
CS414-2017S-06 Semantic Analysis 1

06-0: Syntax Errors/Semantic Errors

• A program has syntax errors if it cannot be generated from the Context Free Grammar which describes the

language

• The following code has no syntax errors, though it has plenty of semantic errors:

void main() {

if (3 + x - true)

x.y.z[3] = foo(z);

}

• Why don’t we write a CFG for the language, so that all syntactically correct programs also contain no semantic

errors?

06-1: Syntax Errors/Semantic Errors

• Why don’t we write a CFG for the language, so that all syntactically correct programs also contain no semantic

errors?

• In general, we can’t!

• In simpleJava, variables need to be declared before they are used

• The following CFG:

• L = {ww|w ∈ {a, b}}

is not Context-Free – if we can’t generate this string from a CFG, we certainly can’t generate a simpleJava

program where all variables are declared before they are used.

06-2: JavaCC & CFGs

• JavaCC allows actions – arbitrary Java code – in rules

• We could use JavaCC rules to do type checking

• Why don’t we?

06-3: JavaCC & CFGs

• JavaCC allows actions – arbitrary Java code – in rules

• We could use JavaCC rules to do type checking

• Why don’t we?

• JavaCC files become very long, hard to follow, hard to debug

• Not good software engineering – trying to do too many things at once

06-4: Semantic Errors/Syntax Errors

• Thus, we only build the Abstract Syntax Tree in JavaCC (not worrying about ensuring that variables are declared

before they are used, or that types match, and so on)

• The next phase of compilation – Semantic Analysis – will traverse the Abstract Syntax Tree, and find any

semantic errors – errors in the meaning (semantics) of the program

CS414-2017S-06 Semantic Analysis 2

• Semantic errors are all compile-time errors other than syntax errors.

06-5: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Definition Errors

• Most strongly typed languages require variables, functions, and types to be defined before they are used with

some exceptions –

• Implicit variable declarations in Fortran

• Implicit function definitions in C

06-6: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Structured Variable Errors

• x.y = A[3]

• x needs to be a class variable, which has an instance variable y

• A needs to be an array variable

• x.y[z].w = 4

• x needs to be a class variable, which has an instance variable y, which is an array of class variables that

have an instance variable w

06-7: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Function and Method Errors

• foo(3, true, 8)

• foo must be a function which takes 3 parameters:

• integer

• boolean

• integer

06-8: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Build-in functions – /, *, ||, &&, etc. – need to be called with the correct types

• In simpleJava, +, -, *, / all take integers

• In simpleJava, || &&, ! take booleans

• Standard Java has polymorphic functions & type coercion

06-9: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

CS414-2017S-06 Semantic Analysis 3

• Type Errors

• Assignment statements must have compatible types

• When are types compatible?

06-10: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In Pascal, only Identical types are compatible

06-11: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In C, types must have the same structure

• Coerceable types also apply

struct { struct {

int x; int z;

char y; char x;

} var1; } var2;

06-12: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Type Errors

• Assignment statements must have compatible types

• In Object oriented languages, can assign subclass value to a superclass variable

06-13: Semantic Errors

• Semantic Errors can be classified into the following broad categories:

• Access Violation Errors

• Accessing private / protected methods / variables

• Accessing local functions in block structured languages

• Separate files (C)

06-14: Environment

• Much of the work in semantic analysis is managing environments

• Environments store current definitions:

• Names (and structures) of types

• Names (and types) of variables

CS414-2017S-06 Semantic Analysis 4

• Names (and return types, and number and types of parameters) of functions

• As variables (functions, types, etc) are declared, they are added to the environment. When a variable (function,

type, etc) is accessed, its definition in the environment is checked.

06-15: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

simpleJava:

class foo {

int foo;

}

void main() {

foo foo;

foo = new foo();

foo.foo = 4;

print(foo.foo);

}

06-16: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

C:

#include <stdio.h>

typedef int foo;

int main() {

foo foo;

foo = 4;

printf("%d", foo);

return 0;

}

06-17: Environments & Name Spaces

• Types and variables have different name spaces in simpleJava, C, and standard Java:

Java:

class EnviornTest {

static void main(String args[]) {

Integer Integer = new Integer(4);

System.out.print(Integer);

}

}

06-18: Environments & Name Spaces

CS414-2017S-06 Semantic Analysis 5

• Variables and functions in C share the same name space, so the following C code is not legal:

int foo(int x) {

return 2 * x;

}

int main() {

int foo;

printf("%d\n",foo(3));

return 0;

}

• The variable definition int foo; masks the function definition for foo

06-19: Environments & Name Spaces

• Both standard Java and simpleJava use different name spaces for functions and variables

• Defining a function and variable with the same name will not confuse Java or simpleJava in the same way it will

confuse C

• Programmer might still get confused ...

06-20: simpleJava Environments

• We will break simpleJava environment into 3 parts:

• type environment Class definitions, and built-in types int, boolean, and void.

• function environment Function definitions – number and types of input parameters and the return type

• variable environment Definitions of local variables, including the type for each variable.

06-21: Changing Environments

int foo(int x) {

boolean y;

x = 2;

y = false;

/* Position A */

{ int y;

boolean z;

y = 3;

z = true;

/* Position B */

}

/* Position C */

}

06-22: Implementing Environments

• Environments are implemented with Symbol Tables

CS414-2017S-06 Semantic Analysis 6

• Symbol Table ADT:

• Begin a new scope.

• Add a key / value pair to the symbol table

• Look up a value given a key. If there are two elements in the table with the same key, return the most

recently entered value.

• End the current scope. Remove all key / value pairs added since the last begin scope command

06-23: Implementing Symbol Tables

• Implement a Symbol Table as a list

• Insert key/value pairs at the front of the list

• Search for key/value pairs from the front of the list

• Insert a special value for “begin new scope”

• For “end scope”, remove values from the front of the list, until a “begin scope” value is reached

06-24: Implementing Symbol Tables

a

b

y

boolean

x

int

z

boolean

y

int

y

boolean

x

int

newscope

c

y

boolean

x

int

06-25: Implementing Symbol Tables

• Implement a Symbol Table as an open hash table

• Maintain an array of lists, instead of just one

• Store (key/value) pair in the front of list[hash(key)], where hash is a function that converts a key

into an index

• If:

• The hash function distributes the keys evenly throughout the range of indices for the list

• # number of lists = Θ(# of key/value pairs)

Then inserting and finding take time Θ(1)

06-26: Hash Functions

CS414-2017S-06 Semantic Analysis 7

long hash(char *key, int tableSize) {

long h = 0;

long g;

for (;*key;key++) {

h = (h << 4) + *key;

g = h & OxF0000000;

if (g) h ˆ= g >> 24

h &= g

}

return h % tableSize;

}

06-27: Implementing Symbol Tables

• What about beginScope and endScope?

• The key/value pairs are distributed across several lists – how do we know which key/value pairs to remove on

an endScope?

06-28: Implementing Symbol Tables

• What about beginScope and endScope?

• The key/value pairs are distributed across several lists – how do we know which key/value pairs to remove on

an endScope?

• If we knew exactly which variables were inserted since the last beginScope command, we could delete

them from the hash table

• If we always enter and remove key/value pairs from the beginning of the appropriate list, we will remove

the correct items from the environment when duplicate keys occur.

• How can we keep track of which keys have been added since the last beginScope?

06-29: Implementing Symbol Tables

• How can we keep track of which keys have been added since the last beginScope?

• Maintain an auxiliary stack

• When a key/value pair is added to the hash table, push the key on the top of the stack.

• When a “Begin Scope” command is issued, push a special begin scope symbol on the stack.

• When an “End scope” command is issued, pop keys off the stack, removing them from the hash table, until

the begin scope symbol is popped

06-30: Type Checking

• Built-in types ints, floats, booleans, doubles, etc. simpleJava only has the built-in types int and boolean

• Structured types Collections of other types – arrays, records, classes, structs, etc. simpleJava has arrays and

classes

• Pointer types int *, char *, etc. Neither Java nor simpleJava have explicit pointers – no pointer type. (Classes

are represented internally as pointers, no explicit representation)

• Subranges & Enumerated Types C and Pascal have enumerated types (enum), Pascal has subrange types. Java

has neither (at least currently – enumerated types may be added in the future)

CS414-2017S-06 Semantic Analysis 8

06-31: Built-In Types

• No auxiliary information required for built-in types int and boolean (an int is and int is an int)

• All types will be represented by pointers to type objects

• We will only allocate one block of memory for all integer types, and one block of memory for all boolean types

06-32: Built-In Types

void main() {

int x;

int y;

boolean a;

boolean b;

x = y;

x = a; /* Type Error */

}

06-33: Built-In Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

a

b

KeyStack

x y

Variable Environment

a

y

b

x

newscope

newscope

06-34: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

06-35: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

• The name and type of each instance variable

• How can we store a list of bindings of variables to types?

CS414-2017S-06 Semantic Analysis 9

06-36: Class Types

• For built-in types, we did not need to store any extra information.

• For Class types, what extra information do we need to store?

• The name and type of each instance variable

• How can we store a list of bindings of variables to types?

• As an environment!

06-37: Class Types

class simpleClass {

int x;

int y;

boolean z;

}

void main() {

simpleClass a;

simpleClass b;

int c;

int d;

a = new simpleClass();

a.x = c;

}

06-38: Class Types

Type Enviornment:

int

boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

simpleClass

boolean

KeyStack

simpleClass

x y

CLASS TYPE

z

z

KeyStack

y

x

c

d

KeyStack

c d

Variable Environment

b

b

a

a

newscope

newscope

06-39: Array Types

• For arrays, what extra information do we need to store?

CS414-2017S-06 Semantic Analysis 10

06-40: Array Types

• For arrays, what extra information do we need to store?

• The base type of the array

• For statically declared arrays, we might also want to store range of indices, to add range checking for

arrays

• Will add some run time inefficiency – need to add code to dynamically check each array access to

ensure that it is within the correct bounds

• Large number of attacks are based on buffer overflows

06-41: Array Types

• Much like built-in types, we want only one instance of the internal representation for int[], one representation

for int[][], and so on

• So we can do a simple pointer comparison to determine if types are equal

• Otherwise, we would need to parse an entire type structure whenever a type comparison needed to be done

(and type comparisons need to be done frequently in semantic analysis!)

06-42: Array Types

void main () {

int w;

int x[];

int y[];

int z[][];

/* Body of main program */

}

06-43: Class Types

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

y

z

KeyStack

w y

Variable Environment

x

x

z

w

newscope

newscope

int[]

ARRAY TYPE

int[][]

ARRAY TYPE

int[]

int[][]

06-44: Semantic Analysis Overview

CS414-2017S-06 Semantic Analysis 11

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When declarations are encountered, proper values are added to the correct environment

06-45: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a statement is encountered (such as x = 3), the statement is checked for errors using the current

environment

• Is the variable x declared in the current scope?

• Is it x of type int?

06-46: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a statement is encountered (such as if (x > 3) x++;), the statement is checked for errors using the

current environment

• Is the expression x > 3 a valid expression (this will require a recursive analysis of the expression x

> 3)

• Is the expression x > 3 of type boolean?

• Is the statement x++ valid (this will require a recursive analysis of the statement x++;

06-47: Semantic Analysis Overview

• A Semantic Analyzer traverses the Abstract Syntax Tree, and checks for semantic errors

• When a function definition is encountered:

• Begin a new scope

• Add the parameters of the functions to the variable environment

• Recursively check the body of the function

• End the current scope (removing definitions of local variables and parameters from the current envi-

ronment)

06-48: Variable Declarations

• int x;

• Look up the type int in the type environment.

• (if it does not exists, report an error)

• Add the variable x to the current variable environment, with the type returned from the lookup of int

06-49: Variable Declarations

• foo x;

• Look up the type foo in the type environment.

• (if it does not exists, report an error)

• Add the variable x to the current variable environment, with the type returned from the lookup of foo

06-50: Array Declarations

CS414-2017S-06 Semantic Analysis 12

• int A[];

• Defines a variable A

• Also potentially defines a type int[]

06-51: Array Declarations

• int A[];

• look up the type int[] in the type environment

• If the type exists:

• Add A to the variable environment, with the type returned from looking up int[]

06-52: Array Declarations

• int A[];

• look up the type int[] in the type environment

• If the type does not exist:

• Check to see if int appears in the type environment. If it does not, report an error

• If int does appear in the type environment

• Create a new Array type (using the type returned from int as a base type)

• Add new type to type environment, with key int[]

• Add variable A to the variable environment, with this type

06-53: Multidimensional Arrays

• For multi-dimensional arrays, we may need to repeat the process

• For a declaration int x[][][], we may need to add:

• int[]

• int[][]

• int[][][]

to the type environment, before adding x to the variable environment with the type int[][][]

06-54: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For A[][][]:

• Add int[], int[][], int[][][] to type environment

• add A to variable environment with type int[][][]

CS414-2017S-06 Semantic Analysis 13

06-55: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For B[]:

• int[] is already in the type environment.

• add B to variable environment, with the type found for int[]

06-56: Multidimensional Arrays

void main() {

int A[][][];

int B[];

int C[][];

/* body of main */

}

• For C[][]:

• int[][] is already in the type environment

• add C to variable environment with type found for int[][]

06-57: Multidimensional Arrays

• For the declaration int A[][][], why add types int[], int[][], and int[][][] to the type environment?

• Why not just create a type int[][][], and add A to the variable environment with this type?

• In short, why make sure that all instances of the type int[] point to the same instance?

(examples)

06-58: Multidimensional Arrays

void Sort(int Data[]);

void main() {

int A[];

int B[];

int C[][];

/* Code to allocate space for A,B & C, and

set initial values */

Sort(A);

Sort(B);

Sort(C[2]);

}

CS414-2017S-06 Semantic Analysis 14

06-59: Function Prototypes

• int foo(int a, boolean b);

• Add a description of this function to the function environment

06-60: Function Prototypes

• int foo(int a, boolean b);

• Add a description of this function to the function environment

• Type of each parameter

• Return type of the function

06-61: Function Prototypes

int foo(int a, boolean b);

boolean

int

KeyStack

int boolean

Type Environment

void

void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

foo

KeyStack

foo

Function Environment

newscope

newscope

FUNCTION TYPE

Return Type Parameters

06-62: Function Prototypes

• int PrintBoard(int board[][]);

• Analyze types of input parameter

• Add int[] and int[][] to the type environment, if not already there.

06-63: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

06-64: Class Definitions

CS414-2017S-06 Semantic Analysis 15

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

06-65: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

• Add integerval, Array, and boolval to this environment (possibly adding int[] to the type environment)

06-66: Class Definitions

class MyClass {

int integerval;

int Array[];

boolean boolval;

}

• Create a new variable environment

• Add integerval, Array, and boolval to this environment (possibly adding int[] to the type environment)

• Add entry in type environment with key MyClass that stores the new variable environment

06-67: Function Prototypes

Type Enviornment:

int boolean void

INTEGER
TYPE

BOOLEAN
TYPE

VOID
TYPE

int

void

MyClass

boolean

KeyStack

MyClass

boolval integerval

CLASS TYPE

Array

z

KeyStack

y

x

newscope

int[]

ARRAY
TYPE

06-68: Function Definitions

CS414-2017S-06 Semantic Analysis 16

• Analyze formal parameters & return type. Check against prototype (if there is one), or add function entry to

function environment (if no prototype)

• Begin a new scope in the variable environment

• Add formal parameters to the variable environment

• Analyze the body of the function, using modified variable environment

• End current scope in variable environment

06-69: Expressions

• To analyze an expression:

• Make sure the expression is well formed (no semantic errors)

• Return the type of the expression (to be used by the calling function)

06-70: Expressions

• Simple Expressions

• 3 (integer literal)

• This is a well formed expression, with the type int

• true (boolean literal)

• This is a well formed expression, with the type boolean

06-71: Expressions

• Operator Expressions

• 3 + 4

• Recursively find types of left and right operand

• Make sure the operands have integer types

• Return integer type

• x ¿ 3

• Recursively find types of left and right operand

• Make sure the operands have integer types

• Return boolean type

06-72: Expressions

• Operator Expressions

• (x ¿ 3) —— z

• Recursively find types of left and right operand

• Make sure the operands have boolean types

• Return boolean type

06-73: Expressions – Variables

• Simple (Base) Variables – x

CS414-2017S-06 Semantic Analysis 17

• Look up x in the variable environment

• If the variable was in the variable environment, return the associated type.

• If the variable was not in the variable environment, display an error.

• Need to return something if variable is not defined – return type integer for lack of something better

06-74: Expressions – Variables

• Array Variables – A[3]

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int A[];

/* initialize A, etc. */

x = A[3];

06-75: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

/* initialize B, etc. */

x = B[3][4];

06-76: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

int A[];

/* initialize A, B, etc. */

x = B[A[4]][A[3]];

06-77: Expressions – Variables

• Array Variables

• Analyze the index, ensuring that it is of type int

• Analyze the base variable. Ensure that the base variable is an Array Type

CS414-2017S-06 Semantic Analysis 18

• Return the type of an element of the array, extracted from the base type of the array

• int B[][];

int A[];

/* initialize A, B, etc. */

x = B[A[4]][B[A[3],A[4]]];

06-78: Expressions – Variables

• Instance Variables – x.y

• Analyze the base of the variable (x), and make sure it is a class variable.

• Look up y in the variable environment for the class x

• Return the type associated with y in the variable environment for the class x.

06-79: Instance Variables

class foo {

int x;

boolean y;

}

int main() {

foo x;

int y;

...

y = x.x;

y = x.y;

}

Complete example: Create Type Env, Show AST, Cover Analysis 06-80: Instance Variables

class foo {

int x;

boolean y[];

}

int main() {

foo A[];

int a;

boolean b;

...

w = A[3].x;

b = A[3].y[4];

b = A[3].y[A[3].x];

}

Complete example: Create Type Env, Show AST, Cover Analysis 06-81: Statements

• If statements

• Analyze the test, ensure that it is of type boolean

CS414-2017S-06 Semantic Analysis 19

• Analyze the “if” statement

• Analyze the “else” statement (if there is one)

06-82: Statements

• Assignment statements

• Analyze the left-hand side of the assignment statement

• Analyze the right-hand side of the assignment statement

• Make sure the types are the same

• Can do this with a simple pointer comparison!

06-83: Statements

• Block statements

• Begin new scope in variable environment

• Recursively analyze all children

• End current scope in variable environment

06-84: Statements

• Variable Declaration Statements

• Look up type of variable

• May involve adding types to type environment for arrays

• Add variable to variable environment

• If there is an initialization expression, make sure the type of the expression matches the type of the variable.

06-85: Types in Java

• Each type will be represented by a class

• All types will be subclasses of the “type” class:

class Type { }

06-86: Built-in Types

• Only one internal representation of each built-in type

• All references to INTEGER type will be a pointer to the same block of memory

• How can we achieve this in Java?

• Singleton software design pattern

06-87: Singletons in Java

• Use a singleton when you want only one instantiation of a class

CS414-2017S-06 Semantic Analysis 20

• Every call to “new” creates a new instance

• – prohibit calls to “new”!

• Make the constructor private

• Obtain instances through a static method

06-88: Singletons in Java

public class IntegerType extends Type {

private IntegerType() { }

public static IntegerType instance() {

if (instance_ == null) {

instance_ = new IntegerType();

}

return instance_;

}

static private IntegerType instance_;

}

06-89: Singletons in Java

Type t1;

Type t2;

Type t3;

t1 = IntegerType.instance();

t2 = IntegerType.instance();

t3 = IntegerType.instance();

• t1, t2, and t3 all point to the same instance

06-90: Structured Types in Java

• Built-in types (integer, boolean, void) do not need any extra information)

• An integer is an integer is an integer

• Structured types (Arrays, classes) need more information

• An array of what

• What fields does the class have

06-91: Array Types in Java

• Internal representation of array type needs to store the element type of the array

class ArrayType extends Type {

public ArrayType(Type type) {

type_ = type;

}

public Type type() {

return type_;

}

public void settype(Type type) {

type_ = type;

}

private Type type_;

}

CS414-2017S-06 Semantic Analysis 21

06-92: Array Types in Java

• Creating the internal representation of an array of integers:

Type t1;

t1 = new ArrayType(IntegerType.instance());

• Creating the internal representation of a 2D array of integers:

Type t2;

t2 = new ArrayType(new ArrayType(IntegerType.instance()));

06-93: Array Types in Java

• Creating the internal representation of a 2D array of integers:

Type t2;

t2 = new ArrayType(new ArrayType(IntegerType.instance()));

• Note that you should not use this exact code in your semantic analyzer

• Create a 1D array of integers, add this to the type environment

• Create an array of 1D array of integers, using the previously created type

06-94: Environments

• TypeEnvironment.java

• TypeEntry.java

• VariableEnvironment.java

• VariableEntry.java

• FunctionEnvironment.java

• FunctionEntry.Java

06-95: Class Types

• Create the type for the class:

class foo {

int x;

boolean y;

}

• with the Java code:

Type t4;

VariableEnviornment instanceVars = new VariableEnviornment();

instancevars.insert("x", new VariableEntry(IntegerType.instance()));

instancevars.insert("y", new VariableEntry(BooleanType.instance()));

t4 = new ClassType(instanceVars);

06-96: Reporting Errors

• Class CompError:

CS414-2017S-06 Semantic Analysis 22

public class CompError {

private static int numberOfErrors = 0;

public static void message(int linenum, String errstm) {

numberOfErrors++;

System.out.println("TstError in line " + linenum + ": "+ errstm);

}

public static boolean anyErrors() {

return numberOfErrors > 0;

}

public static int numberOfErrors() {

return numberOfErrors;

}

}

06-97: Reporting Errors

• Using CompError

• Trying to add booleans on line 12 ...

CompError.message(12, "Arguments to + must be integers");

06-98: Traversing the AST

• Write a Visitor to do Semantic Analysis

• Method for each type of AST node

• VisitProgram analyzes ASTprogram

• VisitIfStatement analyzes an ASTstatement

• ... etc.

06-99: Setting up the Visitor

public class SemanticAnalyzer implements ASTVisitor {

private VariableEnvironment variableEnv;

private FunctionEnvironment functionEnv;

private TypeEnvironment typeEnv;

/* May need to add some more ... */

public SemanticAnalyzer() {

variableEnv = new VariableEnvironment();

functionEnv = new FunctionEnvironment();

functionEnv.addBuiltinFunctions();

typeEnv = new TypeEnvironment();

}

}

06-100: Traversing the AST

public Object VisitProgram(ASTProgram program) {

program.classes().Accept(this);

program.functiondefinitions().Accept(this);

return null;

}

06-101: Analyzing Expressions

• Visitor methods for expressions will return a type

• Type of the expression that was analyzed

• The return value will be used to do typechecking “upstream”

06-102: Analyzing Expressions

CS414-2017S-06 Semantic Analysis 23

public Object VisitIntegerLiteral(ASTIntegerLiteral literal) {

return IntegerType.instance();

}

06-103: Analyzing Variables

• Three different types of variables

• (Base, Array, Class)

ASTVariable a, b, c;

Type t;

a = new ASTBaseVariable("x");

b = new ASTArrayVariable(a, new ASTIntegerLiteral(3));

c = new ASTClassVariable(b, "y");

t = (Type) a.Accept(semanticAnalyzer);

t = (Type) b.Accept(semanticAnalyzer);

t = (Type) c.Accept(semanticAnalyzer);

06-104: Base Variables

• To analyze a base variable

• Look up the name of the base variable in the variable environment

• Output an error if the variable is not defined

• Return the type of the variable

• (return something if the variable not declared. An integer is as good as anything.

06-105: Base Variables

public Object VisitBaseVariable(ASTBaseVariable base) {

VariableEntry baseEntry = variableEnv.find(base.name());

if (basEntry == null) {

CompError.message(base.line(),"Variable " + base.name()

+ " is not defined in this scope");

return IntegerType.instance();

} else {

return baseEntry.type();

}

}

06-106: Analyzing Statements

• To analyze a statement

• Recursively analyze the pieces of the statement

• Check for any semantic errors in the statement

• Don’t need to return anything (yet!) – if the statement is correct, don’t call the Error function!

06-107: Analyzing If Statements

• To analyze an if statement we:

06-108: Analyzing If Statements

• To analyze an if statement we:

• Recursively analyze the “then” statement (and the “else” statement, if it exists)

• Analyze the test

• Make sure the test is of type boolean

06-109: Analyzing If Statements

CS414-2017S-06 Semantic Analysis 24

public Object VisitIfStatement(ASTIfStatement ifsmt) {

Type test = (Type) ifsmt.test().Accept(this);

if (test != BooleanType.instance()) {

CompError.message(ifsmt.line(),"If test must be a boolean");

}

ifsmt.thenstatement().Accept(this);

if (ifsmt.elsestatement() != null) {

ifsmt.elsestatement().Accept(this);

}

return null;

}

06-110: Project Hints

• This project will take much longer than the previous projects. You have 3 weeks (plus Spring Break) – start

NOW.

• The project is pointer intensive. Spend some time to understand environments and type representations before

you start.

• Start early. This project is longer than the previous three projects.

• Variable accesses can be tricky. Read the section in the class notes closely before you start coding variable

analyzer.

• Start early. (Do you notice a theme here? I’m not kidding. Really.)

