
CS420-2014S-07 Homogenous Space and 4x4 Matrices 1

07-0: Matrices and Translations

• Matrices are great for rotations, reflections, scale

• Can’t do translations

• Matrices can only do linear transformations

• Translations aren’t linear

• Like to do everything with matrices

• Solution: Add a dimension

07-1: 4D Homogenous Space

• Extend 3D coordinates (x, y, z) to 4D homogenous coordinates (x, y, z, w)

• 4th dimension is not time

• Start with extending 2D coordinates (x, y) to 3D homogenous coordinates (x, y, w)

07-2: 3D Homogenous Space

• To convert a point (x, y, w) in 3D Homogenous space into 2D (x, y) space:

• Place a plane at w = 1

• (x, y, w) maps to the (x, y) position on the plane where the ray (x, y, w) intersects the plane

07-3: 3D Homogenous Space
x

y

w

w=1

(x,y,w)

CS420-2014S-07 Homogenous Space and 4x4 Matrices 2

07-4: 3D Homogenous Space
x

y

w

w=1

(x,y,w)

(x/w,y/w)

07-5: 3D Homogenous Space

• Converting from a point in 3D homogenous space to 2D space is easy

• Divide the x and y coordinates by w

• What happens when w = 0?

07-6: 3D Homogenous Space

• Converting from a point in 3D homogenous space to 2D space is easy

• Divide the x and y coordinates by w

• What happens when w = 0?

• “Point at infinity”

• Direction, but not a magnitude

07-7: 3D Homogenous Space

• For a given (x, y, w) point in 3D Homogenous space, there is a single corresponding point in “standard” 2D

space

• Though when w = 0, we are in a bit of a special case

• For a single point in “standard” 2D space, there are an infinite number of corresponding points in 3D Homoge-

nous space

07-8: 4D Homogenous Space

• We can now extend to 3 (4!) dimensions

• A point in 4D Homogeous space (x, y, z, w) transforms to a point in 3D space by dividing x, y and z by w

• That is, where the line defined by points (0,0,0,0) and (x, y, z, w) intersects the hyperplane at w = 1

07-9: 4x4 Transfromation matrices

CS420-2014S-07 Homogenous Space and 4x4 Matrices 3

• In the 3x3 case, a matrix is a transformation of a 3D vector

• In the 4x4 case, a matrix is a transformation of a 4D vector (which we wil then project back into 3D space)

• Let’s look at what happens when we restrict w to be 1:

07-10: 4x4 Transfromation matrices

• Given any 3x3 transformation marix, we can convert it to 4D as follows:

m11 m12 m13
m21 m22 m23
m31 m32 m33

 ⇒

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0

0 0 0 1

07-11: 4x4 Transfromation matrices

• Now, take any 3D vector v = [x, y, z], and matrix M

• Convert v to 4D vector with w = 1

• Convert M to 4D matrix as above

• Transform vector using the new matrix

• Transform back to 3D space

• Get the same vector as if we had not gone into 4D homogenous space at all

07-12: 4x4 Transfromation matrices

[x, y, z]

m11 m12 m13
m21 m22 m23
m31 m32 m33

= [xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33]

[x, y, z, 1]

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0

0 0 0 1

= [xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 1]

07-13: 4x4 Transfromation matrices

• As long as the w component is 1 going in, it will be 1 coming out

• Easy to go back and forth between 3D coordinates and homogenous 4D coordinates

• We’ve transformed 3D problem into an equivant 4D problem

• Why?

07-14: Translation

• Consider the matrix:

1 0 0 0
0 1 0 0
0 0 1 0
∆x ∆y ∆z 1

• What happens when we put a vector [x, y, z, 1] through this matrix?

CS420-2014S-07 Homogenous Space and 4x4 Matrices 4

07-15: Translation

[x, y, z, 1]

1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1

= [x + ∆x, y + ∆y, z + ∆z, 1]

• We can now use matrices to do translations!

07-16: Translation

• But ...

• We’re still just doing matrix multiplication

• Matrix multiplication does linear transforms

• Translation is not linear

• What’s going on?

07-17: Translation

• We are still doing a linear trasformation of the 4D vector

• We are shearing the 4D space

• The resulting projection back to 3D is seen as a translation

07-18: Translation

x

y

w

x

y

x

y

w

x

y

2D Shape Transform to 3D Homogenous Space

Shear operation in 3D space Back to 2D

07-19: Translation

• Recall our matricies for shearing in 3D:

1 0 0
0 1 0
s t 1

CS420-2014S-07 Homogenous Space and 4x4 Matrices 5

• This is precisely what we are doing when translating!

1 0 0 0
0 1 0 0
0 0 1 0
∆x ∆y ∆z 1

07-20: Combining Transforms

• Since matrix multiplication is associative, we can combine translation and rotation into a single matrix

• First do a rotation, and then a translation

• Order is important!

• Why?

07-21: Combining Transforms

x

y

Rotate Translate

x

y

x

y

Translate Rotate

x

y

x

y

x

y

07-22: Com-

bining Transforms

• First rotate, and then translate

• (vMR)MT = v(MrMT)

• What is MrMT ?

MR =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1

07-23: Combining Transforms

• First rotate, and then translate

• (vMR)MT = v(MrMT)

• What is MrMT ?

CS420-2014S-07 Homogenous Space and 4x4 Matrices 6

MR =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

∆x ∆y ∆z 1

=

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
∆x ∆y ∆z 1

07-24: Combining Transforms

• Any 4x4 Homogenous matrix can be split into a rotational component and a translation component

• Upper 3x3 matrix is rotation (which is done first)

• Bottom row is translation (done second)

• But wait – rotation is not always done first!

• True, but any series of rotations and translations is equivalent to a single rotation followed by a single

translation

07-25: Combining Transforms

• Let’s look at an example

• First rotate by π/2 (90 degrees) counterclockwise

• Then translate x by +1

Rotate π/2 Translate
+1 x

07-26: Combining Transforms

cos Θ sinΘ 0
− sinΘ cosΘ 0

0 0 1

1 0 0
0 1 0
1 0 1

 =

cos Θ sinΘ 0
− sinΘ cosΘ 0

1 0 1

 =

0 1 0
−1 0 0

1 0 1

07-27: Combining Transforms

• Another example

• First translate x by +1

• Then rotate by π/2 (90 degrees) counterclockwise

Rotate π/2
Translate
+1 x

07-28: Combining Transforms

1 0 0
0 1 0
1 0 1

cos Θ sinΘ 0
− sinΘ cos Θ 0

0 0 1

 =

cos Θ sinΘ 0
− sinΘ cosΘ 0

cos Θ sinΘ 1

 =

0 1 0
−1 0 0

1 0 1

CS420-2014S-07 Homogenous Space and 4x4 Matrices 7

• Same as rotating, and then moving up +y

07-29: Combining Transforms

Rotate π/4 Translate
+1 x

Rotate π/4Translate
+1 x

07-30: Combining Transforms

• Rotating by π/4, then translating 1 unit +x

cos Θ sinΘ 0
− sinΘ cosΘ 0

0 0 1

1 0 0
0 1 0
1 0 1

 =

cos Θ sinΘ 0
− sinΘ cosΘ 0

1 0 1

 =

1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0
1 0 1

07-31: Combining Transforms

• Translating 1 unit +x, then rotating by π/4

1 0 0
0 1 0
1 0 1

cos Θ sinΘ 0
− sinΘ cosΘ 0

0 0 1

 =

cos Θ sinΘ 0
− sinΘ cos Θ 0

cos Θ sinΘ 1

 =

1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

1/
√

2 1/
√

2 1

• Same as rotating π/4 counterclockwise, and then translating over (+x) 1/
√
2 and up (+y) 1/

√
2

07-32: Non-Standard Axes

• We want to rotate around an axis that does not go through the origin

• 2D Case: Rotate around point at 1,0

• Create the approprate 3x3 vector

07-33: Non-Standard Axes

CS420-2014S-07 Homogenous Space and 4x4 Matrices 8

Rotate π/4 around (1,0)

07-34: Non-Standard Axes

• First, translate to the origin

• Then, do the rotation

• Finally, translate back

07-35: Non-Standard Axes

• First, translate to the origin

1 0 0
0 1 0

−1 0 1

• Then, do the rotation

• Finally, translate back

07-36: Non-Standard Axes

• First, translate to the origin

• Then, do the rotation

cosΘ sinΘ 0
− sinΘ cosΘ 0

0 0 1

 =

1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1

• Finally, translate back

07-37: Non-Standard Axes

• First, translate to the origin

• Then, do the rotation

CS420-2014S-07 Homogenous Space and 4x4 Matrices 9

• Finally, translate back

1 0 0
0 1 0
1 0 1

07-38: Non-Standard Axes

• Final matrix:

1 0 0
0 1 0

−1 0 1

1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1

1 0 0
0 1 0
1 0 1

1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

−1/
√
2 −1/

√
2 1

1 0 0
0 1 0
1 0 1

1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

1− 1/
√
2 −1/

√
2 1

07-39: Non-Standard Axes

Rotate π/4 around (1,0)

Translate to origin, Rotate π/4 around (0,0), Translate back

07-40: Non-Standard Axes

CS420-2014S-07 Homogenous Space and 4x4 Matrices 10

Rotate p/4 around (0,0), then translate over
1 - 1 / 2 and down 1/ 2

Rotate π/4 around (1,0)

07-41: Non-Standard Axes

• Note that the rotation component (upper right 2x2 matrix) is the same as if we were rotating around the origin

• Only the position component is altered.

• In general, whenever we do a rotation and a number of translations, the rotation component will be unchanged

07-42: Non-Standard Axes 3D

• To rotate in 3D around an axis whose center point does not go through the origin

• Let p = [px, py, pz] be some point on the axis of rotation

• Let R3x3 be a 3x3 matrix that does the rotation, assuming the axis goes through the origin

• We can write the rotation as TR4x4T
−1, where T , R4x4, and T−1 are defined as:

07-43: Non-Standard Axes 3D

T =

1 0 0 0
0 1 0 0
0 0 1 0

−px −py −pz 1

=

[

I 0
−p 1

]

R4x4 =

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0

0 0 0 1

=

[

R3x3 0
0 1

]

T
−1

=

1 0 0 0
0 1 0 0
0 0 1 0

px py pz 1

=

[

I 0
p 1

]

07-44: Non-Standard Axes 3D

TRT−1 =

[

I 0
−p 1

] [

R3x3 0
0 1

] [

I 0
p 1

]

=

[

R3x 0
−pR3x3 + p 1

]

07-45: Non-Standard Axes 3D

CS420-2014S-07 Homogenous Space and 4x4 Matrices 11

• Let’s take a closer look:

• First, rotate around axis that goes through origin (this will rotate the object’s position through space – we

want to undo this)

• Move the object from its new (rotated) position back to the origin

• Translate back to the original position

TRT
−1

=

[

I 0
−p 1

] [

R3x3 0
0 1

] [

I 0
p 1

]

=

[

R3x 0
−pR3x3 + p 1

]

07-46: Non-Standard Axes 3D

• This doesn’t just work for rotating – it works for any linear transform (scaling, reflecting, shearing, etc)

• Move object to origin

• Do the transformation

• Move the object back

07-47: Non-Standard Axes 3D

• This doesn’t just work for rotating – it works for any linear transform (scaling, reflecting, shearing, etc)

• Do the transformation, assuming axis runs through origin

• Move the object to the origin (using transformed position)

07-48: Non-Standard Axes 3D

• This doesn’t just work for rotating – it works for any linear transform (scaling, reflecting, shearing, etc)

• Do the transformation, assuming axis runs through origin

• Move the object to the origin (using transformed position)

• Move the object back to the original position

TRT
−1

=

[

I 0
−p 1

] [

R3x3 0
0 1

] [

I 0
p 1

]

=

[

R3x 0
−pR3x3 + p 1

]

07-49: Homogenous Dimension = 0

• Consider a vector in homogenous 4-space

• [x, y, z, w]

• What happens when w = 0?

07-50: Homogenous Dimension = 0

• Consider a vector in homogenous 4-space

• [x, y, z, w]

• What happens when w = 0?

CS420-2014S-07 Homogenous Space and 4x4 Matrices 12

• x, y, and z components are divided by w

• “Point at infinity”

• Direction only, not magnitude

07-51: Homogenous Dimension = 0

• What happens when multiply a vector with w = 0 by a transform that contains no translation?

[x, y, z, 0]

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
0 0 0 1

=

[xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 0]

• Standard transformation – just as if w = 1

07-52: Homogenous Dimension = 0

• What happens when multiply a vector with w = 0 by a transform that does contiain translation?

[x, y, z, 0]

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
∆x ∆y ∆z 1

=

07-53: Homogenous Dimension = 0

• What happens when multiply a vector with w = 0 by a transform that does contiain translation?

[x, y, z, 0]

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
∆x ∆y ∆z 1

=

[xm11 + ym21 + zm31, xm12 + ym22 + zm32, xm13 + ym23 + zm33, 0]

• Rotation occurs as before – but translation is ignored

07-54: “Point at Infinity”

• If we have “point at infinity”, then having the vector be affected by rotation (and non-uniform scaling, and

shearing, etc.), but not translation makes sense

07-55: “Point at Infinity”

CS420-2014S-07 Homogenous Space and 4x4 Matrices 13

Long vector

small translations
barely affect vector

07-56: “Point at Infinity”

Infinite vector

...
To infinity

Translations don’t
affect vector at all

07-57: “Point at Infinity”

Infinite vector

...
To infinity

...
To infinity

Infinite vectors can be rotated

07-58: Homogenous Dimension = 0

CS420-2014S-07 Homogenous Space and 4x4 Matrices 14

• We can “Turn off” translation by setting w = 0

• Handy for when we want direction only, not position

• Surface normals are an excellent example of when we want rotation to affect the vector, but not translation

07-59: Review

• We can describe the orientation of an object using a rotation matrix

• Describes how to transform (rotate) points in the object from object space to inertial space

• Example: Rotate 45 degrees around the Z-axis

cosπ/4 sinπ/4 0
− sinπ/4 cosπ/4 0

0 0 1

07-60: Review

• We have a point at position [x1, y1, z1] in object space (That’s how points in the mesh are stored)

• We need to know the position of the point in world space before rendering (assume no translation yet – our

model is at the origin)

• We can do a simple multiply:

[x1, y1, z1]

cosπ/4 sinπ/4 0
− sinπ/4 cosπ/4 0

0 0 1

07-61: Review

• So, our rotation matrix gives us a way to transform points from object space into world space

• Rotation matrix also tells us where our object is facing in world space, and what the up vector of our object is

in world space

• How?

07-62: Review

• So, our rotation matrix gives us a way to transform points from object space into world space

• Rotation matrix also tells us where our object is facing in world space, and what the up vector of our object is

in world space

• We know the direction our object is facing in local space: [0, 0, 1]

• If we transfrom this by a matrix, what do we get?

07-63: Review

• So, our rotation matrix gives us a way to transform points from object space into world space

• Rotation matrix also tells us where our object is facing in world space, and what the up vector of our object is

in world space

CS420-2014S-07 Homogenous Space and 4x4 Matrices 15

• We know the direction our object is facing in local space: [0, 0, 1]

• If we transfrom this by a matrix we get the bottom row of the matrix

07-64: Review

• Of course, our objects are not always at the origin

• In addition to the rotational matrix, we also have a position – location of the center of the model

• Now, to transform a point, we first rotate it, and then translate it

• Rotation matrix for our model: MR

• Position of our object (displacement from the origin): pos = [xm, ym, zm]

• How can we transform a point [x, y, z] in the object space of this model into world space?

07-65: Review

• Rotation matrix for our model: MR

• Position of our object (displacement from the origin): pos = [xm, ym, zm]

• How can we transform a point pO = [x, y, z] in the object space of this model into world space?

World space pw = pOMR + pos

07-66: Review

• As a mathematical trick, we can combine our rotation matrix and position into a single entity

m11 m12 m13 0
m21 m22 m23 0
m31 m32 m33 0
x y z 1

• Now, to transform a point, convert it to a 4-element vector (by adding a 1 at the end), multiply by this matrix,

look at first 3 elements of the vector

07-67: Review

• A 4x4 matrix represents a rotation, followed by a translation

• We can combine multiple transformations by multiplying matrices together

• Result is a single matrix, which represents a single rotation, followed by a single translation.

07-68: Review

• Example: Finding the end of a tank barrel

• Tank has a location and rotation in world space (represented by a position vector and 3x3 rotation matrix)

• Barrel has a location and rotation (represented by a position vector and 3x3 rotation matrix – reltaive to

the center of the tank

• End of the tank barrel is at location [0, 0, 3] in barrel space

• What is the location of the end of the tank barrel in world space? (do both 3x3 matrices & positions, and 4x4

matrices)

CS420-2014S-07 Homogenous Space and 4x4 Matrices 16

07-69: Review

• Given:

• A bullet position in world space pb = [bx, by, bz]

• A bullet position in world space vb = [bvx, bvy, bvz]

• A rotation matrix for a tank MT , and a position for a tank pT

• What is the position and velocity of the bullet in tank space?

• Why might that be a useful thing to have?

07-70: Row vs. Column Vectors

• Row Vectors

• Rows of the matrix represent transform of object (1st row is x, 2nd row is y, 3rd row is z)

• To transform a vector v by first A, then B, then C: vABC

• Column Vectors

• Columns of the matrix represent transform of object (1st col is x, 2nd col is y, 3rd col is z)

• To transform a vector v by first A, then B, then C: CBAv

07-71: Row vs. Column Vectors

• 4x4 Matrx using Row vectors:

x1 x2 x3 0
y1 y2 y3 0
z1 z2 z3 0
∆x ∆y ∆z 1

• 4x4 Matrx using Column vectors:

x1 y1 z1 ∆x
x2 y2 z2 ∆y
x3 y3 z3 ∆z
0 0 0 1

07-72: Row vs. Column Vectors

• Ogre & OpenGL use column vectors

• Direct3D uses row vectors

• How does Ogre do both?

• Does everything in column vectors

• Multiplies matrices together using column vector convetion

• When it’s time to send a matrix to D3D, does a quick transpose first

07-73: Rotational Matrix Trick

• To remember how to create rotational matrices for the cardinal axes, you just need to remember: cos, sin, -sin,

cos

• If you forget, do the 2D case

• Create 3x3 rotational matrix with the non-rotating vector in the correct location

• From the one in the non-rotating vector, go down and right, and fill in cos,sin,-sin,cos

• Wrap around as necessary

• Examples (column major and row major)

