CS420-2016S-05 Linear Transforms

05-0: Matrices as Transforms

e Recall that Matrices are transforms

e Transform vectors by rotating, scaling, shearing
e Transform objects as well

e Transforming every vertex in the object
05-1: Calculating Transformations

e What happens when we transform [1,0,0], [0,1,0], and [0,0,1] by

mi1 M1z Mi3

m21 M2z 23

m31 Mm3z2 M33
05-2: Calculating Transformations

e What happens when we transform [1,0,0], [0,1,0], and [0,0,1]:

mi1 miz mi3
mg1 m2p m23 | =[mi1,mi2, miz]

[1,0,0] [
mg1 m3z m33
mi1 miz mi3
[0,1,0] | mgy m2z ma3z | = [ma1,ma2, ma3]
mgy m3z m33
mi1 miz mi3
[0,0,1] | m21 m23 ma3 | =[m31,m32, m33]

m31 m32 m33

05-3: Calculating Transformations

e So, we want to make a transformation matrix

e Matrix that, when multiplied by a vector, transforms the vector

e (also transforms a model — just a series of points)
e To create the matrix

e Decide what the basis vectors should look like after the transformation

e Fill in the matrix with the new basis vectors
05-4: Rotations

e Start with the 2D case

e Rotate a vector 0 degrees counter-clockwise
e What do the basis vectors look like after the rotation?

e That’s the transformation matrix!

CS420-2016S-05

Linear Transforms

05-5: Rotations 2D

2D

y

al c
b/ C

\ 4

\

X

05-7: Rotations 2D

X

05-6: Rotations

y

CS420-2016S-05

Linear Transforms

05-8: Rotations 2D

y

a

A

New X basi s vector:
[cos 06,

a

1
6

sin 0]

sin ©
cos 0

\ /

al c
b/ C

X

05-9: Rotations 2D

y

a

A

05-10: Rotations 2D

CS420-2016S-05 Linear Transforms 4

cos 0 sin 6
-sin 6 cos ©

\ 4

X

05-11: Rotations 2D 05-12: Rota-
tions 3D

e For rotations in 3 dimensions, we need to define:

e The axis we are rotating around

e The direction that we are rotating

e Can’t just use “counter-clockwise” anymore - “counter-clockwise” in relation to what?
05-13: Rotations 3D
e Rotation around the z axis
e Which direction to rotate depends upon whether you are using right-handed or left-handed coordinate system

e Select appropriate hand (right- or left-)
e Point thumb along the positive axis around which you are rotating

e Fingers curl in direction of €
05-14: Rotations 3D

e Rotations in 3D work just like rotations in 2D

e Determine how the basis vectors will change under the rotation
e Need to consider 3 vectors instead of 2
e Create a matrix using the new basis vectors

e 3x3 instead of 2x3
05-15: Rotations 3D

e Rotating ¢ degrees around the z axis

e How do the z coordinates of a vector change in this rotation?

CS420-2016S-05 Linear Transforms 5
e In other words, what happens to the z-basis vector when rotating around the z axis?
05-16: Rotations 3D
e Rotating 6 degrees around the z axis
e How do the z coordinates of a vector change in this rotation?
e They don’t!
e In other words, what happens to the z-basis vector when rotating around the z axis?
e It doesn’t move!
05-17: Rotations 3D
e What about the z basis vector — how does it change?
A
05-18: Rotations 3D 05-

y

19: Rotations 3D

X

05-20: Rotations

CS420-2016S-05 Linear Transforms

Sane as 2D Case!
new x: [cos O, sin 6, O
newy:. [-sin 8 cos 6, O
1 new z: [0, 0, 1

y

X

3D 05-21: Rotations 3D

e What about rotating around a different axis?

e Works the same way
e Axis being rotated around doesn’t change

e Other two axes are the 2D case
05-22: Rotations 3D
e Rotate 6 degrees around the z-axis:
cosf sinf O
—sinf cosf O
0 0 1
05-23: Rotations 3D

e Rotate 6 degrees around the z-axis:

Y y [0, <cos 6, sin 0]
Z

[0, -sin O, cos 0]

— > X
05-24: Rotations 3D

e Rotate 6 degrees around the x-axis:

CS420-2016S-05 Linear Transforms

1 0 0
0 cosf sinf
0 —sinf cosf

05-25: Rotations 3D

e Rotate 6 degrees around the y-axis:

y X [cos B, 0, -sin 6]
z [

sin 6, 0, cos 0]

e o X

05-26: Rotations 3D

e Rotate 6 degrees around the y-axis:

cos@ 0 —sind
0 1 0
sinf 0 cos@

05-27: Arbitrary Axis Rotation

e What if we want to rotate about something other than a main axis?

=

-

05-28: Arbitrary Axis Rotation

e Use this trick to rotate a vector about aribitrary axis

e Break the vector into two component vectors
e Rotate the component vectors

e Add them back together to get rotated vector

e The trick will be picking component vectors that are easy to rotate ...

CS420-2016S-05 Linear Transforms

05-29: Arbitrary Axis Rotation

\ 4

05-30: Arbitrary Axis Rotation
e v is the vector we want to rotate
e n is the vector we want to rotate around (assume 7 is a unit vector)
e Break v into | and v |
e Rotate v and v, around n
e Add them back together to get rotated v

05-31: Arbitrary Axis Rotation

\'
05-32: Arbitrary Axis Rotation
e v is the vector we want to rotate
e n is the vector we want to rotate around (assume 7 is a unit vector)
e Break v into M and v

e What is the result of rotating v|| around n?

05-33: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms

v is the vector we want to rotate

n is the vector we want to rotate around (assume n is a unit vector)

e Break v into M and v

What is the result of rotating v|| around n?

e v doesn’t change!

05-34: Arbitrary Axis Rotation

Vv

Create w, perpendicular to both v and v |

e w is the same length as v |
e w perpendicular to n

e w, v and v/, (v after rotation) are all in the same plane.
05-35: Arbitrary Axis Rotation
e Vector v is rotating through the plane containing w
e Since rotation is constrained to this one plane, back in the 2D case!

05-36: Arbitrary Axis Rotation
sin@=al/l ||v ||

al [|Iw]
b/ []v.l]

cos 06 =Db/ ||V ||

T w (b is negative
I n ths exanpl e)
a v/
\9
4 »

b Vi

05-37: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms

10

v’l:a+b
a=sin6*w
b =cos 6* v,

vi =co0os B* vi+sin 8 * w

\

Vi

05-38: Arbitrary Axis Rotation

e So, we have:
o v = vﬂ +v/
I
*ViI=V
o v/ =cosfv, +sinfw

e All we need to do now is find v, v and w.

05-39: Arbitrary Axis Rotation

\Y

e Whatis v||?
e That is, the projection of v onto n?

05-40: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms

11

05-41:

05-42:

05-43:

05-45:

Vv

What is v ?

v = (v-n)n

Arbitrary Axis Rotation

Once we have v, finding v is easy. Why?
Arbitrary Axis Rotation

Once we have v, finding v is easy.
e V=yV| + vy
oV, =V-—y|

Arbitrary Axis Rotation

w is perpendicular to both v and n
n is a unit vector

w has the same magnitude as v |
What is w?

Arbitrary Axis Rotation

w is perpendicular to both v and n
n is a unit vector
w has the same magnitude as v |

What is w?

e NnXxXv,
e Mutually perpendicular (left-handed system in diagrams)

o [vi|[=Inf|[lvi]sing = |lv_]
Arbitrary Axis Rotation

/ ! !
vV =V v
(st

CS420-2016S-05 Linear Transforms 12

° vh = (v-n)n

v/ =cosOv, +sinfw

oV, =V-—V|

ew=nxv,

e v =cosf(v—(v-n)n)+sinf(n xv)+ (v-n)n
(whew!)

05-46: Arbitrary Axis Rotation

e OK, so we’ve found out how to rotate a single vector around an arbitrary axis.
e How do we create a rotation matrix that will do this rotation?

e In general, how do we create a rotation matrix — or any transformation matrix, for that matter
05-47: Arbitrary Axis Rotation

e How to create a transformation matrix:

e Transform each of the axis vectors

e Put them together into a matrix (either as rows or columns, depending upon whether you are using row- or
column transformation matricies)

e So, forv =[1,0,0],[0,1,0] and [0, 0, 1], calculate:
cosf(v — (v-n)n) +sinf(n x v) + (v-n)n
05-48: Arbitrary Axis Rotation

e v=1_1,0,0]

o v = +sinfd(n x v)+ (v-n)n
e cos6([1,0,0] — ([1,0,0] - [ng, ny, n2]) [Nz, Ny, 12])
e cos0([1,0,0] — (ng)[ns, Ny, nz])

e cosO([1 —n2, —nyny, —ngn;|)

05-49: Arbitrary Axis Rotation

e v=1[1,0,0]

e v/ =cosf(v—(v-n)n)+ + (v-n)n
e sinf(n x v)
e sin0([ng,ny,n.] x [1,0,0])
e sind([0,n,, —n,]

05-50: Arbitrary Axis Rotation

e v=1[1,0,0]

CS420-2016S-05 Linear Transforms

e v/ =cosf(v—(v-n)n)+sinf(n xv) +

(v-n)n

([17 0, O] ’ [nwa Ty, nz])[nwvny’ nz]

nm [nzv ny7 nz]

[n2, nany, ngn.|
05-51: Arbitrary Axis Rotation
e Add them all up, and simplify, to get
(2 (1 — cos 8) + cos 8, ngny (1 — cos 8) + ny sin 6, ngnz (1 — cos8) — nysing] 05-52: Arbitrary Axis Rotation

e Do the same thing for the other two basis vectors, and get:

e y basis vector

[ngny(l —cos) — nzsiné, n§(1 — cos 0) 4 cos 6, nynz (1 — cos §) + ng sin 6]

e z basis vector

[nenz(1 —cosB) + nysind, nynz (1l — cosf) — ng sin 6, ng(l — cos 0) + cos 6]

05-53: Arbitrary Axis Rotation

e Giving the final matrix:

ni(lfcosé)ﬁ»cose ngny(l — cosB) + nysinb ngnz(l — cos @) — ny sin 6
ngny(l —cos) — nzsinb ny(l — cos 0) + cos 6 nynz(l — cos @) + ng sin
ngnz(l —cos6) +nysin® nynz(l— cosb) — ngsinf n2(1 = cos6) 4 cos 6

05-54: Scaling

e Uniform Scaling occurs when we scale an object uniformly in all directions

e Uniform scaling preserves angles, but not areas or volumes

y y

20
02

0,0 %

N

05-55: Scaling

e Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions

e Non-uniform scaling does not preserve angles, areas, or volumes

CS420-2016S-05

Linear Transforms

14

y

1
3F

05-56: Scaling

d

y

00

Y/

e Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions

e Non-uniform scaling does not preserve angles, areas, or volumes

o2l

y

Squar e

05-57: Scaling in 3D

X

y

Par al | el ogr am
9 X

e The transformation matrix for scaling (both uniform and non-uniform) is straightforward:

S(ky, ky, k) =

® s,, 5y, and s are the scaling factors for x, y and z

e if s, = s, = 5., then we have uniform scaling

05-58: Scaling Along a Vector

ke 0 0
0 k, O
0 0 ke

CS420-2016S-05 Linear Transforms

Scale by 2 along x axis

05-59: Scaling Along a Vector
Scale by 2 along x axis

Before Scale: v =v, +vV
X X,

Y
Y

XII

After Scale: v = 2 * v, +vV

05-60: Scaling Along a Vector

CS420-2016S-05 Linear Transforms

16

Scale by 2 along y axis

Before Scale: v :vy” + vyl
VYJ_

Y1
Jy *
2 Vy I

After Scale: v = 2 * v, +vV
Y Y.
05-61: Scaling Along a Vector

e To scale a vector along an axis:

e Divide the vector into a component parallel to the axis, and perpendicular to the axis

e Scale the component parallel to the axis
e Leave the component perpendicular to the axis alone

05-62: Scaling Along a Vector
e We can use the same technique to scale a vector v along an arbitrary vector n
e Divide v into a component parallel to n, and a component perpendicular to n
e Scale the component parallel n

e Leave the component perpendicular to n alone

05-63: Scaling Along a Vector
Scale v by 2 along n

Deconpse v into: v = v, +V
al ny n,

\Y

n,
\/ \ an \"
2
n Vn Vin,
] n H n

After Scale: v

CS420-2016S-05 Linear Transforms

17

05-64: Scaling Along a Vector
Scal e box by 2 along n

05-65: Scaling Along a Vector

e Scaling a vector v by k along unit vector n

e Break v into v and v
e V=V +v
° V/:k*VH—FVL

L] VH = ?, V] = ?
05-66: Scaling Along a Vector

e Scaling a vector v by k along unit vector n

e Break v into v and v
° V:V”"—VJ_

o vV =kxv+vy

e vi=(v-n)*n

eV, =V—-V|
05-67: Scaling Along a Vector
e vi=(v-n)*n
eV, =V
oV =kxv+vy
oV =kxv|+Vv—y
eV =(k=1)*xv +vVv

e v =(k—1)*x(v-n)*n+v

CS420-2016S-05 Linear Transforms 18

05-68: Scaling Along a Vector
e Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?
05-69: Scaling Along a Vector

e Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?

e Transform each of the axes

e Fill in rows (columns, when using column vectors) of matrix
05-70: Scaling Along a Vector
e v =(k—1)*x(v-n)*n+v
e X-axis:

(k —1)([1,0,0] - [ng, ny, nz]) * [ng, ny, nz] +[1,0,0] = (k — 1)(ng) * [ng, ny, nz] +[1,0,0] =[(k — Yn2 + 1, (k — Dngny, (k — Dngnz]

05-71: Scaling Along a Vector
evi=(k-1)x(v-n)xn+v
e y-axis:

(k = 1)([0,1,0] - [ng, ny, nz]) * [ng, ny, nz] +10,1,0] = (k — 1)(ny) * [ng, ny, nz] +[0,1,0] = [(k = Dngny, (k= Dn2 + 1, (k = Dngnz]

05-72: Scaling Along a Vector

e v =(k—1)*x(v-n)*n+v

® Z-axis:
(k = 1)([0,0,1] - [ng, ny, nz]) * [na, ny, nz] + 10,0, 1] = (k — 1)(nz) * [ng, ny, nz] + [0,0,1] = [(k — Dngnz, (k — Dnyns, (b — Hn2 + 1] 05-73:
Scaling Along a Vector
(k — 1)"37 +1 (k=)ngny (k—1)ngny
S(n, k) = (k=)ngny (k — 1)71% +1 (k—1)ngny
(k— 1)ngny (k= 1)nynz (k — l)ng +1

05-74: Reflections 2D

e Another transformation that we can do with matrices is reflections

e Carndinal axes are easy to reflect around

y y

S <

05-75: Reflections 2D
05-76: Reflections 2D

CS420-2016S-05 Linear Transforms 19

e Another transformation that we can do with matrices is reflections
e Carndinal axes are easy to reflect around

e How does the y basis vector change when reflecting around the y axis?

e How does the x basis vector change when reflecting around the y axis?
05-77: Reflections 2D
e Another transformation that we can do with matrices is reflections
e Carndinal axes are easy to reflect around

e How does the y basis vector change when reflecting around the y axis?
e [t doesn’t!

e How does the x basis vector change when reflecting around the y axis?
e Multiplied by -1

05-78: Reflections 2D

e Reflecting around the y axis is the same as scaling the x axis by -1

-1 0
0 1
05-79: Reflections 2D

e To reflect along the x axis, we scale y by -1

1 0
0 -1
e What happens when we reflect around the y axis, and then reflect around the y axis?

e s this equivalent to doing some other operation?

y y

S <

[
05-80: Reflections 2D

05-81: Reflections 2D

CS420-2016S-05 Linear Transforms

20

e Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis:

05-82: Reflections 2D

e Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

e Matrix Multiplication is associative

05-83: Reflections 2D

e Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

e Matrix Multiplication is associative

05-84: Reflections 2D

e Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

e Equivalent to 180 degree (7 radians) rotation

[.] cosm sinw
Y —sinm cosw
05-85: Reflections 3D

e What about reflecting around the yz-plane?

y

X X
05-86: Reflections 3D

e To reflect around the yz plane, scale x by -1

e To reflect around the xy plane, scale z by -1

CS420-2016S-05 Linear Transforms

e To reflect around the zz plane, scale y by -1

05-87: Reflections 3D

e To reflect around any plane

e Find the normal of the plane (there are 2 — doesn’t matter which one)
e Scale around this normal, with magnitude of -1
05-88: Reflections 3D
Ref | ect vector around yz-pl ane

Scale by -1 along normal to plane

05-89: Reflections 3D
Refl ect vector around yz-pl ane

Scale by -1 along normal to plane

y y

05-90: Reflections 3D

CS420-2016S-05 Linear Transforms

22

Ref | ect vector around any pl ane

Scale by -1 along nornmal to plane

y

05-91: Reflections 3D
Ref | ect vector around any pl ane

Scal e by -1 along nornmal to plane

y

05-92: Reflections 3D

CS420-2016S-05 Linear Transforms 23

Refl ect vector around any pl ane

Scale by -1 along nornal to plane

05-93: Reflections 3D

e To reflect around any plane

e Find the normal of the plane (there are 2 — doesn’t matter which one)

e Scale along this normal, with magnitude of -1
e If only we had some way of scaling along the normal

e ... can we scale along an arbitrary vector?
05-94: Reflection in 3D

e To scale along an arbitrary vector n by a scaling factor of k:

(k—1)n2 +1 (k- Dngny (k — D)ngns
S(n, k) = (k= Dngny (k — 1)n§ +1 (k= 1ngny
(k — D)ngns (k — nynz (k —1)n? +1

e Justneedtoset k = —1

05-95: Reflection in 3D

e To reflect around the plane normal to vector n:

—2n2 41 (=2)ngny —2ngmns
R(n) = S(n, —1) = —2ngny 7271.5 +1 —2ngmn,
—2ngns —2nynz —2n2 41

05-96: Reflections

e Any two reflections are equivalent to a single rotation

e Doesn’t matter what axes (2D) or planes (3D) we’re reflecting around

e Reflect around any plane, then reflect around any other plane, still just a rotation
e First reflection flips model “inside out”, second reflection flips model “right-side out”

e A reflection around any axis is equivalent to a reflection around a cardinal axis, followed by a rotation

05-97: Shearing

CS420-2016S-05 Linear Transforms 24

e A two-dimensional shear transform adds a multiple of x to y (while leaving x alone), or adds a multiple of y to
x (while leaving y alone)

o [z.y] = [z + sy,y]
o [z,y] = [x,y+ sx]

e Result is to “tilt” the object / image

05-98: Shearing
Shearing along x in 2D

y’ =y (unchagned)

X' = X + sy

y y

\oo

&

X X

05-99: Shearing

e Shearing along x axis by s:
o [z,y] = [+ sy,
e What should the matrix be?
05-100: Shearing
e Shearing along z axis by s:
o [z,y]l = [z + sy,

e What should the matrix be?

05-101: Shearing

e Shearing along y axis by s:

o [z,y] =[x,y + sx]

CS420-2016S-05 Linear Transforms

[2 y}[é ﬂ

05-102: Shearing

e We can extend shearing to 3 dimensions

e Add a multiple of x to y, leaving x and y unchanged

e Matrix?
05-103: Shearing

e We can extend shearing to 3 dimensions

e Add a multiple of y to z, leaving y and 2z unchanged

[z y =]

S »w =
o = O
_= o O

05-104: Shearing

e We can extend shearing to 3 dimensions

e Add a multiple s of z to x, and a multiple ¢ of 2 to y, leaving z unchanged

e Matrix?
05-105: Shearing

e We can extend shearing to 3 dimensions

e Add a multiple s of z to x, and a multiple ¢ of 2 to y, leaving z unchanged

[z y =]

»w O =

0 0
10
t 1
e Other shears? (adding a multiple s of x to y, and a multiple ¢ of x to z, for instance)
05-106: Shearing

e Shearing is equivalent to rotation and non-uniform scale

e Technically, rotation and non-uniform scale gives a sheared shape

e Need to rotate back to get the same orientation

CS420-2016S-05 Linear Transforms 26

Rot ate cl ockwi se 45

y y

[eRNe]
(Q‘n
X X
Non- uni form scal e Rot at e count er -
(strech x, shrink y) cl ockwi se (~32)

y y

(P e 07
I X &J X

05-107: Shearing 05-108: Shearing

e When shearing, angles are not preserved
e Areas (volumes) are preserved
e Parallel lines remain parallel

05-109: Combining Transforms

e A series of operations on a vector (model) is just a series of matrix multiplications

e Rotate, scale, rotate (as above)
L ((VMrot)J\/[scale)]\/[rot

e Matrix multiplication is associative (but not communative!)

((VMrot)Mscale)Mrot - V((Mrot)(MscaleMrot))
= vM

e We can create one matrix that does all transformations at once
05-110: Linear Transforms

e A transfomation is Linear if:

e Fla+b) = F(a) + F(b)
e F(ka) = kF(a)

e Thatis:

e Transforming two vectors and then adding them is the same as adding them, and then transforming

e Scaling a vector and then transforming it is the same as transforming a vector, and then scaling it

05-111: Linear Transforms

CS420-2016S-05 Linear Transforms

27

e All transformations that can be represented by matrix multiplication are linear
F(a+b) (a+b)M

aM + bM

= F(a)+ F(b)

F(ka) = (kaM
= k(aM)
kF(a)

05-112: Linear Transforms

e Rotation, scale (both uniform and non-uniform), reflection, and shearing are all linear transforms

e Is translation a linear transform?
05-113: Linear Transforms

e All linear transforms need to map the zero vector to the zero vector
e Why?
05-114: Linear Transforms

e All linear transforms need to map the zero vector to the zero vector

Assume that F'(0) = v
F(k0)=F(0)=v
F(ka) = kF(a)

e Thus, v = kv for all k, only true if v is the zero vector

05-115: Linear Transforms

e All linear transforms need to map the zero vector to the zero vector
e Translations do not map the zero vector to the zero vector
e Translations are not linear

e Can’t represent translations using matrix multiplication

e (We will use matricies to represent translations later, but we will need to use highter dimensions ...

05-116: Linear Transforms

e In a linear transformation, parallel lines remain parallel after translation

e Angles may or may not be preserved

e Areas/ volumes may or may not be preserved

CS420-2016S-05 Linear Transforms

05-117: Affine Transforms
o An Affine Transformation is a linear transformation followed by a translation
e Any transform of form F(v) = vM + b is affine
e We will only concern ourselves with affine transforms in this class
05-118: Angle-Preserving Transforms
e A transform is angle preserving if angles are preserved.
e Which transformations are angle preserving?
05-119: Angle-Preserving Transforms
e A transform is angle preserving if angles are preserved.
e Which transformations are angle preserving?

e Translations
e Rotation

e Uniform Scale
e Why not reflection?

05-120: Rigid Body Transforms

e Rigid body transforms change only:

e Orientaton of an object

e Position of an object
e Only translation and rotation are rigid-body transforms
e Reflection is not rigid body

e Also known as “proper” transformations

