the form .S —

e For each non-terminal S; in «y, where + is of the form «.S; 3

e If First(/3) does not contain ¢, add all elements of First(3) to Follow(S).

o If First(/) does contain ¢, add all elements of First(/3) except € to Follow(S1), and add all elements of
Follow(S) to Follow(S1).

e [f any changes were made, repeat.

03-16: Calculating Follow sets
Example:

S"— S$

S — AB

S — Ch

A —ef

A— e

B —hg

C — DD

C —fi
D—g

03-17: Parse Tables

e Each row in a parse table is labeled with a non-terminal
e Each column in a parse table is labeled with a terminal
e Each element in a parse table is either empty, or contains a grammar rule

e Rule S — 7 goes in row S, in all columns of First(y).
e If First(vy) contains ¢, then the rule S — ~ goes in row S, in all columns of Follow(S).
03-18: Parse Table Example

S"— S8$ First(S") ={e, f, g, h} Follow(S")={}
S — AB First(S)={e,f, g, h} Follow(S)={$}

C—f C — DD
D—g

S — Ch First(A) ={e, €} Follow(A) = {h}
A —ef First(B) = {h} Follow(B) = {$}
A—e First(C) = {f, g} Follow(C) = {h}
B —hg First(D) = {g} Follow(D) = {h, g}
C — DD
C —fi
D—g
03-19: Parse Table Example

L e [f E [h [i]
SIS =855 —=58|5—=5% |5 =5
S|S—AB | S—-Ch | S—=Ch | S— AB
A || A—ef A— e 03-20: Parse Table Example
B B — hg
C
D

CS414-2017-03

Parsing

void ParseA() {
switch(currentToken) {
case e:

void ParseC() {
switch(currentToken) {
case f:
checkToken (£) ;
checkToken (i) ;
break;
case g:
ParseD () ;
ParseD () ;
break;
otherwise:
} error ("Parse Error");
} }
}

checkToken (e) ;
checkToken (f) ;
break;

case h:
/* epsilon case */
break;

otherwise:
error ("Parse Error");

03-21: LL(1) Parser Example
7' — 7Z$
Z = XYZ|d
X —alY
Y —elc

(Initial Symbol = Z")
03-22: LL(1) Parser Example

VAR First(Z') = {a, ¢, d}
Z = XYZ|d First(Z)={a,c,d}
X —alY First(X) ={a, c, ¢}
Y —elc First(Y) = {c, ¢}

(Initial Symbol = Z")
03-23: LL(1) Parser Example

VAR First(Z') = {a, ¢, d}
Z = XYZ|d First(Z)={a,c,d}
X —alY First(X) ={a, c, ¢}
Y —elc First(Y) = {c, ¢}

Follow(Z")={}
Follow(Z) = {$}
Follow(X) = {a, ¢, d}
Follow(Y) ={a, ¢, d}

(Initial Symbol = Z’) 03-24: LL(1) Parser Example

VAR IA First(Z') = {a, ¢, d}
Z > XYZ|d First(Z)={ac,d}
X —alY First(X) ={a, c, ¢}
Y —e€lc First(Y) = {c, €}
[[a [¢ [d |
zZ Z" — Z$ zZ" — Z$ Z" — Z$
4 zZ — XY Z Z — XY Z zZ — XY Z
Z —d
X X —a X =Y X =Y
X —- Y
Y Y — € Y —c¢ Y — €
Y — e

03-25: non-LL(1) Grammars

Follow(Z")={}
Follow(Z) = {$}
Follow(X) = {a, ¢, d}
Follow(Y) ={a, ¢, d}

e Not all grammars can be parsed by a LL(1) parser

e A grammar is LL(1) if the LL(1) parse table contains no duplicate entires

e Previous CFG is not LL(1)

03-26: non-LL(1) Grammars

e Not all grammars can be parsed by a LL(1) parser

e A grammar is LL(1) if the LL(1) parse table contains no duplicate entires

CS414-2017-03 Parsing
e Previous CFG is not LL(1)
e No ambiguous grammar is LL(1)
03-27: LL(1) Parser Example
S — S$
S — if E then S else S
S — begin L end
S — print(E)
L —e¢
L— SL/
L —;SL/
L — ¢
E — num = num
03-28: LL(1) Parser Example
Non-Terminal || First Follow
S’ {if, begin, print} {}
S {if, begin, print} {$.end, ;}
L {e, if, begin, print} | {end}
L {e,; {end}
E {num} O}
[[ir [then | else | begin end [print
S S’ — S8 S’ — S$ ST — S$
03-29: LL(I) Parser Examp]e S S — if E then S clse S S — begin L end S — print(E)
L L — SL S’ — S$ L — e ST — S$
L
E

[LT T+

num [=

| | | |

L7 —;SL’

E — num = num

03-30: LL(1) Parser Example

S — S$
S — ABC
A—a
A— ¢
B—b
B —e€
C—ec
C —e
03-31: LL(1) Parser Example
| Non-terminal | First | Follow
S’ {a,b,c} | {}
S {a,b,c} | {$}
A {a} {b,c. $}
B {b} {c, $}
c {c} {$}

CS414-2017-03 Parsing
a b C $
S" 1S —S$ S’ — 5% S’ — S$
S | S—ABC | S—ABC | S— ABC | S — ABC
A | A—=a A— e A—ec A—e¢
B B—b B — € B — ¢
C C—ec C —e

03-32: Creating an LL(1) CFG

e Not all grammars are LL(1)
e We can often modify a CFG that is not LL(1)

e New CFG generates the same language as the old CFG
e New CFGis LL(1)

03-33: Creating an LL.(1) CFG

e Remove Ambiguity

e No ambiguous grammar is LL(1)
e Grammar is ambiguous if there are two ways to generate the same string

o If there are two ways to generate a string o, modify the CFG so that one of the ways to generate the string
is removed

03-34: Removing Ambiguity

e Often a grammar is ambiguous when there is a special case rule that can be generated by a general rule

e Solution: Remove the special case, let the general case handle it

S—V=F,
S — V =identifier;
E—=V

E — integer _literal
V' — identifier
Structured variable definitions commonly have this problem 03-35: Removing Ambiguity

e This grammar, for describing variable accesses, is also ambiguous

e Ambiguous in the same was as expression CFG

e Can be made unambiguous in a similar fashion

V-V.V
V' — identifier
03-36: Removing Ambiguity

e Some Languages are inherently ambiguous
e A Language L is ambiguous if:
e For each CFG G that generates L, G is ambiguous

e No programming languages are inherently ambiguous

CS414-2017-03 Parsing

03-37: Left Recursion
S — Sa
S —f

e Any CFG that contains these rules (where a and 3 are any string of terminals and non-terminals) is not LL(1)
e Why?

03-38: Left Recursion
S — Sa
S —b

e What should ParseS() do on a b?

03-39: Left Recursion
S — Sa
S —b

First | Follow
ST | {a)
| _[[a]b |
S S — Sa
S —b
03-40: Left Recursion
S — Sa
S —b

e What strings can be derived from this grammar?

03-41: Left Recursion
S — Sa
S —b

e What strings can be derived from this grammar?

S=D>

S = Sa= ba

S = Sa= Saa = baa

S = Sa = Saa = Saaa = baaa

S = Sa = Saa = Saaa = Saaaa = baaaa
03-42: Removing Left Recursion

S — Sa

S —b

e What strings can be derived from this grammar?
e A b, followed by zero or more a’s.

e What is a CFG for this language that does not use Left Recursion?

03-43: Removing Left Recursion
S — Sa
S —b

e What strings can be derived from this grammar?

CS414-2017-03 Parsing

e A b, followed by zero or more a’s.
e What is a CFG for this language that does not use Left Recursion?

S —bs’
S —as’
S — e
03-44: Removing Left Recursion
S — Sa
S —b

e What strings can be derived from this grammar?
e A b, followed by zero or more a’s.
e What is an EBNF for this language that does not use Left Recursion?

03-45: Removing Left Recursion
S — Sa
S —b

e What strings can be derived from this grammar?
e A b, followed by zero or more a’s.
e What is an EBNF for this language that does not use Left Recursion?

S — b(a)*
03-46: Removing Left Recursion

e In General, if you have rules of the form:

S — Sa
S —p

e You can replace them with the CFG rules
S — ps’
S — aS’
S — €

or the EBNF rules
S — Ba)x
03-47: Removing Left Recursion

e What about:
S — SO&l
S — Sag
S — ﬁl
S — ﬂg

03-48: Removing Left Recursion

CS414-2017-03

Parsing

10

e What about:
S — SO&l
S — SOQ
S — Bl
S — ﬁg

S — BA We can use the same

B — 3 method for arbitrarily

B — [complex grammars

A—>O¢1A
A—>O¢2A
A—e

03-49: Left Factoring

e Consider Fortran DO statements:

Fortran:
do
var = intial, final
loop body
end do

Java Equivalent:

for (var=initial; var <= final;
loop body
}

03-50: Left Factoring

e Consider Fortran DO statements:

Fortran:
do
var = intial, final, inc
loop body
end do

Java Equivalent:

for (var=initial; var <= final;
loop body
}

03-51: Left Factoring

e CFG for Fortran DO statements:

S—doLS
L — id = exp, exp
L — id = exp, exp, exp

e [s this Grammar LL(1)?

var++) {

var+=inc)

{

CS414-2017-03 Parsing

11

03-52: Left Factoring

e CFG for Fortran DO statements:
S—doLS
L — id = exp, exp
L — id = exp, exp, exp

e [s this Grammar LL(1)? No!
e The problem is in the rules for L

e Two rules for L that start out exactly the same

e No way to know which rule to apply when looking at just 1 symbol
03-53: Left Factoring

e Factor out the similar sections from the rules:

S—doLS
L — id = exp, exp
L — id = exp, exp, exp

03-54: Left Factoring

e Factor out the similar sections from the rules:

S—doLS

L —id=exp,exp L’
L' — ,exp

L' —e

e We can also use EBNF:
S—doL S
L — id = exp, exp (, exp)?

03-55: Left Factoring

e In general, if we have rules of the form:

S—>aﬁ1
S—>aﬁ2

S — a By

e We can left factor these rules to get:

S—aB
B—)ﬂl
B—)ﬂQ

B — 3,
03-56: Building an LL(1) Parser

o Create a CFG for the language

e Remove ambiguity from the CFG, remove left recursion, and left-factor it

CS414-2017-03 Parsing

12

e Find First/Follow sets for all non-terminals
e Build the LL(1) parse table

e Use the parse table to create a suite of mutually recursive functions
03-57: Building an LL(1) Parser

o Create an EBNF for the language

e Remove ambiguity from the EBNF, remove left recursion, and left-factor it
o Find-HirstHeoHowsetsfor-alnon-terminals

o Buidthe 1 parse-table

o Use-theparse-table-to-ereate-asttte-of mutaally recurstvefunetons

e Use a parser generator tool that converts the EBNF into parsing functions

03-58: Structure JavaCC file foo.jj

options{
/* Code to set various options flags «/
}
PARSER_BEGIN (f£00)
public class foo {
/* This segment is often empty %/
}
PARSER_END (fo0)
TOKEN_MGR_DECLS :
{
/+ Declarations used by lexical analyzer +/
}

/* Token Rules & Actions »/

/% JavaCC Rules and Actions -- EBNF for languages/

03-59: JavaCC Rules

JavaCC rules correspond to EBNF rules

JavaCC rules have the form:

void nonTerminalName ()

{ /* Java Declarations =/ }
{ /% Rule definition «*/

}

e For now, the Java Declarations section will be empty (we will use it later on, when building parse trees)

Non terminals in JavaCC rules are followed by ()

Terminals in JavaCC rules are between < and >
03-60: JavaCC Rules

e For example, the CFG rules:

S — while (E) S
S—-V=F,

CS414-2017-03 Parsing

13

e Would be represented by the JavaCC rule:

void statement () :
{}
{
<WHILE> <LPAREN> expression() <RPAREN> statement ()
| variable() <GETS> expression() <SEMICOLON>
}

03-61: Example JavaCC Files

e We now examine a JavaCC file that parses prefix expressions

e Prefix expression examples:

| Prefix expression | Equivalent infix expression

+34 3+4

+-215 2-D)+5
+-34%*%56 B-4)+(5*6)
+-%3456 (3*4)-5)+6
+3-4%56 3+(@4-(5%6))

e Come up with a CFG for Prefix expressions

03-62: Example JavaCC Files

e CFG for prefix expressions:

EFE—-+FEF
EF—-FF
E—*EFE
E—/EFE
E — num

Pull up JavaCC file on other screen 03-63 EXample JaVaCC Files

e In javacc format:

voild expression():

{}
{

<PLUS> expression () expression()
\ <MINUS> expression() expression()
\ <TIMES> expression() expression()
\ <DIVIDE> expression() expression()
\ <INTEGER_LITERAL>
}

Put up driver file, do some examples

03-64: Lookahead

e Consider the following JavaCC fragment:

void S () :

{1}

{ "a" "b" "C"
‘ "a" "d" "C"

}

CS414-2017-03 Parsing 14

03-65:

03-66:

03-67:

03-68:

03-69:

Is this grammar LL(1)?

Lookahead

A LOOKAHEAD directive, placed at a choice point, will allow JavaCC to use a lookahead ¢, 1:

void S():
{}
{ LOOKAHEAD (2) "a" "b" "c"

‘ "a" "d" "C"

}

ParseS will look at the next two symbols, before deciding which rule for S to use
Lookahead

LOOKAHEAD directives are placed at “choice points” — places in the grammar where there is more than one
possible rule that can match.

void S () :
{}

{
npm (("B" vvc") | ("B" "D"))

}
Lookahead

LOOKAHEAD directives are placed at “choice points” — places in the grammar where there is more than one
possible rule that can match.

void S () :
{}

{
npn (LOOKAHEAD(Z) (IIBII IICII) | (IIBII IIDII))

}

Lookahead

LOOKAHEAD directives are placed at “choice points” — places in the grammar where there is more than one
possible rule that can match.

void S () :
{}
{
"A" (("B" "C") | ("B" "D"))

}

Lookahead

LOOKAHEAD directives are placed at “choice points” — places in the grammar where there is more than one
possible rule that can match.

CS414-2017-03 Parsing 15

void S () :
{}
{
LOOKAHEAD(Z) npn ((IIBII llcll) | (IIBII IIDII))
}

e This is not a valid use of lookahead — the grammar will not be parsed correctly. Why not?

03-70: JavaCC & Non-LL(k)

e JavaCC will produce a parser for grammars that are not LL(1) (and even for grammars that are not LL(k), for
any k)

e The parser that is produced is not guaranteed to correctly parse the language described by the grammar

e A warning will be issued when JavaCC is run on a non-LL(1) grammar

03-71: JavaCC & Non-LL(k)

e What does JavaCC do for a non-LL(1) grammar?

e The rule that appears first will be used

void S ()
{1
{
n a n "b " n c n
‘ n a n "b n n d"

03-72: JavaCC & Non-LL(Kk)

e Infamous dangling else

void statement () :
{}
{
<IF> expression() <THEN> statement ()
| <IF> expression() <THEN> statement () <ELSE> statement ()
| /* Other statement definitions =/

}
e Why doesn’t this grammar work?

03-73: JavaCC & Non-LL(k)

void statement () :
{}
{
<IF> expression() <THEN> statement () optionalelse()
| /% Other statement definitions %/
}
void optionalelse() :
{1
{
<ELSE> statement ()
| /* nothing +/ { }
}

if <e> then <S>
if <e> then <S> else <S>
if <e> then if <e> then <S> else <S>

CS414-2017-03 Parsing

16

03-74: JavaCC & Non-LL(Kk)

void statement () :
{}
{
<IF> expression() <THEN> statement () optionalelse()
| /+ Other statement definitions */
}
void optionalelse() :
{1
{
/* nothing +/ { }
| <ELSE> statement ()
}

e What about this grammar?

03-75: JavaCC & Non-LL(k)

void statement () :
{1
{
<IF> expression() <THEN> statement() optionalelse()
| /% Other statement definitions %/
}
void optionalelse() :
{}
{
/* nothing */ { }
| <ELSE> statement ()

}

e What about this grammar?

e Doesn’t work! (why?)

03-76: JavaCC & Non-LL(K)

void statement () :
{1
{
<IF> expression() <THEN> statement () (<ELSE> statement)?
| /* Other statement definitions =/

}

e This grammar will also work correctly

e Also produces a warning

03-77: JavaCC & Non-LL(k)

void statement() :
{}
{
<IF> expression() <THEN> statement ()
(LOOKAHEAD (1) <ELSE> statement)?
| /% Other statement definitions */

e This grammar also works correctly

e Produces no warnings

e (not because it is any more safe — if you include a LOOKAHEAD directive, the system assumes you know

what you are doing)

03-78: Parsing Project

e For your next project, you will write a parser for simpleJava using JavaCC.

e Provided Files:

e ParseTest.java A main program to test your parser You must use program as your starting non-terminal

for ParseTest to work correctly!

CS414-2017-03 Parsing 17

e test*.sjava Various simpleJava programs to test your parser. Some have parsing errors, some do not. Be
sure to test your parser on other test cases, too! These files are not meant to be exhaustive!!

03-79: Parsing Project “Gotcha’s”
e Expressions can be tricky. Read the text for more examples and suggestions
e Structured variable accesses are similar to expressions, and have some of the same issues
e Avoid specific cases that can be handled by a more general case

03-80: Parsing Project “Gotcha’s”

e Procedure calls and assignment statements can be tricky for LL(1) parsers. You may need to left-factor, and/or
use LOOKAHEAD directives

e LOOKAHEAD directives are useful, but can be dangerous (for instance, you will not get warnings for the
sections that use LOOKAHEAD.) Try left-factoring, or other techniques, before resorting to LOOKAHEAD.

e This project is much more difficult than the lexical analyzer. Start Early!

