
CS414-2003S-07 Semantic Analysis 1

07-0: Syntax Errors/Semantic Errors

• A program has syntax errors if it cannot be generated from the Context Free Grammar which describes the

language

• The following code has no syntax errors, though it has plenty of semantic errors:

void main() {

if (3 + x - true)

x.y.z[3] = foo(z)

}

• Why don’t we write a CFG for the language, so that all syntactically correct programs also contain no semantic

errors?

07-1: Syntax Errors/Semantic Errors

• Why don’t we write a CFG for the language, so that all syntactically correct programs also contain no semantic

errors?

• In general, we can’t!

• In simpleJava, variables need to be declared before they are used

• The following CFG:

• L = {ww|w ∈ {a, b}}

is not Context-Free – if we can’t generate this string from a CFG, we certainly can’t generate a simpleJava

program where all variables are declared before they are used.

07-2: yacc & CFGs

• Yacc allows actions – arbitrary C code – in rules

• We could use yacc rules to do type checking

• Why don’t we?

07-3: yacc & CFGs

• Yacc allows actions – arbitrary C code – in rules

• We could use yacc rules to do type checking

• Why don’t we?

• Yacc files become very long, hard to follow, hard to debug

• Not good software engineering – trying to do too many things at once

07-4: Semantic Errors/Syntax Errors

• Thus, we only build the Abstract Syntax Tree in yacc (not worrying about ensuring that variables are declared

before they are used, or that types match, and so on)

• The next phase of compilation – Semantic Analysis – will traverse the Abstract Syntax Tree, and find any

semantic errors – errors in the meaning (semantics) of the program

CS414-2003S-07 Semantic Analysis 2

• Semantic errors are all compile-time errors other than syntax errors.

07-5: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Definition Errors

• Most strongly typed languages require variables, functions, and types to be defined before they are used with

some exceptions –

• Implicit variable declarations in Fortran

• Implicit function definitions in C

07-6: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Structured Variable Errors

• x.y = A[3]

• x needs to be a class variable, which has an instance variable y

• A needs to be an array variable

• x.y[z].w = 4

• x needs to be a class variable, which has an instance variable y, which is an array of class variables that

have an instance variable w

07-7: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Function and Method Errors

• foo(3, true, 8)

• foo must be a function which takes 3 parameters:

• integer

• boolean

• integer

07-8: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Build-in functions – /, *, ||, &&, etc. – need to be called with the correct types

• In simpleJava, +, -, *, / all take integers

• In simpleJava, || &&, ! take booleans

• Standard Java has polymorphic functions & type coercion

07-9: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

CS414-2003S-07 Semantic Analysis 3

• Type Errors

• Assignment statements must have compatible types

• When are types compatible?

07-10: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In Pascal, only Identical types are compatible

07-11: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In C, types must have the same structure

• Coerceable types also apply

struct { struct {

int x; int z;

char y; char x;

} var1; } var2;

07-12: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In Object oriented languages, can assign superclass value to a subclass variable

07-13: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Access Violation Errors

• Accessing private / protected methods / variables

• Accessing local functions in block structured languages

• Separate files (C)

07-14: Environment

• Much of the work in semantic analysis is managing environments

• Environments store current definitions:

• Names (and structures) of types

• Names (and types) of variables

CS414-2003S-07 Semantic Analysis 4

• Names (and return types, and number and types of parameters) of functions

• As variables (functions, types, etc) are declared, they are added to the environment. When a variable (function,

type, etc) is accessed, its definition in the environment is checked.

07-15: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

simpleJava:

class foo {

int foo;

}

void main() {

foo foo;

foo = new foo();

foo.foo = 4;

print(foo.foo);

}

07-16: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

C:

#include <stdio.h>

typedef int foo;

int main() {

foo foo;

foo = 4;

printf("%d", foo);

return 0;

}

07-17: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

Java:

class EnviornTest {

static void main(String args[]) {

Integer Integer = new Integer(4);

System.out.print(Integer);

}

}

07-18: Environments & Name Spaces

CS414-2003S-07 Semantic Analysis 5

• Variables and functions in C share the same name space, so the following C code is not legal:

int foo(int x) {

return 2 * x;

}

int main() {

int foo;

printf("%d\n",foo(3));

return 0;

}

• The variable definition int foo; masks the function definition for foo

07-19: Environments & Name Spaces

• Both standard Java and simpleJava use different name spaces for functions and variables

• Defining a function and variable with the same name will not confuse Java or simpleJava in the same way it will

confuse C

• Programmer might still get confused ...

07-20: simpleJava Environments

• We will break simpleJava environment into 3 parts:

• type environment Class definitions, and built-in types int, boolean, and void.

• function environment Function definitions – number and types of input parameters and the return type

• variable environment Definitions of local variables, including the type for each variable.

07-21: Changing Environments

int foo(int x) {

boolean y;

x = 2;

y = false;

/* Position A */

{ int y;

boolean z;

y = 3;

z = true;

/* Position B */

}

/* Position C */

}

07-22: Implementing Environments

• Environments are implemented with Symbol Tables

CS414-2003S-07 Semantic Analysis 6

• Symbol Table ADT:

• Begin a new scope.

• Add a key / value pair to the symbol table

• Look up a value given a key. If there are two elements in the table with the same key, return the most

recently entered value.

• End the current scope. Remove all key / value pairs added since the last begin scope command

07-23: Implementing Symbol Tables

• Implement a Symbol Table as a list

• Insert key/value pairs at the front of the list

• Search for key/value pairs from the front of the list

• Insert a special value for “begin new scope”

• For “end scope”, remove values from the front of the list, until a “begin scope” value is reached

07-24: Implementing Symbol Tables

a

b

y

boolean

x

int

z

boolean

y

int

y

boolean

x

int

newscope

c

y

boolean

x

int

07-25: Implementing Symbol Tables

• Implement a Symbol Table as an open hash table

• Maintain an array of lists, instead of just one

• Store (key/value) pair in the front of list[hash(key)], where hash is a function that converts a key

into an index

• If:

• The hash function distributes the keys evenly throughout the range of indices for the list

• # number of lists = Θ(# of key/value pairs)

Then inserting and finding take time Θ(1)

07-26: Hash Functions

CS414-2003S-07 Semantic Analysis 7

long hash(char *key, int tableSize) {

long h = 0;

long g;

for (;*key;key++) {

h = (h << 4) + *key;

g = h & OxF0000000;

if (g) h ˆ= g >> 24

h &= g

}

return h % tableSize;

}

07-27: Implementing Symbol Tables

• What about beginScope and endScope?

• The key/value pairs are distributed across several lists – how do we know which key/value pairs to remove on

an endScope?

07-28: Implementing Symbol Tables

• What about beginScope and endScope?

• The key/value pairs are distributed across several lists – how do we know which key/value pairs to remove on

an endScope?

• If we knew exactly which variables were inserted since the last beginScope command, we could delete

them from the hash table

• If we always enter and remove key/value pairs from the beginning of the appropriate list, we will remove

the correct items from the environment when duplicate keys occur.

• How can we keep track of which keys have been added since the last beginScope?

07-29: Implementing Symbol Tables

• How can we keep track of which keys have been added since the last beginScope?

• Maintain an auxiliary stack

• When a key/value pair is added to the hash table, push the key on the top of the stack.

• When a “Begin Scope” command is issued, push a special begin scope symbol on the stack.

• When an “End scope” command is issued, pop keys off the stack, removing them from the hash table, until

the begin scope symbol is popped

07-30: Type Checking

• Built-in types ints, floats, booleans, doubles, etc. simpleJava only has the built-in types int and boolean

• Structured types Collections of other types – arrays, records, classes, structs, etc. simpleJava has arrays and

classes

• Pointer types int *, char *, etc. Neither Java nor simpleJava have explicit pointers – no pointer type. (Classes

are represented internally as pointers, no explicit representation)

• Subranges & Enumerated Types C and Pascal have enumerated types (enum), Pascal has subrange types. Java

has neither (at least currently – enumerated types may be added in the future)

CS414-2003S-07 Semantic Analysis 8

07-31: Built-In Types

• No auxiliary information required for built-in types int and boolean (an int is and int is an int)

• All types will be represented by pointers to type objects

• We will only allocate one block of memory for all integer types, and one block of memory for all boolean types

07-32: Built-In Types

void main() {

int x;

int y;

boolean a;

boolean b;

x = y;

x = a; /* Type Error */

}

07-33: Built-In Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

a

b

KeyStack

x y

Variable Environment

a

y

b

x

newscope

newscope

07-34: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

07-35: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

• The name and type of each instance variable

• How can we store a list of bindings of variables to types?

CS414-2003S-07 Semantic Analysis 9

07-36: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

• The name and type of each instance variable

• How can we store a list of bindings of variables to types?

• As an environment!

07-37: Class Types

class simpleClass {

int x;

int y;

boolean z;

}

void main() {

simpleClass a;

simpleClass b;

int c;

int d;

a = new simpleClass();

a.x = c;

}

07-38: Class Types

Type Enviornment:

int

boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

simpleClass

boolean

KeyStack

simpleClass

x y

CLASS TYPE

z

z

KeyStack

y

x

c

d

KeyStack

c d

Variable Environment

b

b

a

a

newscope

newscope

07-39: Array Types

• For arrays, what extra information do we need to store?

CS414-2003S-07 Semantic Analysis 10

07-40: Array Types

• For arrays, what extra information do we need to store?

• The base type of the array

• For statically declared arrays, we might also want to store range of indices, to add range checking for

arrays

• Will add some run time inefficiency – need to add code to dynamically check each array access to

ensure that it is within the correct bounds

• Large number of attacks are based on buffer overflows

07-41: Array Types

• Much like built-in types, we want only one instance of the internal representation for int[], one representation

for int[][], and so on

• So we can do a simple pointer comparison to determine if types are equal

• Otherwise, we would need to parse an entire type structure whenever a type comparison needed to be done

(and type comparisons need to be done frequently in semantic analysis!)

07-42: Array Types

void main () {

int w;

int x[];

int y[];

int z[][];

/* Body of main program */

}

07-43: Class Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

y

z

KeyStack

w y

Variable Environment

x

x

z

w

newscope

newscope

int[]

ARRAY TYPE

int[][]

ARRAY TYPE

int[]

int[][]

07-44: Semantic Analysis Overview

CS414-2003S-07 Semantic Analysis 11

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When declarations are encountered, proper values are added to the correct environment

07-45: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a statement is encountered (such as x = 3), the statement is checked for errors using the current

environment

• Is the variable x declared in the current scope?

• Is it x of type int?

07-46: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a statement is encountered (such as if (x > 3) x++;), the statement is checked for errors using the

current environment

• Is the expression x > 3 a valid expression (this will require a recursive analysis of the expression x

> 3)

• Is the expression x > 3 of type boolean?

• Is the statement x++ valid (this will require a recursive analysis of the statement x++;

07-47: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a function definition is encountered:

• Begin a new scope

• Add the parameters of the functions to the variable environment

• Recursively check the body of the function

• End the current scope (removing definitions of local variables and parameters from the current envi-

ronment)

07-48: Variable Declarations

• int x;

• Look up the type int in the type environment.

• (if it does not exists, report an error)

• Add the variable x to the current variable environment, with the type returned from the lookup of int

07-49: Variable Declarations

• foo x;

• Look up the type foo in the type environment.

• (if it does not exists, report an error)

• Add the variable x to the current variable environment, with the type returned from the lookup of foo

07-50: Array Declarations

CS414-2003S-07 Semantic Analysis 12

• int A[];

• Defines a variable A

• Also potentially defines a type int[]

07-51: Array Declarations

• int A[];

• look up the type int[] in the type environment

• If the type exists:

• Add A to the variable environment, with the type returned from looking up int[]

07-52: Array Declarations

• int A[];

• look up the type int[] in the type environment

• If the type does not exist:

• Check to see if int appears in the type environment. If it does not, report an error

• If int does appear in the type environment

• Create a new Array type (using the type returned from int as a base type)

• Add new type to type environment, with key int[]

• Add variable A to the variable environment, with this type

07-53: Multidimensional Arrays

• For multi-dimensional arrays, we may need to repeat the process

• For a declaration int x[][][], we may need to add:

• int[]

• int[][]

• int[][][]

to the type environment, before adding x to the variable environment with the type int[][][]

07-54: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For A[][][]:

• Add int[], int[][], int[][][] to type environment

• add A to variable environment with type int[][][]

CS414-2003S-07 Semantic Analysis 13

07-55: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For B[]:

• int[] is already in the type environment.

• add B to variable environment, with the type found for int[]

07-56: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For C[][]:

• int[][] is already in the type environment

• add C to variable environment with type found for int[][]

07-57: Multidimensional Arrays

• For the declaration int A[][][], why add types int[], int[][], and int[][][] to the type environment?

• Why not just create a type int[][][], and add A to the variable environment with this type?

• In short, why make sure that all instances of the type int[] point to the same instance?

(examples)

07-58: Multidimensional Arrays

void Sort(int Data[]);

void main() {

int A[];

int B[];

int C[][];

/* Code to allocate space for A,B & C, and

set initial values */

Sort(A);

Sort(B);

Sort(C[2]);

}

CS414-2003S-07 Semantic Analysis 14

07-59: Function Prototypes

• int foo(int a, boolean b);

• Add a description of this function to the function environment

07-60: Function Prototypes

• int foo(int a, boolean b);

• Add a description of this function to the function environment

• Type of each parameter

• Return type of the function

07-61: Function Prototypes

int foo(int a, boolean b);

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

foo

KeyStack

foo

Function Environment

newscope

newscope

FUNCTION TYPE

Return Type Parameters

07-62: Function Prototypes

• int PrintBoard(int board[][]);

• Analyze types of input parameter

• Add int[] and int[][] to the type environment, if not already there.

07-63: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

07-64: Class Definitions

CS414-2003S-07 Semantic Analysis 15

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

07-65: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

• Add integerval, Array, and boolval to this environment (possibly adding int[] to the type environment)

07-66: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

• Add integerval, Array, and boolval to this environment (possibly adding int[] to the type environment)

• Add entry in type environment with key MyClass that stores the new variable environment

07-67: Function Prototypes

Type Enviornment:

int boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

MyClass

boolean

KeyStack

MyClass

boolval integerval

CLASS TYPE

Array

z

KeyStack

y

x

newscope

int[]

ARRAY
TYPE

07-68: Function Definitions

CS414-2003S-07 Semantic Analysis 16

• Analyze formal parameters & return type. Check against prototype (if there is one), or add function entry to

function environment (if no prototype)

• Begin a new scope in the variable environment

• Add formal parameters to the variable environment

• Analyze the body of the function, using modified variable environment

• End current scope in variable environment

07-69: Expressions

• To analyze an expression:

• Make sure the expression is well formed (no semantic errors)

• Return the type of the expression (to be used by the calling function)

07-70: Expressions

• Simple Expressions

• 3 (integer literal)

• This is a well formed expression, with the type int

• true (boolean literal)

• This is a well formed expression, with the type int

07-71: Expressions

• Operator Expressions

• 3 + 4

• Recursively find types of left and right operand

• Make sure the operands have integer types

• Return integer type

• x ¿ 3

• Recursively find types of left and right operand

• Make sure the operands have integer types

• Return boolean type

07-72: Expressions

• Operator Expressions

• (x ¿ 3) —— z

• Recursively find types of left and right operand

• Make sure the operands have boolean types

• Return boolean type

07-73: Expressions – Variables

• Simple (Base) Variables – x

CS414-2003S-07 Semantic Analysis 17

• Look up x in the variable environment

• If the variable was in the variable environment, return the associated type.

• If the variable was not in the variable environment, display an error.

• Need to return something if variable is not defined – return type integer for lack of something better

07-74: Expressions – Variables

• Array Variables – A[3]

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int A[];

/* initialize A, etc. */

x = A[3];

07-75: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

/* initialize B, etc. */

x = B[3][4];

07-76: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

int A[];

/* initialize A, B, etc. */

x = B[A[4]][A[3]];

07-77: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

CS414-2003S-07 Semantic Analysis 18

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

int A[];

/* initialize A, B, etc. */

x = B[A[4]][B[A[3],A[4]]];

07-78: Expressions – Variables

• Instance Variables – x.y

• Analyze the base of the variable (x), and make sure it is a class variable.

• Look up y in the variable environment for the class x

• Return the type associated with y in the variable environment for the class x.

07-79: Instance Variables

class foo {

int x;

boolean y;

}

int main() {

foo x;

int y;

...

y = x.x;

y = x.y;

}

07-80: Instance Variables

class foo {

int x;

boolean y[];

}

int main() {

foo A[];

int a;

boolean b;

...

w = A[3].x;

b = A[3].y[4];

b = A[3].y[A[3].x];

}

07-81: Statements

• If statements

• Analyze the test, ensure that it is of type boolean

CS414-2003S-07 Semantic Analysis 19

• Analyze the “if” statement

• Analyze the “else” statement (if there is one)

07-82: Statements

• Assignment statements

• Analyze the left-hand side of the assignment statement

• Analyze the right-hand side of the assignment statement

• Make sure the types are the same

• Can do this with a simple pointer comparison!

07-83: Statements

• Block statements

• Begin new scope in variable environment

• Recursively analyze all children

• End current scope in variable environment

07-84: Statements

• Variable Declaration Statements

• Look up type of variable

• May involve adding types to type environment for arrays

• Add variable to variable environment

• If there is an initialization expression, make sure the type of the expression matches the type of the variable.

07-85: Types in C

• Three different kinds of types:

• Builtins (int, boolean, void)

• Array

• Base type

• Class

• Name (and types) of all instance variables

• – environment

07-86: Types in C

typedef struct type_ *type;

struct type_ {

enum {integer_type, boolean_type, void_type,

class_type, array_type} kind;

union {

type array;

struct {

environment instancevars;

} class;

} u;

};

CS414-2003S-07 Semantic Analysis 20

07-87: Built-in Types

• One instance of each of the base types

• Each call to constructor to return the same instance:

type t1,t2;

t1 = IntegerType();

t2 = IntegerType();

if (t1 == t2) {

...

}

• if test should always be true

07-88: Built-in Types

type integerType_ = NULL;

type IntegerType() {

if (integerType_ == NULL) {

integerType_ = (type) malloc(sizeof(type_));

integerType_-> kind = integer_type;

}

return integerType_;

}

07-89: Array Types

• int A[];

• Create the type with ArrayType(IntegerType());

• int A[][];

• Create the type with ArrayType(ArrayType(IntegerType()));

07-90: Environments

• File environment1.h

typedef struct environment_ *environment;

typedef struct envEntry_ *envEntry;

environment Environment();

void AddBuiltinTypes(environment env);

void AddBuiltinFunctions(environment env);

void beginScope(environment env);

void endScope(environment env);

void enter(environment env, char * key, envEntry entry);

envEntry find(environment env, char *key);

07-91: Environments

• File environment2.h

CS414-2003S-07 Semantic Analysis 21

envEntry VarEntry(type typ);

envEntry FunctionEntry(type returntyp, typeList formals);

envEntry TypeEntry(type typ);

struct envEntry_ {

enum {Var_Entry, Function_Entry,Type_Entry} kind;

union {

struct {

type typ;

} varEntry;

struct {

type returntyp;

typeList formals;

} functionEntry;

struct {

type typ;

} typeEntry;

} u;

};

07-92: Class Types

• Create the type for the class:

class foo {

int x;

boolean y;

}

• with the C code:

type t4;

environment instanceVars = Environment();

enter(instanceVars, "x",

VariableEntry(IntegerType()));

enter(instanceVars, "y",

VariableEntry(BooleanType()));

t4 = ClassType(instanceVars);

07-93: Reporting Errors

• Function Error:

char *name;

int intval;

Error(3, "Variable %s not defined", name);

Error(15, "Function %s requires %d input parmeters",

name, intval);

07-94: Reporting Errors

• File errors.h

void Error(int linenum, char *message, ...);

int anyerrors();

int numerrors();

07-95: Traversing the AST

• Write a suite of functions to traverse the tree

• Function for each type of tree node

CS414-2003S-07 Semantic Analysis 22

• function for ASTprogram analyzes an ASTprogram

• function for ASTstatement analyzes an ASTstatement

• ... etc.

07-96: Traversing the AST

void analyzeProgram(ASTprogram program) {

environment typeEnv;

environment functionEnv;

environment varEnv;

typeEnv = Environment();

functionEnv = Environment();

varEnv = Environment();

AddBuiltinTypes(typeEnv);

AddBuiltinFunctions(functionEnv);

analyzeClassList(typeEnv, functionEnv, varEnv, program->classes);

analyzeFunctionDecList(typeEnv,functionEnv,varEnv, program->functiondecs);

}

07-97: Analyzing Expressions

• Functions that analyze expressions will return a type

• Type of the expression that was analyzed

• The return value will be used to do typechecking “upstream”

07-98: Analyzing Expressions

void analyzeExpression(typeEnvironment typeEnv,

functionEnvironment functionEnv,

variableEnvironment varEnv, ASTexpression expression) {

switch(expression->kind) {

case ASTvariableExp:

return analyzeVariable(varEnv,exp->u.var);

case ASTintegerLiteralExp:

return IntegerType();

case ASTbooleanLiteral:

return BooleanType();

case ASToperatorExp:

return analyzeOperatorExpression(typeEnv,functionEnv,varEnv, expression);

case ASTcallExp:

return analyzeCallExpression(typeEnv,functionEnv,varEnv, expression);

}

}

07-99: Analyzing Variables

• Three different types of variables

• (Base, Array, Class)

• Examine the “kind” field to determine which kind

• Call appropriate function

07-100: Base Variables

• To analyze a base variable

• Look up the name of the base variable in the variable environment

• Output an error if the variable is not defined

• Return the type of the variable

• (return something if the variable not declared. An integer is as good as anything.

07-101: Base Variables

CS414-2003S-07 Semantic Analysis 23

type analyzeBaseVariable(variableEnvironment varEnv, ASTVariable var) {

envEntry base;

base = find(varEnv, var->u.baseVar.name);

if (base == NULL) {

Error(var->line,"Variable %s not defined",var->u.baseVar.name);

return IntegerType();

}

return base->u.typeEntry.typ;

}

07-102: Analyzing Statements

• To analyze a statement

• Recursively analyze the pieces of the statement

• Check for any semantic errors in the statement

• Don’t need to return anything (yet!) – if the statement is correct, don’t call the Error function!

07-103: Analyzing Statements

void analyzeStatement(environment typeEnv, environment functionEnv,

environment varEnv, ASTstatement statement) {

switch(statement->kind) {

case AssignStm:

analyzeAssignStm(typeEnv, functionEnv, varEnv, statement);

break;

case IfStm:

analyzeIfStm(typeEnv, functionEnv, varEnv, statement);

break;

/* lots of other statements */

case EmptyStm:

break;

default:

Error(statement->line,"Bad Statement");

}

}

07-104: Analyzing If Statements

• To analyze an if statement we:

07-105: Analyzing If Statements

• To analyze an if statement we:

• Recursively analyze the “then” statement (and the “else statement, if it exists)

• Analyze the test

• Make sure the test is of type boolean

07-106: Analyzing If Statements

void analyzeIfStm(environment typeEnv, environment varEnv,

environment functionEnv, ASTstatement statement) {

type testType;

type test = analyzeExpression(typeEnv, functionEnv, varEnv,

statement->u.ifStm.test);

if (test != BooleanType()) {

Error(statement->line,"If test must be a boolean");

}

analyzeStatement(typeEnv, functionEnv, varEnv, statement->u.ifStm.thenstm);

analyzeStatement(typeEnv, functionEnv, varEnv, statement->u.ifStm.elsestm);

}

07-107: Project Hints

• This project will take much longer than the previous projects. You have 3 weeks (plus Spring Break) – start

NOW.

CS414-2003S-07 Semantic Analysis 24

• The project is pointer intensive. Spend some time to understand environments and type representations before

you start.

• Start early. This project is longer than the previous three projects.

• Variable accesses can be tricky. Read the section in the class notes closely before you start coding variable

analyzer.

• Start early. (Do you notice a theme here? I’m not kidding. Really.)

