CS420-2016S-05

05-0: Matrices as Transforms

- Recall that Matrices are transforms
 - Transform vectors by rotating, scaling, shearing
 - Transform objects as well
 - Transforming every vertex in the object

05-1: Calculating Transformations

• What happens when we transform [1,0,0], [0,1,0], and [0,0,1] by

Γ	m_{11}	m_{12}	m_{13}	
	m_{21}	m_{22}	m_{23}	
L	m_{31}	m_{32}	m_{33}	

05-2: Calculating Transformations

• What happens when we transform [1,0,0], [0,1,0], and [0,0,1]:

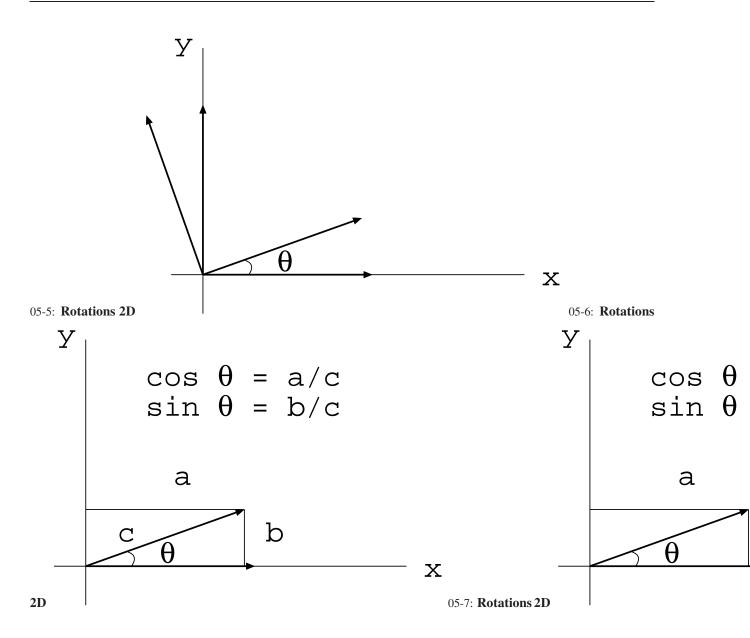
$[1, 0, 0] \begin{bmatrix} m \\ m \\ m \\ m \end{bmatrix}$	$m_{11} m_{12} m_{12} m_{21} m_{22} m_{31} m_{32}$	$\begin{bmatrix} m_{13} \\ m_{23} \\ m_{33} \end{bmatrix} =$	$[m_{11},m_{12},m_{13}]$
$[0, 1, 0] \begin{bmatrix} m \\ m \\ m \end{bmatrix}$	$m_{11} m_{12} m_{12} m_{21} m_{22} m_{31} m_{32}$	$\left[\begin{array}{c} m_{13} \\ m_{23} \\ m_{33} \end{array} \right] =$	$[m_{21},m_{22},m_{23}]$
$[0, 0, 1] \begin{bmatrix} m \\ m \\ m \end{bmatrix}$	$m_{11} m_{12} m_{21} m_{22} m_{22} m_{31} m_{32}$	$\begin{bmatrix} m_{13} \\ m_{23} \\ m_{33} \end{bmatrix} =$	$[m_{31},m_{32},m_{33}]$

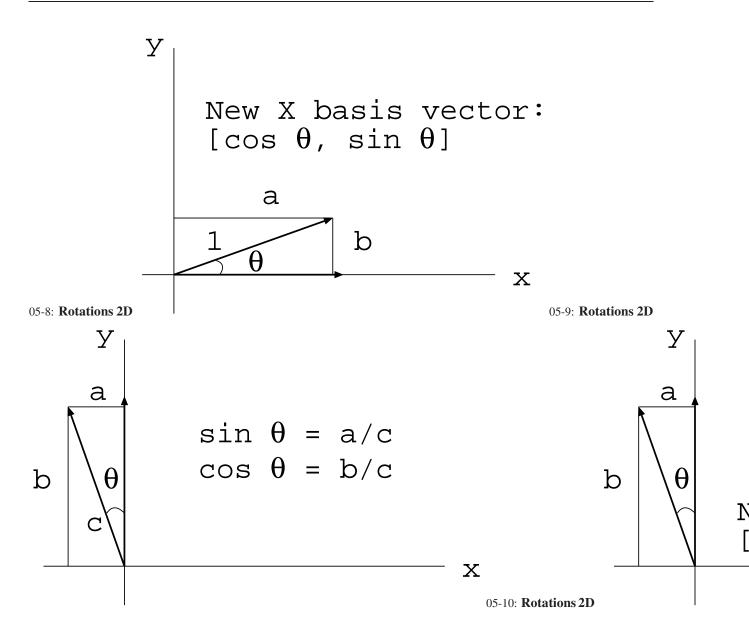
05-3: Calculating Transformations

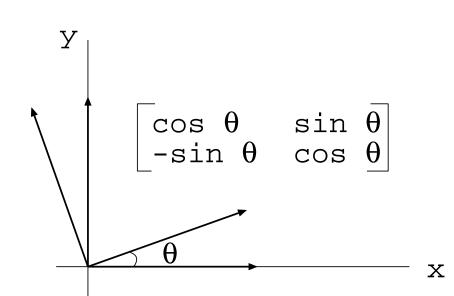
- So, we want to make a transformation matrix
 - Matrix that, when multiplied by a vector, transforms the vector
 - (also transforms a model just a series of points)
- To create the matrix
 - Decide what the basis vectors should look like after the transformation
 - Fill in the matrix with the new basis vectors

05-4: Rotations

- Start with the 2D case
 - Rotate a vector θ degrees counter-clockwise
 - What do the basis vectors look like after the rotation?
 - That's the transformation matrix!







05-11: Rotations 2D tions 3D

05-12: Rota-

- For rotations in 3 dimensions, we need to define:
 - The axis we are rotating around
 - The direction that we are rotating
- Can't just use "counter-clockwise" anymore "counter-clockwise" in relation to what?

05-13: Rotations 3D

- Rotation around the z axis
- Which direction to rotate depends upon whether you are using right-handed or left-handed coordinate system
- Select appropriate hand (right- or left-)
- Point thumb along the positive axis around which you are rotating
- Fingers curl in direction of θ

05-14: Rotations 3D

- Rotations in 3D work just like rotations in 2D
 - Determine how the basis vectors will change under the rotation
 - Need to consider 3 vectors instead of 2
 - Create a matrix using the new basis vectors
 - 3x3 instead of 2x3

05-15: Rotations 3D

- Rotating θ degrees around the z axis
 - How do the z coordinates of a vector change in this rotation?

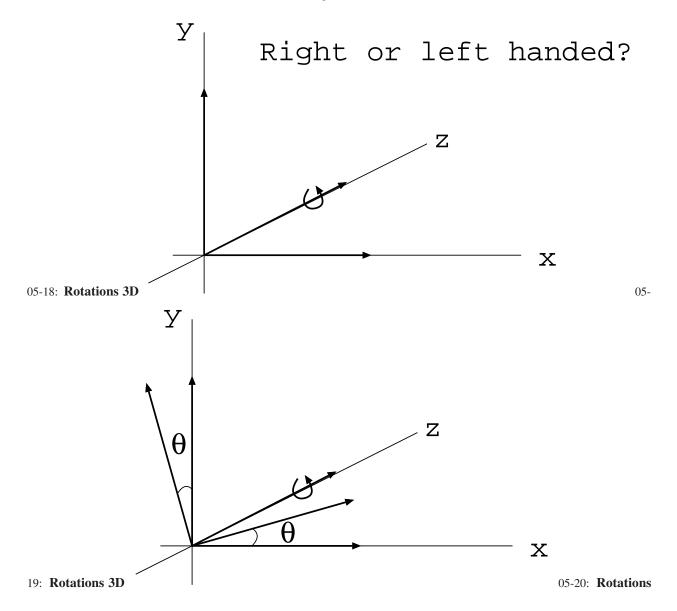
• In other words, what happens to the z-basis vector when rotating around the z axis?

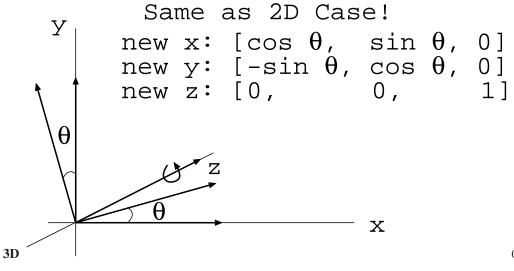
05-16: Rotations 3D

- Rotating θ degrees around the z axis
 - How do the *z* coordinates of a vector change in this rotation?
 - They don't!
 - In other words, what happens to the z-basis vector when rotating around the z axis?
 - It doesn't move!

05-17: Rotations 3D

• What about the x basis vector – how does it change?





05-21: Rotations 3D

- What about rotating around a different axis?
 - Works the same way
 - Axis being rotated around doesn't change
 - Other two axes are the 2D case

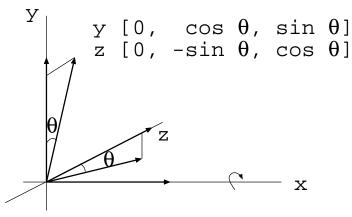
05-22: Rotations 3D

• Rotate θ degrees around the *z*-axis:

$$\left[\begin{array}{ccc}\cos\theta&\sin\theta&0\\-\sin\theta&\cos\theta&0\\0&0&1\end{array}\right]$$

05-23: Rotations 3D

• Rotate θ degrees around the *x*-axis:



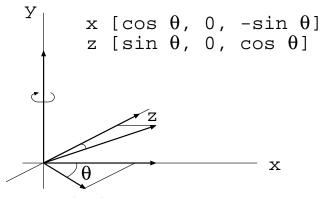
05-24: Rotations 3D

• Rotate θ degrees around the *x*-axis:

1	0	0 -
0	$\cos \theta$	$\sin \theta$
0	$-\sin\theta$	$\cos \theta$

05-25: **Rotations 3D**

• Rotate θ degrees around the *y*-axis:



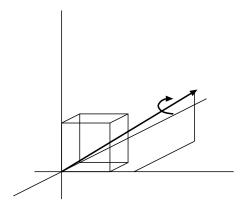
05-26: Rotations 3D

• Rotate θ degrees around the *y*-axis:

$\int \cos \theta$	0	$-\sin\theta$
0	1	0
$\sin \theta$	0	$\cos \theta$

05-27: Arbitrary Axis Rotation

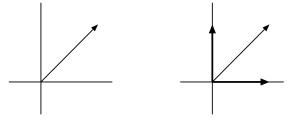
• What if we want to rotate about something other than a main axis?

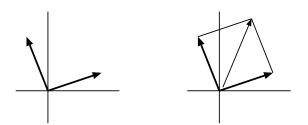


05-28: Arbitrary Axis Rotation

- Use this trick to rotate a vector about aribitrary axis
 - Break the vector into two component vectors
 - Rotate the component vectors
 - Add them back together to get rotated vector
- The trick will be picking component vectors that are easy to rotate ...

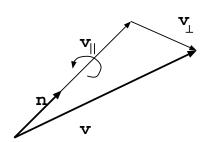
05-29: Arbitrary Axis Rotation





05-30: Arbitrary Axis Rotation

- **v** is the vector we want to rotate
- **n** is the vector we want to rotate around (assume *n* is a unit vector)
- Break \mathbf{v} into v_{\parallel} and v_{\perp}
- Rotate v_{\parallel} and v_{\perp} around n
- $\bullet\,$ Add them back together to get rotated v
- 05-31: Arbitrary Axis Rotation



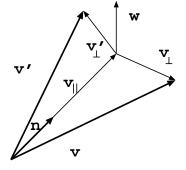
05-32: Arbitrary Axis Rotation

- v is the vector we want to rotate
- **n** is the vector we want to rotate around (assume *n* is a unit vector)
- Break ${\bf v}$ into ${\bf v}_{\parallel}$ and ${\bf v}_{\perp}$
- + What is the result of rotating \mathbf{v}_{\parallel} around $\mathbf{n}?$

05-33: Arbitrary Axis Rotation

- v is the vector we want to rotate
- **n** is the vector we want to rotate around (assume *n* is a unit vector)
- Break ${\bf v}$ into ${\bf v}_{\parallel}$ and ${\bf v}_{\perp}$
- What is the result of rotating \mathbf{v}_{\parallel} around $\mathbf{n}?$
 - v_{\parallel} doesn't change!

05-34: Arbitrary Axis Rotation

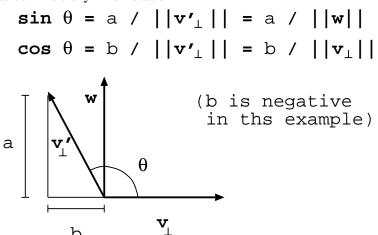


- Create w, perpendicular to both \mathbf{v}_{\parallel} and \mathbf{v}_{\perp}
 - w is the same length as \mathbf{v}_{\perp}
 - w perpendicular to n
 - w, \mathbf{v}_{\perp} and \mathbf{v}_{\perp}' (v_{\perp} after rotation) are all in the same plane.

05-35: Arbitrary Axis Rotation

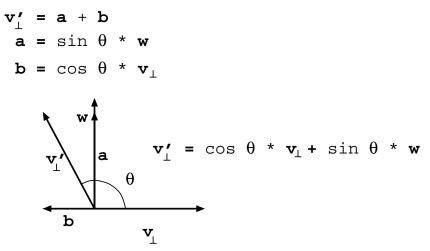
- Vector v_{\perp} is rotating through the plane containing w
- Since rotation is constrained to this one plane, back in the 2D case!

05-36: Arbitrary Axis Rotation



05-37: Arbitrary Axis Rotation

b



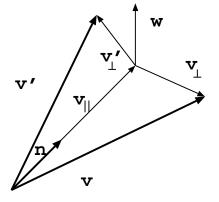
05-38: Arbitrary Axis Rotation

- So, we have:
 - $\mathbf{v}' = \mathbf{v}'_{\parallel} + \mathbf{v}'_{\perp}$

•
$$\mathbf{v}'_{\parallel} = \mathbf{v}_{\parallel}$$

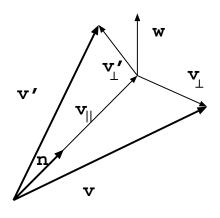
- $\mathbf{v}'_{\perp} = \cos\theta\mathbf{v}_{\perp} + \sin\theta\mathbf{w}$
- All we need to do now is find $\mathbf{v}_{\parallel}, \mathbf{v}_{\perp}$ and $\mathbf{w}.$

05-39: Arbitrary Axis Rotation



- What is \mathbf{v}_{\parallel} ?
 - That is, the projection of v onto n?

05-40: Arbitrary Axis Rotation



- What is \mathbf{v}_{\parallel} ?
- $\mathbf{v}_{\parallel} = (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$

05-41: Arbitrary Axis Rotation

• Once we have $\mathbf{v}_{\parallel},$ finding \mathbf{v}_{\perp} is easy. Why?

05-42: Arbitrary Axis Rotation

- Once we have $\mathbf{v}_{\parallel},$ finding \mathbf{v}_{\perp} is easy.
 - $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$

05-43: Arbitrary Axis Rotation

- ${\bf w}$ is perpendicular to both ${\bf v}_\perp$ and ${\bf n}$
- n is a unit vector
- w has the same magnitude as \mathbf{v}_\perp
- What is w?

05-44: Arbitrary Axis Rotation

- ${\bf w}$ is perpendicular to both ${\bf v}_\perp$ and ${\bf n}$
- n is a unit vector
- w has the same magnitude as \mathbf{v}_{\perp}
- What is w?
 - $\mathbf{n} \times \mathbf{v}_{\perp}$
 - Mutually perpendicular (left-handed system in diagrams)
 - $||\mathbf{n} \times \mathbf{v}_{\perp}|| = ||\mathbf{n}||||\mathbf{v}_{\perp}||\sin \theta = ||\mathbf{v}_{\perp}||$

05-45: Arbitrary Axis Rotation

• $\mathbf{v}' = \mathbf{v}'_{\parallel} + \mathbf{v}'_{\perp}$

- $\mathbf{v}'_{\parallel} = (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
- $\mathbf{v}'_{\perp} = \cos\theta\mathbf{v}_{\perp} + \sin\theta\mathbf{w}$

•
$$\mathbf{v}_{\perp} = \mathbf{v} - \mathbf{v}_{\parallel}$$

- $\mathbf{w} = \mathbf{n} \times \mathbf{v}_{\perp}$
- $\mathbf{v}' = \cos \theta (\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \theta (\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$ (whew!)

05-46: Arbitrary Axis Rotation

- OK, so we've found out how to rotate a single vector around an arbitrary axis.
- How do we create a rotation matrix that will do this rotation?
 - In general, how do we create a rotation matrix or any transformation matrix, for that matter

05-47: Arbitrary Axis Rotation

- How to create a transformation matrix:
 - Transform each of the axis vectors
 - Put them together into a matrix (either as rows or columns, depending upon whether you are using row- or column transformation matricies)
- So, for v = [1, 0, 0], [0, 1, 0] and [0, 0, 1], calculate:

$$\cos\theta(\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin\theta(\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$$

05-48: Arbitrary Axis Rotation

- $\mathbf{v} = [1, 0, 0]$
- $\mathbf{v}' = \cos\theta(\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin\theta(\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $\cos \theta([1,0,0] ([1,0,0] \cdot [n_x, n_y, n_z])[n_x, n_y, n_z])$
 - $\cos \theta([1,0,0] (n_x)[n_x,n_y,n_z])$
 - $\cos\theta([1-n_x^2,-n_xn_y,-n_xn_z])$

05-49: Arbitrary Axis Rotation

- $\mathbf{v} = [1, 0, 0]$
- $\mathbf{v}' = \cos\theta(\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin\theta(\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $\sin \theta(\mathbf{n} \times \mathbf{v})$
 - $\sin\theta([n_x, n_y, n_z] \times [1, 0, 0])$
 - $\sin\theta([0, n_z, -n_z])$

05-50: Arbitrary Axis Rotation

• $\mathbf{v} = [1, 0, 0]$

- $\mathbf{v}' = \cos\theta(\mathbf{v} (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin\theta(\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $(\mathbf{v} \cdot \mathbf{n})\mathbf{n}$
 - $([1,0,0] \cdot [n_x, n_y, n_z])[n_x, n_y, n_z]$
 - $n_x[n_x, n_y, n_z]$
 - $[n_x^2, n_x n_y, n_x n_z]$

05-51: Arbitrary Axis Rotation

• Add them all up, and simplify, to get

 $[n_x^2(1-\cos\theta)+\cos\theta, n_x n_y(1-\cos\theta)+n_z\sin\theta, n_x n_z(1-\cos\theta)-n_y\sin\theta]$ 05-52: Arbitrary Axis Rotation

- Do the same thing for the other two basis vectors, and get:
- y basis vector

 $[n_x n_y (1 - \cos \theta) - n_z \sin \theta, n_y^2 (1 - \cos \theta) + \cos \theta, n_y n_z (1 - \cos \theta) + n_x \sin \theta]$

• z basis vector

 $[n_x n_z (1 - \cos \theta) + n_y \sin \theta, n_y n_z (1 - \cos \theta) - n_x \sin \theta, n_z^2 (1 - \cos \theta) + \cos \theta]$

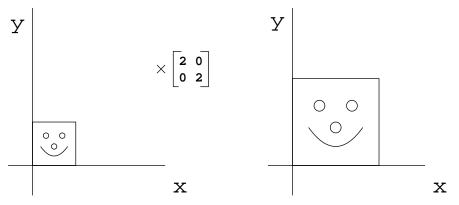
05-53: Arbitrary Axis Rotation

• Giving the final matrix:

Γ	$n_x^2(1 - \cos\theta) + \cos\theta$	$n_x n_y (1 - \cos \theta) + n_z \sin \theta$	$n_x n_z (1 - \cos \theta) - n_y \sin \theta$
	$n_x n_y (1 - \cos \theta) - n_z \sin \theta$	$n_y^2(1 - \cos \theta) + \cos \theta$	$n_y n_z (1 - \cos \theta) + n_x \sin \theta$
L	$n_x n_z (1 - \cos \theta) + n_y \sin \theta$	$n_y n_z (1 - \cos \theta) - n_x \sin \theta$	$n_{\pi}^2(1 - \cos\theta) + \cos\theta$

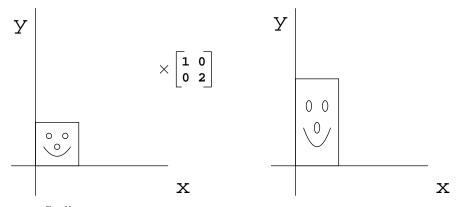
05-54: Scaling

- Uniform Scaling occurs when we scale an object uniformly in all directions
- Uniform scaling preserves angles, but not areas or volumes



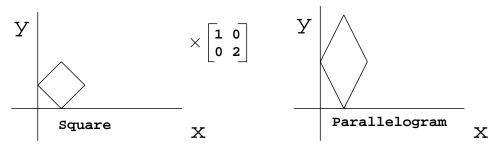
05-55: Scaling

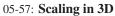
- Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions
- Non-uniform scaling does not preserve angles, areas, or volumes



05-56: Scaling

- Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions
- Non-uniform scaling does not preserve angles, areas, or volumes





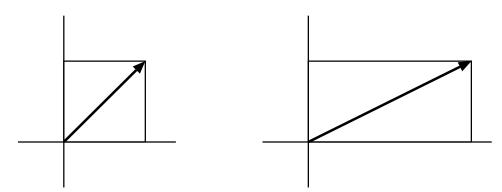
• The transformation matrix for scaling (both uniform and non-uniform) is straightforward:

$$\mathbf{S}(k_x, k_y, k_z) = \begin{bmatrix} k_x & 0 & 0\\ 0 & k_y & 0\\ 0 & 0 & k_z \end{bmatrix}$$

- s_x, s_y , and s_z are the scaling factors for x, y and z
- if $s_x = s_y = s_z$, then we have uniform scaling

05-58: Scaling Along a Vector

Scale by 2 along x axis

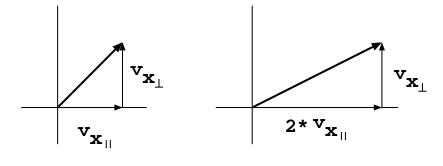


05-59: Scaling Along a Vector

Scale by 2 along x axis

Before Scale:

 $\mathbf{v} = \mathbf{v}_{\mathbf{x}_{||}} + \mathbf{v}_{\mathbf{x}_{\perp}}$



After Scale: v = 2 * $v_{x_{||}} + v_{x_{\perp}}$

05-60: Scaling Along a Vector

Scale by 2 along y axis Before Scale: $v = v_{y_{||}} + v_{y_{\perp}}$ $v_{y_{||}}$ $v_{y_{||}}$ $2 * v_{y_{||}}$

05-61: Scaling Along a Vector

After Scale:

- To scale a vector along an axis:
 - Divide the vector into a component parallel to the axis, and perpendicular to the axis

 $\mathbf{v}_{\mathbf{y}_{\parallel}} + \mathbf{v}_{\mathbf{y}_{\perp}}$

• Scale the component parallel to the axis

v =

2

• Leave the component perpendicular to the axis alone

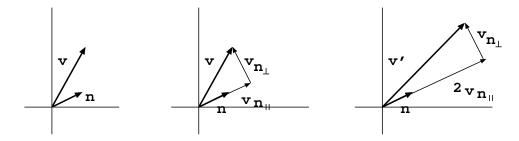
05-62: Scaling Along a Vector

- We can use the same technique to scale a vector v along an arbitrary vector n
 - Divide v into a component parallel to n, and a component perpendicular to n
 - Scale the component parallel **n**
 - Leave the component perpendicular to n alone

05-63: Scaling Along a Vector

```
Scale v by 2 along n
```

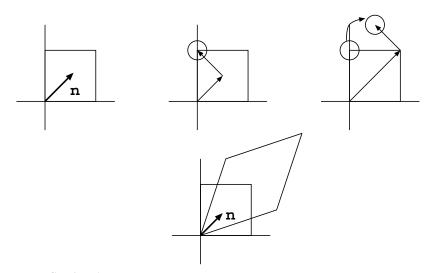
Decompse v into: v = $v_{n_{||}} + v_{n_{||}}$



After Scale: v'= 2 * $v_{y_{||}} + v_{y_{\perp}}$

05-64: Scaling Along a Vector

Scale box by 2 along n



05-65: Scaling Along a Vector

- Scaling a vector \mathbf{v} by k along unit vector \mathbf{n}
 - Break ${\bf v}$ into ${\bf v}_{\parallel}$ and ${\bf v}_{\perp}$
 - $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}_{\parallel} = ?, \mathbf{v}_{\perp} = ?$

05-66: Scaling Along a Vector

- Scaling a vector \mathbf{v} by k along unit vector \mathbf{n}
 - Break ${\bf v}$ into ${\bf v}_{\parallel}$ and ${\bf v}_{\perp}$
 - $\mathbf{v} = \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
 - $\mathbf{v}_{\parallel} = (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n}$
 - $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$

05-67: Scaling Along a Vector

- $\mathbf{v}_{\parallel} = (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n}$
- $\mathbf{v}_{\perp} = \mathbf{v} \mathbf{v}_{\parallel}$
- $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v}_{\perp}$
- $\mathbf{v}' = k * \mathbf{v}_{\parallel} + \mathbf{v} \mathbf{v}_{\parallel}$
- $\mathbf{v}' = (k-1) * \mathbf{v}_{\parallel} + \mathbf{v}$
- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$

CS420-2016S-05

05-68: Scaling Along a Vector

• Now that we know how to scale a vector along a different vector, how do we create the transformation matrix?

05-69: Scaling Along a Vector

- Now that we know how to scale a vector along a different vector, how do we create the transformation matrix?
 - Transform each of the axes
 - Fill in rows (columns, when using column vectors) of matrix

05-70: Scaling Along a Vector

•
$$\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$$

• x-axis:

 $(k-1)([1,0,0] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [1,0,0] = (k-1)(n_x) * [n_x, n_y, n_z] + [1,0,0] = [(k-1)n_x^2 + 1, (k-1)n_x n_y, (k-1)n_x n_z]$ 05-71: Scaling Along a Vector

- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$
- y-axis:

 $(k-1)([0,1,0] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [0,1,0] = (k-1)(n_y) * [n_x, n_y, n_z] + [0,1,0] = [(k-1)n_xn_y, (k-1)n_y^2 + 1, (k-1)n_xn_z]$ 05-72: Scaling Along a Vector

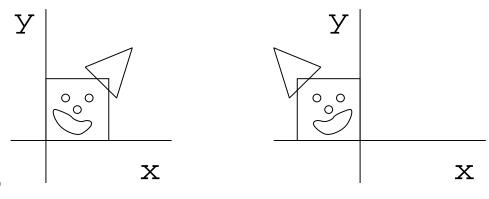
- $\mathbf{v}' = (k-1) * (\mathbf{v} \cdot \mathbf{n}) * \mathbf{n} + \mathbf{v}$
- z-axis:

 $(k-1)([0,0,1] \cdot [n_x, n_y, n_z]) * [n_x, n_y, n_z] + [0,0,1] = (k-1)(n_z) * [n_x, n_y, n_z] + [0,0,1] = [(k-1)n_xn_z, (k-1)n_yn_z, (k-1)n_z^2 + 1]$ 05-73: Scaling Along a Vector

	ſ	$(k-1)n_x^2 + 1$	$(k - 1)n_x n_y$	$(k - 1)n_x n_z$
S(n, k) =		$(k - 1)n_x n_y$	$(k-1)n_y^2 + 1$	$(k - 1)n_x n_z$
	L	$(k - 1)n_x n_z$	$(k - 1)n_y n_z$	$(k-1)n_z^2 + 1$

05-74: Reflections 2D

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around



05-75: **Reflections 2D** 05-76: **Reflections 2D**

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around
 - How does the y basis vector change when reflecting around the y axis?
 - How does the x basis vector change when reflecting around the y axis?

05-77: Reflections 2D

- Another transformation that we can do with matrices is reflections
- Carndinal axes are easy to reflect around
 - How does the y basis vector change when reflecting around the y axis?
 - It doesn't!
 - How does the x basis vector change when reflecting around the y axis?
 - Multiplied by -1

05-78: Reflections 2D

• Reflecting around the y axis is the same as scaling the x axis by -1

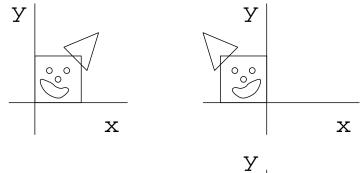
$$\left[\begin{array}{rr} -1 & 0 \\ 0 & 1 \end{array}\right]$$

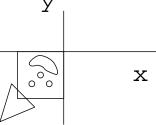
05-79: Reflections 2D

• To reflect along the x axis, we scale y by -1

$$\left[\begin{array}{rrr}1&0\\0&-1\end{array}\right]$$

- What happens when we reflect around the y axis, and then reflect around the y axis?
- Is this equivalent to doing some other operation?





05-80: Reflections 2D 05-81: Reflections 2D

• Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis:

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$$

05-82: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Matrix Multiplication is associative

$$\begin{bmatrix} x & y \end{bmatrix} \left(\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right)$$

05-83: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Matrix Multiplication is associative

$$\left[\begin{array}{cc} x & y \end{array}\right] \left(\left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right] \right)$$

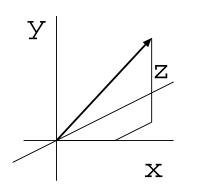
05-84: Reflections 2D

- Let's say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis
- Equivalent to 180 degree (π radians) rotation

$$\begin{bmatrix} x & y \end{bmatrix} \left(\begin{bmatrix} \cos \pi & \sin \pi \\ -\sin \pi & \cos \pi \end{bmatrix} \right)$$

05-85: Reflections 3D

• What about reflecting around the *yz*-plane?





05-86: Reflections 3D

- To reflect around the yz plane, scale x by -1
- To reflect around the xy plane, scale z by -1

• To reflect around the xz plane, scale y by -1

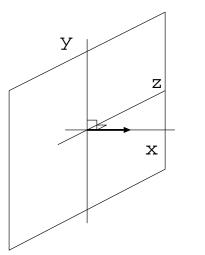
05-87: Reflections 3D

- To reflect around any plane
 - Find the normal of the plane (there are 2 doesn't matter which one)
 - Scale around this normal, with magnitude of -1

05-88: Reflections 3D

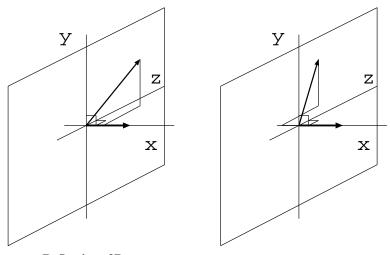
Reflect vector around yz-plane

```
Scale by -1 along normal to plane
```

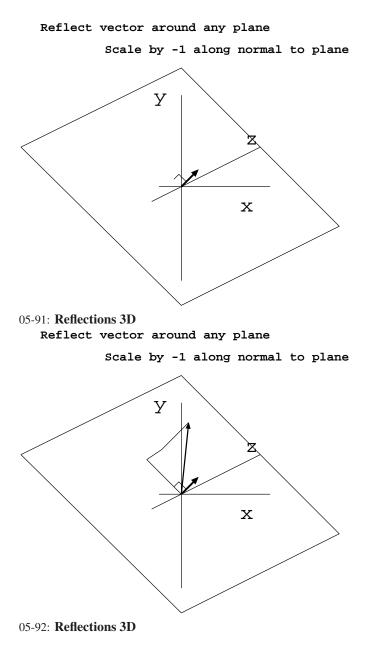


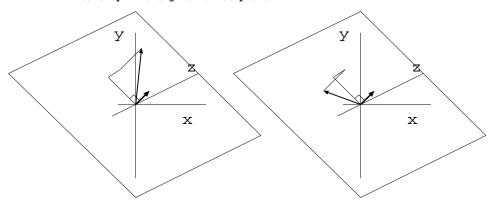
05-89: Reflections 3D Reflect vector around yz-plane

Scale by -1 along normal to plane



05-90: Reflections 3D





05-93: Reflections 3D

- To reflect around any plane
 - Find the normal of the plane (there are 2 doesn't matter which one)
 - Scale along this normal, with magnitude of -1
- If only we had some way of scaling along the normal
- ... can we scale along an arbitrary vector?

05-94: Reflection in 3D

• To scale along an arbitrary vector **n** by a scaling factor of k:

 $\mathbf{S}(\mathbf{n},k) = \left[\begin{array}{ccc} (k-1)n_x^2 + 1 & (k-1)n_x n_y & (k-1)n_x n_z \\ (k-1)n_x n_y & (k-1)n_y^2 + 1 & (k-1)n_x n_z \\ (k-1)n_x n_z & (k-1)n_y n_z & (k-1)n_z^2 + 1 \end{array} \right]$

• Just need to set k = -1

05-95: Reflection in 3D

• To reflect around the plane normal to vector **n**:

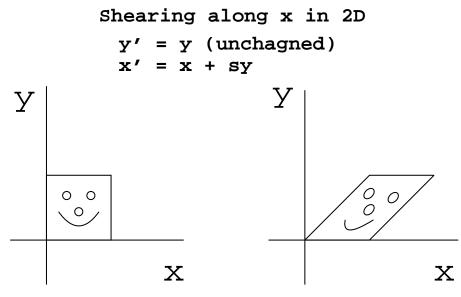
 $\mathbf{R}(\mathbf{n}) = \mathbf{S}(\mathbf{n}, -1) = \begin{bmatrix} -2n_x^2 + 1 & (-2)n_x n_y & -2n_x n_z \\ -2n_x n_y & -2n_y^2 + 1 & -2n_x n_z \\ -2n_x n_z & -2n_y n_z & -2n_z^2 + 1 \end{bmatrix}$

05-96: **Reflections**

- Any two reflections are equivalent to a single rotation
 - Doesn't matter what axes (2D) or planes (3D) we're reflecting around
 - Reflect around any plane, then reflect around any other plane, still just a rotation
- First reflection flips model "inside out", second reflection flips model "right-side out"
- A reflection around any axis is equivalent to a reflection around a cardinal axis, followed by a rotation

05-97: Shearing

- A two-dimensional shear transform adds a multiple of x to y (while leaving x alone), or adds a multiple of y to x (while leaving y alone)
 - $[x,y] \Rightarrow [x+sy,y]$
 - $[x, y] \Rightarrow [x, y + sx]$
- Result is to "tilt" the object / image
- 05-98: Shearing



05-99: Shearing

- Shearing along x axis by s:
 - $[x, y] \Rightarrow [x + sy, y]$
- What should the matrix be?

05-100: Shearing

• Shearing along x axis by s:

•
$$[x, y] \Rightarrow [x + sy, y]$$

• What should the matrix be?

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ s & 1 \end{array}\right]$$

05-101: Shearing

• Shearing along y axis by s:

•
$$[x, y] \Rightarrow [x, y + sx]$$

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & s \\ 0 & 1 \end{array}\right]$$

05-102: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple of x to y, leaving x and y unchanged
 - Matrix?

05-103: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple of y to x, leaving y and z unchanged

			[1	0	0]
$\begin{bmatrix} x \end{bmatrix}$	y	z	s	1	0
[x		-	0	0	1

05-104: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged
 - Matrix?

05-105: Shearing

- We can extend shearing to 3 dimensions
 - Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged

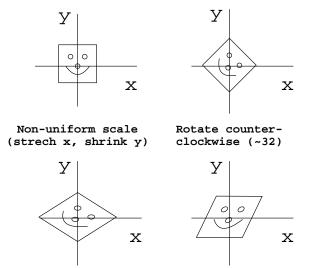
$$\left[\begin{array}{ccc} x & y & z \end{array}\right] \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ s & t & 1 \end{array}\right]$$

• Other shears? (adding a multiple s of x to y, and a multiple t of x to z, for instance)

05-106: Shearing

- Shearing is equivalent to rotation and non-uniform scale
 - Technically, rotation and non-uniform scale gives a sheared shape
 - Need to rotate back to get the same orientation

Rotate clockwise 45



05-107: Shearing

05-108: Shearing

- When shearing, angles are not preserved
- Areas (volumes) are preserved
- Parallel lines remain parallel

05-109: Combining Transforms

- A series of operations on a vector (model) is just a series of matrix multiplications
 - Rotate, scale, rotate (as above)
 - $((\mathbf{v}M_{rot})M_{scale})M_{rot}$
- Matrix multiplication is associative (but not communative!)

$$((\mathbf{v}M_{rot})M_{scale})M_{rot} = \mathbf{v}((M_{rot})(M_{scale}M_{rot}))$$
$$= \mathbf{v}M'$$

• We can create one matrix that does all transformations at once

05-110: Linear Transforms

- A transfomation is *Linear* if:
 - $\mathbf{F}(\mathbf{a} + \mathbf{b}) = \mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b})$
 - $\mathbf{F}(k\mathbf{a}) = k\mathbf{F}(\mathbf{a})$
- That is:
 - Transforming two vectors and then adding them is the same as adding them, and then transforming
 - Scaling a vector and then transforming it is the same as transforming a vector, and then scaling it

05-111: Linear Transforms

27

• All transformations that can be represented by matrix multiplication are linear

$$\begin{split} \mathbf{F}(\mathbf{a} + \mathbf{b}) &= (\mathbf{a} + \mathbf{b}) \mathbf{M} \\ &= \mathbf{a} \mathbf{M} + \mathbf{b} \mathbf{M} \\ &= \mathbf{F}(\mathbf{a}) + \mathbf{F}(\mathbf{b}) \end{split}$$

$$\mathbf{F}(k\mathbf{a}) = (k\mathbf{a})\mathbf{M}$$
$$= k(\mathbf{a}\mathbf{M})$$
$$= k\mathbf{F}(\mathbf{a})$$

05-112: Linear Transforms

- Rotation, scale (both uniform and non-uniform), reflection, and shearing are all linear transforms
- Is translation a linear transform?

05-113: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
 - Why?

05-114: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
 - Assume that $F(\mathbf{0}) = \mathbf{v}$
 - $F(k\mathbf{0}) = F(\mathbf{0}) = \mathbf{v}$
 - $\mathbf{F}(k\mathbf{a}) = k\mathbf{F}(\mathbf{a})$
 - Thus, $\mathbf{v} = k\mathbf{v}$ for all k, only true if \mathbf{v} is the zero vector

05-115: Linear Transforms

- All linear transforms need to map the zero vector to the zero vector
- Translations do not map the zero vector to the zero vector
- Translations are not linear
 - Can't represent translations using matrix multiplication
 - (We will use matricies to represent translations later, but we will need to use highter dimensions ...)

05-116: Linear Transforms

- In a linear transformation, parallel lines remain parallel after translation
 - Angles may or may not be preserved
 - Areas / volumes may or may not be preserved

05-117: Affine Transforms

- An Affine Transformation is a linear transformation followed by a translation
- Any transform of form $\mathbf{F}(\mathbf{v}) = \mathbf{v}\mathbf{M} + \mathbf{b}$ is affine
- We will only concern ourselves with affine transforms in this class

05-118: Angle-Preserving Transforms

- A transform is angle preserving if angles are preserved.
- Which transformations are angle preserving?

05-119: Angle-Preserving Transforms

- A transform is angle preserving if angles are preserved.
- Which transformations are angle preserving?
 - Translations
 - Rotation
 - Uniform Scale
- Why not reflection?

05-120: Rigid Body Transforms

- Rigid body transforms change only:
 - Orientaton of an object
 - Position of an object
- Only translation and rotation are rigid-body transforms
- Reflection is not rigid body
- Also known as "proper" transformations