
Compilers
CS414-2017S-06

Semantic Analysis

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

06-0: Syntax Errors/Semantic Errors

A program has syntax errors if it cannot be
generated from the Context Free Grammar which
describes the language

The following code has no syntax errors, though it
has plenty of semantic errors:

void main() {
if (3 + x - true)

x.y.z[3] = foo(z);
}

Why don’t we write a CFG for the language, so that
all syntactically correct programs also contain no
semantic errors?

06-1: Syntax Errors/Semantic Errors

Why don’t we write a CFG for the language, so that
all syntactically correct programs also contain no
semantic errors?

In general, we can’t!

In simpleJava, variables need to be declared
before they are used

The following CFG:

L = {ww|w ∈ {a, b}}
is not Context-Free – if we can’t generate this
string from a CFG, we certainly can’t generate
a simpleJava program where all variables are
declared before they are used.

06-2: JavaCC & CFGs

JavaCC allows actions – arbitrary Java code – in
rules

We could use JavaCC rules to do type checking

Why don’t we?

06-3: JavaCC & CFGs

JavaCC allows actions – arbitrary Java code – in
rules

We could use JavaCC rules to do type checking

Why don’t we?

JavaCC files become very long, hard to follow,
hard to debug

Not good software engineering – trying to do
too many things at once

06-4: Semantic Errors/Syntax Errors

Thus, we only build the Abstract Syntax Tree in
JavaCC (not worrying about ensuring that
variables are declared before they are used, or that
types match, and so on)

The next phase of compilation – Semantic Analysis
– will traverse the Abstract Syntax Tree, and find
any semantic errors – errors in the meaning
(semantics) of the program

Semantic errors are all compile-time errors other
than syntax errors.

06-5: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Definition Errors

Most strongly typed languages require variables,
functions, and types to be defined before they are
used with some exceptions –

Implicit variable declarations in Fortran

Implicit function definitions in C

06-6: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Structured Variable Errors

x.y = A[3]
x needs to be a class variable, which has an
instance variable y
A needs to be an array variable

x.y[z].w = 4

x needs to be a class variable, which has an
instance variable y, which is an array of class
variables that have an instance variable w

06-7: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Function and Method Errors
foo(3, true, 8)
• foo must be a function which takes 3

parameters:
• integer
• boolean
• integer

06-8: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Type Errors

Build-in functions – /, *, ||, &&, etc. – need to be
called with the correct types

In simpleJava, +, -, *, / all take integers

In simpleJava, || &&, ! take booleans
Standard Java has polymorphic functions &
type coercion

06-9: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Type Errors

Assignment statements must have compatible
types

When are types compatible?

06-10: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Type Errors

Assignment statements must have compatible
types

In Pascal, only Identical types are compatible

06-11: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Type Errors

Assignment statements must have compatible
types

In C, types must have the same structure
Coerceable types also apply

struct { struct {
int x; int z;
char y; char x;

} var1; } var2;

06-12: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Type Errors

Assignment statements must have compatible
types

In Object oriented languages, can assign
subclass value to a superclass variable

06-13: Semantic Errors

Semantic Errors can be classified into the following
broad categories:

Access Violation Errors

Accessing private / protected methods /
variables

Accessing local functions in block structured
languages

Separate files (C)

06-14: Environment

Much of the work in semantic analysis is managing
environments

Environments store current definitions:

Names (and structures) of types

Names (and types) of variables

Names (and return types, and number and
types of parameters) of functions

As variables (functions, types, etc) are declared,
they are added to the environment. When a
variable (function, type, etc) is accessed, its
definition in the environment is checked.

06-15: Environments & Name Spaces

Types and variables have different name spaces in
simpleJava, C, and standard Java:

simpleJava:

class foo {
int foo;

}

void main() {
foo foo;
foo = new foo();
foo.foo = 4;
print(foo.foo);

}

06-16: Environments & Name Spaces

Types and variables have different name spaces in
simpleJava, C, and standard Java:

C:
#include <stdio.h>

typedef int foo;
int main() {
foo foo;
foo = 4;
printf("%d", foo);
return 0;

}

06-17: Environments & Name Spaces

Types and variables have different name spaces in
simpleJava, C, and standard Java:

Java:

class EnviornTest {

static void main(String args[]) {

Integer Integer = new Integer(4);
System.out.print(Integer);

}
}

06-18: Environments & Name Spaces

Variables and functions in C share the same name
space, so the following C code is not legal:

int foo(int x) {
return 2 * x;

}

int main() {
int foo;
printf("%d\n",foo(3));
return 0;

}

The variable definition int foo; masks the
function definition for foo

06-19: Environments & Name Spaces

Both standard Java and simpleJava use different
name spaces for functions and variables

Defining a function and variable with the same
name will not confuse Java or simpleJava in the
same way it will confuse C

Programmer might still get confused ...

06-20: simpleJava Environments

We will break simpleJava environment into 3 parts:

type environment Class definitions, and
built-in types int, boolean, and void.

function environment Function definitions –
number and types of input parameters and the
return type

variable environment Definitions of local
variables, including the type for each variable.

06-21: Changing Environments

int foo(int x) {
boolean y;

x = 2;
y = false;
/* Position A */
{ int y;

boolean z;

y = 3;
z = true;

/* Position B */
}
/* Position C */

}

06-22: Implementing Environments

Environments are implemented with Symbol Tables

Symbol Table ADT:

Begin a new scope.

Add a key / value pair to the symbol table

Look up a value given a key. If there are two
elements in the table with the same key, return
the most recently entered value.

End the current scope. Remove all key / value
pairs added since the last begin scope
command

06-23: Implementing Symbol Tables

Implement a Symbol Table as a list

Insert key/value pairs at the front of the list

Search for key/value pairs from the front of the
list

Insert a special value for “begin new scope”

For “end scope”, remove values from the front
of the list, until a “begin scope” value is reached

06-24: Implementing Symbol Tables

a

b

y

boolean

x

int

z

boolean

y

int

y

boolean

x

int

newscope

c

y

boolean

x

int

06-25: Implementing Symbol Tables

Implement a Symbol Table as an open hash table

Maintain an array of lists, instead of just one

Store (key/value) pair in the front of
list[hash(key)], where hash is a function
that converts a key into an index

If:
The hash function distributes the keys evenly
throughout the range of indices for the list
number of lists = Θ(# of key/value pairs)

Then inserting and finding take time Θ(1)

06-26: Hash Functions

long hash(char *key, int tableSize) {
long h = 0;
long g;
for (;*key;key++) {

h = (h << 4) + *key;
g = h & OxF0000000;
if (g) h ^= g >> 24
h &= g

}
return h % tableSize;

}

06-27: Implementing Symbol Tables

What about beginScope and endScope?

The key/value pairs are distributed across several
lists – how do we know which key/value pairs to
remove on an endScope?

06-28: Implementing Symbol Tables

What about beginScope and endScope?

The key/value pairs are distributed across several
lists – how do we know which key/value pairs to
remove on an endScope?

If we knew exactly which variables were
inserted since the last beginScope command,
we could delete them from the hash table

If we always enter and remove key/value pairs
from the beginning of the appropriate list, we
will remove the correct items from the
environment when duplicate keys occur.

How can we keep track of which keys have
been added since the last beginScope?

06-29: Implementing Symbol Tables

How can we keep track of which keys have been
added since the last beginScope?

Maintain an auxiliary stack

When a key/value pair is added to the hash
table, push the key on the top of the stack.

When a “Begin Scope” command is issued,
push a special begin scope symbol on the
stack.

When an “End scope” command is issued, pop
keys off the stack, removing them from the hash
table, until the begin scope symbol is popped

06-30: Type Checking

Built-in types ints, floats, booleans, doubles,
etc. simpleJava only has the built-in types int and
boolean

Structured types Collections of other types –
arrays, records, classes, structs, etc. simpleJava
has arrays and classes

Pointer types int *, char *, etc. Neither Java nor
simpleJava have explicit pointers – no pointer type.
(Classes are represented internally as pointers, no
explicit representation)

Subranges & Enumerated Types C and
Pascal have enumerated types (enum), Pascal has
subrange types. Java has neither (at least currently
– enumerated types may be added in the future)

06-31: Built-In Types

No auxiliary information required for built-in types
int and boolean (an int is and int is an int)

All types will be represented by pointers to type
objects

We will only allocate one block of memory for all
integer types, and one block of memory for all
boolean types

06-32: Built-In Types

void main() {
int x;
int y;
boolean a;
boolean b;

x = y;
x = a; /* Type Error */

}

06-33: Built-In Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

a

b

KeyStack

x y

Variable Environment

a

y

b

x

newscope

newscope

06-34: Class Types

For built-in types, we did not need to store any
extra information.

For Class types, what extra information do we
need to store?

06-35: Class Types

For built-in types, we did not need to store any
extra information.

For Class types, what extra information do we
need to store?

The name and type of each instance variable

How can we store a list of bindings of variables to
types?

06-36: Class Types

For built-in types, we did not need to store any
extra information.

For Class types, what extra information do we
need to store?

The name and type of each instance variable

How can we store a list of bindings of variables to
types?

As an environment!

06-37: Class Types

class simpleClass {
int x;
int y;
boolean z;

}

void main() {
simpleClass a;
simpleClass b;
int c;
int d;

a = new simpleClass();
a.x = c;

}

06-38: Class Types

Type Enviornment:

int

boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

simpleClass

boolean

KeyStack

simpleClass

x y

CLASS TYPE

z

z

KeyStack

y

x

c

d

KeyStack

c d

Variable Environment

b

b

a

a

newscope

newscope

06-39: Array Types

For arrays, what extra information do we need to
store?

06-40: Array Types

For arrays, what extra information do we need to
store?

The base type of the array

For statically declared arrays, we might also
want to store range of indices, to add range
checking for arrays

Will add some run time inefficiency – need to
add code to dynamically check each array
access to ensure that it is within the correct
bounds
Large number of attacks are based on buffer
overflows

06-41: Array Types

Much like built-in types, we want only one instance
of the internal representation for int[], one
representation for int[][], and so on

So we can do a simple pointer comparison to
determine if types are equal

Otherwise, we would need to parse an entire
type structure whenever a type comparison
needed to be done (and type comparisons need
to be done frequently in semantic analysis!)

06-42: Array Types

void main () {
int w;
int x[];
int y[];
int z[][];

/* Body of main program */

}

06-43: Class Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

y

z

KeyStack

w y

Variable Environment

x

x

z

w

newscope

newscope

int[]

ARRAY TYPE

int[][]

ARRAY TYPE

int[]

int[][]

06-44: Semantic Analysis Overview

A Semantic Analyzer traverses the Abstract Syntax
Tree, and checks for semantic errors

When declarations are encountered, proper
values are added to the correct environment

06-45: Semantic Analysis Overview

A Semantic Analyzer traverses the Abstract Syntax
Tree, and checks for semantic errors

When a statement is encountered (such as x =
3), the statement is checked for errors using the
current environment

Is the variable x declared in the current
scope?
Is it x of type int?

06-46: Semantic Analysis Overview

A Semantic Analyzer traverses the Abstract Syntax
Tree, and checks for semantic errors

When a statement is encountered (such as if (x
> 3) x++;), the statement is checked for errors
using the current environment

Is the expression x > 3 a valid expression
(this will require a recursive analysis of the
expression x > 3)
Is the expression x > 3 of type boolean?
Is the statement x++ valid (this will require a
recursive analysis of the statement x++;

06-47: Semantic Analysis Overview

A Semantic Analyzer traverses the Abstract Syntax
Tree, and checks for semantic errors

When a function definition is encountered:
Begin a new scope
Add the parameters of the functions to the
variable environment
Recursively check the body of the function
End the current scope (removing definitions
of local variables and parameters from the
current environment)

06-48: Variable Declarations

int x;

Look up the type int in the type environment.
(if it does not exists, report an error)

Add the variable x to the current variable
environment, with the type returned from the
lookup of int

06-49: Variable Declarations

foo x;

Look up the type foo in the type environment.
(if it does not exists, report an error)

Add the variable x to the current variable
environment, with the type returned from the
lookup of foo

06-50: Array Declarations

int A[];

Defines a variable A

Also potentially defines a type int[]

06-51: Array Declarations

int A[];

look up the type int[] in the type environment

If the type exists:
Add A to the variable environment, with the
type returned from looking up int[]

06-52: Array Declarations

int A[];

look up the type int[] in the type environment

If the type does not exist:
Check to see if int appears in the type
environment. If it does not, report an error
If int does appear in the type environment
• Create a new Array type (using the type

returned from int as a base type)
• Add new type to type environment, with

key int[]
• Add variable A to the variable environment,

with this type

06-53: Multidimensional Arrays

For multi-dimensional arrays, we may need to
repeat the process

For a declaration int x[][][], we may need to add:

int[]

int[][]

int[][][]

to the type environment, before adding x to the
variable environment with the type int[][][]

06-54: Multidimensional Arrays

void main() {
int A[][][];
int B[];
int C[][];

/* body of main */
}

For A[][][]:

Add int[], int[][], int[][][] to type environment

add A to variable environment with type int[][][]

06-55: Multidimensional Arrays

void main() {
int A[][][];
int B[];
int C[][];

/* body of main */
}

For B[]:

int[] is already in the type environment.

add B to variable environment, with the type
found for int[]

06-56: Multidimensional Arrays

void main() {
int A[][][];
int B[];
int C[][];

/* body of main */
}

For C[][]:

int[][] is already in the type environment

add C to variable environment with type found
for int[][]

06-57: Multidimensional Arrays

For the declaration int A[][][], why add types
int[], int[][], and int[][][] to the type environment?

Why not just create a type int[][][], and add A to the
variable environment with this type?

In short, why make sure that all instances of the
type int[] point to the same instance?
(examples)

06-58: Multidimensional Arrays

void Sort(int Data[]);

void main() {
int A[];
int B[];
int C[][];

/* Code to allocate space for A,B & C, and
set initial values */

Sort(A);
Sort(B);
Sort(C[2]);

}

06-59: Function Prototypes

int foo(int a, boolean b);

Add a description of this function to the function
environment

06-60: Function Prototypes

int foo(int a, boolean b);

Add a description of this function to the function
environment

Type of each parameter

Return type of the function

06-61: Function Prototypes

int foo(int a, boolean b);

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

foo

KeyStack

foo

Function Environment

newscope

newscope

FUNCTION TYPE

Return Type Parameters

06-62: Function Prototypes

int PrintBoard(int board[][]);

Analyze types of input parameter

Add int[] and int[][] to the type environment, if
not already there.

06-63: Class Definitions

class MyClass {
int integerval;
int Array[];
boolean boolval;

}

06-64: Class Definitions

class MyClass {
int integerval;
int Array[];
boolean boolval;

}

Create a new variable environment

06-65: Class Definitions

class MyClass {
int integerval;
int Array[];
boolean boolval;

}

Create a new variable environment

Add integerval, Array, and boolval to this
environment (possibly adding int[] to the type
environment)

06-66: Class Definitions

class MyClass {
int integerval;
int Array[];
boolean boolval;

}

Create a new variable environment

Add integerval, Array, and boolval to this
environment (possibly adding int[] to the type
environment)

Add entry in type environment with key MyClass
that stores the new variable environment

06-67: Function Prototypes

Type Enviornment:

int boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

MyClass

boolean

KeyStack

MyClass

boolval integerval

CLASS TYPE

Array

z

KeyStack

y

x

newscope

int[]

ARRAY
TYPE

06-68: Function Definitions

Analyze formal parameters & return type. Check
against prototype (if there is one), or add function
entry to function environment (if no prototype)

Begin a new scope in the variable environment

Add formal parameters to the variable environment

Analyze the body of the function, using modified
variable environment

End current scope in variable environment

06-69: Expressions

To analyze an expression:

Make sure the expression is well formed (no
semantic errors)

Return the type of the expression (to be used
by the calling function)

06-70: Expressions

Simple Expressions

3 (integer literal)
This is a well formed expression, with the
type int

true (boolean literal)
This is a well formed expression, with the
type boolean

06-71: Expressions

Operator Expressions

3 + 4
Recursively find types of left and right
operand
Make sure the operands have integer types
Return integer type

x > 3
Recursively find types of left and right
operand
Make sure the operands have integer types
Return boolean type

06-72: Expressions

Operator Expressions

(x > 3) || z
Recursively find types of left and right
operand
Make sure the operands have boolean types
Return boolean type

06-73: Expressions – Variables

Simple (Base) Variables – x

Look up x in the variable environment

If the variable was in the variable environment,
return the associated type.

If the variable was not in the variable
environment, display an error.

Need to return something if variable is not
defined – return type integer for lack of
something better

06-74: Expressions – Variables

Array Variables – A[3]

Analyze the index, ensuring that it is of type int

Analyze the base variable. Ensure that the
base variable is an Array Type

Return the type of an element of the array,
extracted from the base type of the array

int A[];

/* initialize A, etc. */
x = A[3];

06-75: Expressions – Variables

Array Variables

Analyze the index, ensuring that it is of type int

Analyze the base variable. Ensure that the
base variable is an Array Type

Return the type of an element of the array,
extracted from the base type of the array

int B[][];

/* initialize B, etc. */
x = B[3][4];

06-76: Expressions – Variables

Array Variables

Analyze the index, ensuring that it is of type int

Analyze the base variable. Ensure that the
base variable is an Array Type

Return the type of an element of the array,
extracted from the base type of the array

int B[][];
int A[];

/* initialize A, B, etc. */
x = B[A[4]][A[3]];

06-77: Expressions – Variables

Array Variables

Analyze the index, ensuring that it is of type int

Analyze the base variable. Ensure that the
base variable is an Array Type

Return the type of an element of the array,
extracted from the base type of the array

int B[][];
int A[];

/* initialize A, B, etc. */
x = B[A[4]][B[A[3],A[4]]];

06-78: Expressions – Variables

Instance Variables – x.y

Analyze the base of the variable (x), and make
sure it is a class variable.

Look up y in the variable environment for the
class x

Return the type associated with y in the
variable environment for the class x.

06-79: Instance Variables

class foo {
int x;
boolean y;

}

int main() {
foo x;
int y;
...
y = x.x;
y = x.y;

}

Complete example: Create Type Env, Show AST, Cover Analysis

06-80: Instance Variables

class foo {
int x;
boolean y[];

}

int main() {
foo A[];
int a;
boolean b;
...
w = A[3].x;
b = A[3].y[4];
b = A[3].y[A[3].x];

}

Complete example: Create Type Env, Show AST, Cover Analysis

06-81: Statements

If statements

Analyze the test, ensure that it is of type
boolean

Analyze the “if” statement

Analyze the “else” statement (if there is one)

06-82: Statements

Assignment statements

Analyze the left-hand side of the assignment
statement

Analyze the right-hand side of the assignment
statement

Make sure the types are the same
Can do this with a simple pointer comparison!

06-83: Statements

Block statements

Begin new scope in variable environment

Recursively analyze all children

End current scope in variable environment

06-84: Statements

Variable Declaration Statements

Look up type of variable
May involve adding types to type
environment for arrays

Add variable to variable environment

If there is an initialization expression, make
sure the type of the expression matches the
type of the variable.

06-85: Types in Java

Each type will be represented by a class

All types will be subclasses of the “type” class:

class Type { }

06-86: Built-in Types

Only one internal representation of each built-in
type

All references to INTEGER type will be a
pointer to the same block of memory

How can we achieve this in Java?

Singleton software design pattern

06-87: Singletons in Java

Use a singleton when you want only one
instantiation of a class

Every call to “new” creates a new instance

– prohibit calls to “new”!

Make the constructor private

Obtain instances through a static method

06-88: Singletons in Java

public class IntegerType extends Type {

private IntegerType() { }

public static IntegerType instance() {
if (instance_ == null) {

instance_ = new IntegerType();
}
return instance_;

}
static private IntegerType instance_;

}

06-89: Singletons in Java

Type t1;
Type t2;
Type t3;

t1 = IntegerType.instance();
t2 = IntegerType.instance();
t3 = IntegerType.instance();

t1, t2, and t3 all point to the same instance

06-90: Structured Types in Java

Built-in types (integer, boolean, void) do not need
any extra information)

An integer is an integer is an integer

Structured types (Arrays, classes) need more
information

An array of what

What fields does the class have

06-91: Array Types in Java

Internal representation of array type needs to store
the element type of the array

class ArrayType extends Type {

public ArrayType(Type type) {

type_ = type;

}

public Type type() {

return type_;

}

public void settype(Type type) {

type_ = type;

}

private Type type_;

}

06-92: Array Types in Java

Creating the internal representation of an array of
integers:

Type t1;
t1 = new ArrayType(IntegerType.instance());

Creating the internal representation of a 2D array
of integers:

Type t2;

t2 = new ArrayType(new ArrayType(IntegerType.instance()));

06-93: Array Types in Java

Creating the internal representation of a 2D array
of integers:

Type t2;

t2 = new ArrayType(new ArrayType(IntegerType.instance()));

Note that you should not use this exact code in
your semantic analyzer

Create a 1D array of integers, add this to the
type environment

Create an array of 1D array of integers, using
the previously created type

06-94: Environments

TypeEnvironment.java

TypeEntry.java

VariableEnvironment.java

VariableEntry.java

FunctionEnvironment.java

FunctionEntry.Java

06-95: Class Types

Create the type for the class:

class foo {
int x;
boolean y;

}

with the Java code:

Type t4;

VariableEnviornment instanceVars = new VariableEnviornment();

instancevars.insert("x", new VariableEntry(IntegerType.instance()));

instancevars.insert("y", new VariableEntry(BooleanType.instance()));

t4 = new ClassType(instanceVars);

06-96: Reporting Errors

Class CompError:

public class CompError {

private static int numberOfErrors = 0;

public static void message(int linenum, String errstm) {

numberOfErrors++;

System.out.println("TstError in line " + linenum + ": "+ errstm);

}

public static boolean anyErrors() {

return numberOfErrors > 0;

}

public static int numberOfErrors() {

return numberOfErrors;

}

}

06-97: Reporting Errors

Using CompError

Trying to add booleans on line 12 ...

CompError.message(12, "Arguments to + must be integers");

06-98: Traversing the AST

Write a Visitor to do Semantic Analysis

Method for each type of AST node

VisitProgram analyzes ASTprogram

VisitIfStatement analyzes an ASTstatement

... etc.

06-99: Setting up the Visitor

public class SemanticAnalyzer implements ASTVisitor {

private VariableEnvironment variableEnv;

private FunctionEnvironment functionEnv;

private TypeEnvironment typeEnv;

/* May need to add some more ... */

public SemanticAnalyzer() {

variableEnv = new VariableEnvironment();

functionEnv = new FunctionEnvironment();

functionEnv.addBuiltinFunctions();

typeEnv = new TypeEnvironment();

}

}

06-100: Traversing the AST

public Object VisitProgram(ASTProgram program) {

program.classes().Accept(this);

program.functiondefinitions().Accept(this);

return null;

}

06-101: Analyzing Expressions

Visitor methods for expressions will return a type

Type of the expression that was analyzed

The return value will be used to do typechecking
“upstream”

06-102: Analyzing Expressions

public Object VisitIntegerLiteral(ASTIntegerLiteral literal) {

return IntegerType.instance();

}

06-103: Analyzing Variables

Three different types of variables

(Base, Array, Class)

ASTVariable a, b, c;

Type t;

a = new ASTBaseVariable("x");

b = new ASTArrayVariable(a, new ASTIntegerLiteral(3));

c = new ASTClassVariable(b, "y");

t = (Type) a.Accept(semanticAnalyzer);

t = (Type) b.Accept(semanticAnalyzer);

t = (Type) c.Accept(semanticAnalyzer);

06-104: Base Variables

To analyze a base variable

Look up the name of the base variable in the
variable environment

Output an error if the variable is not defined

Return the type of the variable
(return something if the variable not declared.
An integer is as good as anything.

06-105: Base Variables

public Object VisitBaseVariable(ASTBaseVariable base) {

VariableEntry baseEntry = variableEnv.find(base.name());

if (basEntry == null) {

CompError.message(base.line(),"Variable " + base.name()

+ " is not defined in this scope");

return IntegerType.instance();

} else {

return baseEntry.type();

}

}

06-106: Analyzing Statements

To analyze a statement

Recursively analyze the pieces of the statement

Check for any semantic errors in the statement

Don’t need to return anything (yet!) – if the
statement is correct, don’t call the Error
function!

06-107: Analyzing If Statements

To analyze an if statement we:

06-108: Analyzing If Statements

To analyze an if statement we:

Recursively analyze the “then” statement (and
the “else” statement, if it exists)

Analyze the test

Make sure the test is of type boolean

06-109: Analyzing If Statements

public Object VisitIfStatement(ASTIfStatement ifsmt) {

Type test = (Type) ifsmt.test().Accept(this);

if (test != BooleanType.instance()) {

CompError.message(ifsmt.line(),"If test must be a boolean");

}

ifsmt.thenstatement().Accept(this);

if (ifsmt.elsestatement() != null) {

ifsmt.elsestatement().Accept(this);

}

return null;

}

06-110: Project Hints

This project will take much longer than the
previous projects. You have 3 weeks (plus Spring
Break) – start NOW.

The project is pointer intensive. Spend some time
to understand environments and type
representations before you start.

Start early. This project is longer than the previous
three projects.

Variable accesses can be tricky. Read the section
in the class notes closely before you start coding
variable analyzer.

Start early. (Do you notice a theme here? I’m not
kidding. Really.)

	{small lecturenumber -	heblocknumber :} Syntax Errors/Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Syntax Errors/Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} JavaCC & CFGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} JavaCC & CFGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errors/Syntax Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environmentaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environments & Name Spacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environments & Name Spacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environments & Name Spacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environments & Name Spacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environments & Name Spacesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} simpleJava Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Changing Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Hash Functionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Implementing Symbol Tablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Type Checkingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Built-In Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Built-In Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Built-In Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Analysis Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Analysis Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Analysis Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Semantic Analysis Overviewaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variable Declarationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Variable Declarationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Declarationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Declarationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Declarationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Multidimensional Arraysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Prototypesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Prototypesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Prototypesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Prototypesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Prototypesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Function Definitionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Expressions -- Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Instance Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Instance Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Built-in Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Singletons in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Singletons in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Singletons in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Structured Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Array Types in Javaaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Environmentsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Class Typesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reporting Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reporting Errorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Traversing the ASTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Setting up the Visitoraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Traversing the ASTaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Expressionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Base Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Base Variablesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing If Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing If Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Analyzing If Statementsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Project Hintsaddtocounter {blocknumber}{1}

