
Game Engineering
CS420-2016S-02

Introduction to OGRE

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

02-0: Anatomy of a Game Program

The basics

Initialze Rendering Systerm
Load Assets (models, animations, etc)
Initialize non-graphics systems
While (true)

Update world
Render next frame

02-1: Anatomy of a Game Program

Slightly more complicated

Initialze Rendering Systerm
Load Assets (models, animations, etc)
Initialize non-graphics systems
While (true)

For each game sysem
(Camera, AI, Player, world(physics))

Call systems Think method, to do
one frame’s worth of processing

Update Rendering system’s data structures
(model locations, camera locations, etc)

Render next frame

02-2: Ogre

We will be using Ogre in this class

Object-oriented Graphics Rendering Engine

Ogre is not a game engine, but a rendering engine

No physics, or anything else – just rendering

Intentional design decision – do one thing well, use
other libraries & plugins to do other things

02-3: Ogre Idiosyncrasies

Ogre does things a little differently

Initialze Rendering Systerm
Load Assets (models, animations, etc)
Initialize non-graphics systems
Register Callbacks with graphics engine
Run Renderer

(makes callbacks every frame)

02-4: Ogre Idiosyncrasies

You can register as many callbacks as you like

Camera system, AI, Player, World (physics
manager)

However, you have no guarantee what order they
will be called each frame

For more control, can regisiter a single callback,
that manages your other callbacks

02-5: Ogre Idiosyncrasies

Side note: you do not need to let Ogre have control
of the rendering loop

Ogre has a “startRendering” method, that runs the
main loop:

while(true)
// RenderOneFram makes all callbacks
// Does the rendering
// returns false if any callback returns

if (!RenderOneFrame())
break

You can call lower-level Ogre methods yourself, if
you wish

02-6: Setup

Setup resources (filesystem stuff)

Configure the renderer

various settings – resolution, OpenGL vs.
DirectX, etc

Create the SceneManager

Manages the rendering of the scene

Gives us access to models, cameras, etc.

Use the SceneManager to change the scene
(can query it, too)

02-7: Setup (Continued)

Create cameras, viewports

For pong, single viewport (entire screen), single
camera that controls the viewport

Could have multiple cameras, multiple
viewports (split-screen, rear-view mirror, etc)

Create “Scene”

Loading all of the required models

Setting up game systems (non-Ogre)

Create FrameListener

Handles callbacks from the rendering loop

02-8: Creating the Scene

When we create the scene, we need to add all of
our models, lights, etc. to the scene

While individual light sources will look much better,
ambient light will allow us to see everything

mSceneManager->setAmbientLight(ColourValue(1,1,1));

The whole scene will be bathed in white light

02-9: Entities

Adding the models

Create an entity, which contains
Mesh (all we care about for now)
Animation data, other information (we won’t
use this just yet)

Entities are for small, movable geometry

Static geometry (mountains, buildings, etc) will
be done in a different way

02-10: Entities

Entity *ent1 = mSceneManager->createEntity("Coin1", "coin.mesh");

Entity *ent2 = mSceneManager->createEntity("coin.mesh");

We create entities from the scene manager (pretty
much everything happens through the scene
manager)

createEntity takes a name (optional) and a
filename

The name is so that we can look up the entity
later through the scene manager, without
needing to hold on to the pointer

Notice no path in th filename – we need to have
our file structure set up beforehand so that the
system can find everything

02-11: Scene Node

We have the entitiy

Internal representation of the mesh (model)

We need to position the entity in the world

Attach it to a SceneNode

02-12: Scene Graph

The “Scene” is a collection of objects to be
renedered

Represented as a graph (tree, really)

Single root, has many children (each child can
have children)

Position of each scene node is an offset from its
parents position

Move the parent, everyone else goes along for
the ride

02-13: Scene Graph

02-14: Scene Graph

Root Node

SceneNode(Figher)

SceneNode(Sword)

SceneNode(Boat)

SceneNode(Fighter) SceneNode(Fighter)

SceneNode(Sword) SceneNode(Sword)

02-15: Scene Node

mExampleSceneNode = mSceneManager->

getRootSceneNode()->

createChildSceneNode("coinNode",

Vector3(0,0,0));

Create a child scene node, as a child of the root, at
offset (0,0,0) from the root

Name can be used to get the scene node from the
scene manager (optional!)

Position defaults to (0,0,0) (so this parameter is
unnecessary)

Can pass in a rotation as well (as a Quaternion,
more on those later)

02-16: Scene Node

The scene node lets us define a position and
orientation in the scene

Then attach our entity to this scene node, and it is
placed in the scene

mExampleSceneNode->attachObject(ent1);

02-17: Setting up the Scene

You could hard-code in the addition of entities &
scene nodes into your setup code

Works OK for something simple like Pong

For something complicated, you should read in the
“level” from an outside text file

Setup code parses this text file, sets up entities
and scene nodes

02-18: Onward!

We have:

Initialized the graphics system

Set up a viewport & camera

Created all the necessary entities

Build the SceneGraph

We’re ready to create game logic!

02-19: Main Loop

Every frame, our frame listener will get a callback
before any rendering starts:

bool frameStarted(const FrameEvent &evt)

the FrameEvent tells us how much time has
passed since the last frame

Useful, since we don’t want the action in our
world to be dependent upon framerate

Return true to keep rendering, return false to stop
render loop

02-20: Main Loop

bool

PongFrameListener::frameStarted(const FrameEvent &evt)

{

mInputHandler->Think(evt.timeSinceLastFrame);

mAIManager->Think(evt.timeSinceLastFrame);

mWorld->Think(evt.timeSinceLastFrame);

mPongCamera->Think(evt.timeSinceLastFrame);

bool keepGoing = true;

if (mInputHandler->IsKeyDown(IOS::KC_ESCAPE) || mRenderWindow->isClosed())

{

keepGoing = false;

}

return keepGoing;

}

02-21: Unbuffered Input

Setup the keyboard manager

OIS::ParamList pl;

size_t windowHnd = 0;

std::ostringstream windowHndStr;

renderWindow->getCustomAttribute("WINDOW", &windowHnd);

windowHndStr << windowHnd;

pl.insert(std::make_pair(std::string("WINDOW"), windowHndStr.str()));

mInputManager = OIS::InputManager::createInputSystem(pl);

mKeyboard = static_cast<OIS::Keyboard*>

(mInputManager->createInputObject(OIS::OISKeyboard,

false /* not buffered */));

02-22: Unbuffered Input

Every frame, poll what keys are currently being
depressed

(Can also save the previous state, to see what was
just pressed)

void

InputHandler::Think(float time)

{

// Save old state

mCurrentKeyboard->copyKeyStates(mOldKeys);

// Capture input for this frame

mKeyboard->capture();

}

02-23: Overlays

You’ve created a basic pong game, and you want a
nice way to show scores

Several Options

Create 3D models of various numbers, use
them for scoring

Create a 3D scoreboard, change texture(s) to
denote score

Overlays

02-24: Overlays

Overlays allow us to add 2D elements “in front of”
(or overlayed over) our 3D scene

Somewhat complicated, because the overlay
system has a large amount of flexibility

One or two bugs in overlays with the latest
version of Ogre

Can be script controlled

02-25: Overlays

Overlays are containiers for 2D elements

Can have several overlays active at once

Can turn overlays on / off

Great for showing text (like scores), HUD elements
(health bars, etc), debugging info, etc

02-26: Overlays

Overlay is the top level container

Can have one or more sub-containers (called
panels) nested within the main overlay

Can have further elements (more panels or text
elements) nested within panels

02-27: Overlays

Can do all sorts of cool things with overlays

HUDs
Health bars
Scores
Various other status information

3D Cockpits

02-28: Fonts and Materials

You want to create an overlay that has a
background texture and some lettering. You need
to create a material for the background, and a font
for the lettering

test.material

sample.fontdef

02-29: Overlays in 1.8 vs 1.9

In Ogre 1.8 (and before), overlays were part of the
main engine, and initialized by default.

Starting with Ogre 1.9, overlays are a separate
system, and need to be intialized if you want to use
them

Register the overlay system so that it gets a
callback every frame to manage and display
overlays properly

mOverlaySystem = new Ogre::OverlaySystem();

mSceneMgr->addRenderQueueListener(mOverlaySystem);

02-30: Overlays in Code

Overlays can be modified in code

Ogre::OverlayManager& om = Ogre::OverlayManager::getSingleton();

Ogre::TextAreaOverlayElement *textArea =

(Ogre::TextAreaOverlayElement *) om.getOverlayElement("Sample/Panel/Text");

textArea->setCaption("New Caption!")

“Sample/Panel/Text” is the name given to this
particular element in the overlay script

Note typecasting

Overlays can also be created in code if preferred.

	{small lecturenumber -	heblocknumber :} Anatomy of a Game Programaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Anatomy of a Game Programaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ogreaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ogre Idiosyncrasiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ogre Idiosyncrasiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Ogre Idiosyncrasiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Setupaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Setup (Continued)addtocounter
{blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Creating the Sceneaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Entitiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Entitiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Nodeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Graphaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Nodeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scene Nodeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Setting up the Sceneaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Onward!addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Main Loopaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Main Loopaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unbuffered Inputaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Unbuffered Inputaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlaysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlaysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlaysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlaysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlaysaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Fonts and Materialsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlays in 1.8 vs 1.9addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Overlays in Codeaddtocounter {blocknumber}{1}

