
CS420-2016S-05 Linear Transforms 1

05-0: Matrices as Transforms

• Recall that Matrices are transforms

• Transform vectors by rotating, scaling, shearing

• Transform objects as well

• Transforming every vertex in the object

05-1: Calculating Transformations

• What happens when we transform [1,0,0], [0,1,0], and [0,0,1] by





m11 m12 m13

m21 m22 m23

m31 m32 m33





05-2: Calculating Transformations

• What happens when we transform [1,0,0], [0,1,0], and [0,0,1]:

[1, 0, 0]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 = [m11,m12, m13]

[0, 1, 0]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 = [m21,m22, m23]

[0, 0, 1]





m11 m12 m13
m21 m22 m23
m31 m32 m33



 = [m31,m32, m33]

05-3: Calculating Transformations

• So, we want to make a transformation matrix

• Matrix that, when multiplied by a vector, transforms the vector

• (also transforms a model – just a series of points)

• To create the matrix

• Decide what the basis vectors should look like after the transformation

• Fill in the matrix with the new basis vectors

05-4: Rotations

• Start with the 2D case

• Rotate a vector θ degrees counter-clockwise

• What do the basis vectors look like after the rotation?

• That’s the transformation matrix!

CS420-2016S-05 Linear Transforms 2

05-5: Rotations 2D

x

y

θ
05-6: Rotations

2D

x

y

θ
b

a

c

cos θ = a/c
sin θ = b/c

05-7: Rotations 2D

y

θ

a

cos θ = a
sin θ = b

CS420-2016S-05 Linear Transforms 3

05-8: Rotations 2D

x

y

θ
b

a

1

New X basis vector:
[cos θ, sin θ]

05-9: Rotations 2D

x

y

θ

a

b

sin θ = a/c

c

cos θ = b/c

05-10: Rotations 2D

y

θ

a

b
New Y basis:
[-sin

CS420-2016S-05 Linear Transforms 4

05-11: Rotations 2D

x

y

θ

cos θ sin θ
-sin θ cos θ

05-12: Rota-

tions 3D

• For rotations in 3 dimensions, we need to define:

• The axis we are rotating around

• The direction that we are rotating

• Can’t just use “counter-clockwise” anymore - “counter-clockwise” in relation to what?

05-13: Rotations 3D

• Rotation around the z axis

• Which direction to rotate depends upon whether you are using right-handed or left-handed coordinate system

• Select appropriate hand (right- or left-)

• Point thumb along the positive axis around which you are rotating

• Fingers curl in direction of θ

05-14: Rotations 3D

• Rotations in 3D work just like rotations in 2D

• Determine how the basis vectors will change under the rotation

• Need to consider 3 vectors instead of 2

• Create a matrix using the new basis vectors

• 3x3 instead of 2x3

05-15: Rotations 3D

• Rotating θ degrees around the z axis

• How do the z coordinates of a vector change in this rotation?

CS420-2016S-05 Linear Transforms 5

• In other words, what happens to the z-basis vector when rotating around the z axis?

05-16: Rotations 3D

• Rotating θ degrees around the z axis

• How do the z coordinates of a vector change in this rotation?

• They don’t!

• In other words, what happens to the z-basis vector when rotating around the z axis?

• It doesn’t move!

05-17: Rotations 3D

• What about the x basis vector – how does it change?

05-18: Rotations 3D

x

y

z

Right or left handed?

05-

19: Rotations 3D

x

y

z

θ

θ

05-20: Rotations

CS420-2016S-05 Linear Transforms 6

3D

new y: [-sin θ, cos θ, 0]

x

y

z

θ

θ

Same as 2D Case!
new x: [cos θ, sin θ, 0]

new z: [0, 0, 1]

05-21: Rotations 3D

• What about rotating around a different axis?

• Works the same way

• Axis being rotated around doesn’t change

• Other two axes are the 2D case

05-22: Rotations 3D

• Rotate θ degrees around the z-axis:





cos θ sin θ 0
− sin θ cos θ 0

0 0 1





05-23: Rotations 3D

• Rotate θ degrees around the x-axis:

x

y

zθ
θ

y [0, cos θ, sin θ]
z [0, -sin θ, cos θ]

05-24: Rotations 3D

• Rotate θ degrees around the x-axis:

CS420-2016S-05 Linear Transforms 7





1 0 0
0 cos θ sin θ
0 − sin θ cos θ





05-25: Rotations 3D

• Rotate θ degrees around the y-axis:

x

y

z

x [cos θ, 0, -sin θ]
z [sin θ, 0, cos θ]

θ
05-26: Rotations 3D

• Rotate θ degrees around the y-axis:





cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ





05-27: Arbitrary Axis Rotation

• What if we want to rotate about something other than a main axis?

05-28: Arbitrary Axis Rotation

• Use this trick to rotate a vector about aribitrary axis

• Break the vector into two component vectors

• Rotate the component vectors

• Add them back together to get rotated vector

• The trick will be picking component vectors that are easy to rotate ...

CS420-2016S-05 Linear Transforms 8

05-29: Arbitrary Axis Rotation

05-30: Arbitrary Axis Rotation

• v is the vector we want to rotate

• n is the vector we want to rotate around (assume n is a unit vector)

• Break v into v‖ and v⊥

• Rotate v‖ and v⊥ around n

• Add them back together to get rotated v

05-31: Arbitrary Axis Rotation

n

v

v
v

n

v

v’
vv’

v

05-32: Arbitrary Axis Rotation

• v is the vector we want to rotate

• n is the vector we want to rotate around (assume n is a unit vector)

• Break v into v‖ and v⊥

• What is the result of rotating v‖ around n?

05-33: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms 9

• v is the vector we want to rotate

• n is the vector we want to rotate around (assume n is a unit vector)

• Break v into v‖ and v⊥

• What is the result of rotating v‖ around n?

• v‖ doesn’t change!

05-34: Arbitrary Axis Rotation

n

v

v’
vv’

v

w

• Create w, perpendicular to both v‖ and v⊥

• w is the same length as v⊥

• w perpendicular to n

• w, v⊥ and v′
⊥ (v⊥ after rotation) are all in the same plane.

05-35: Arbitrary Axis Rotation

• Vector v⊥ is rotating through the plane containing w

• Since rotation is constrained to this one plane, back in the 2D case!

05-36: Arbitrary Axis Rotation

cos θ = b / ||v’ || = b / ||v ||

v

w

θ
v’a

b

sin θ = a / ||v’ || = a / ||w||

(b is negative
 in ths example)

05-37: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms 10

v

w

θ
v’ a

b

a = sin θ * w
b = cos θ * v

v’ = a + b

v’ = cos θ * v + sin θ * w

05-38: Arbitrary Axis Rotation

• So, we have:

• v′ = v′
‖ + v′

⊥

• v′
‖ = v‖

• v′
⊥ = cos θv⊥ + sin θw

• All we need to do now is find v‖,v⊥ and w.

05-39: Arbitrary Axis Rotation

n

v

v’
vv’

v

w

• What is v‖?

• That is, the projection of v onto n?

05-40: Arbitrary Axis Rotation

CS420-2016S-05 Linear Transforms 11

n

v

v’
vv’

v

w

• What is v‖?

• v‖ = (v · n)n

05-41: Arbitrary Axis Rotation

• Once we have v‖, finding v⊥ is easy. Why?

05-42: Arbitrary Axis Rotation

• Once we have v‖, finding v⊥ is easy.

• v = v‖ + v⊥

• v⊥ = v − v‖

05-43: Arbitrary Axis Rotation

• w is perpendicular to both v⊥ and n

• n is a unit vector

• w has the same magnitude as v⊥

• What is w?

05-44: Arbitrary Axis Rotation

• w is perpendicular to both v⊥ and n

• n is a unit vector

• w has the same magnitude as v⊥

• What is w?

• n× v⊥

• Mutually perpendicular (left-handed system in diagrams)

• ||n× v⊥|| = ||n||||v⊥|| sin θ = ||v⊥||

05-45: Arbitrary Axis Rotation

• v′ = v′
‖ + v′

⊥

CS420-2016S-05 Linear Transforms 12

• v′
‖ = (v · n)n

• v′
⊥ = cos θv⊥ + sin θw

• v⊥ = v − v‖

• w = n× v⊥

• v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

(whew!)

05-46: Arbitrary Axis Rotation

• OK, so we’ve found out how to rotate a single vector around an arbitrary axis.

• How do we create a rotation matrix that will do this rotation?

• In general, how do we create a rotation matrix – or any transformation matrix, for that matter

05-47: Arbitrary Axis Rotation

• How to create a transformation matrix:

• Transform each of the axis vectors

• Put them together into a matrix (either as rows or columns, depending upon whether you are using row- or

column transformation matricies)

• So, for v = [1, 0, 0], [0, 1, 0] and [0, 0, 1], calculate:

cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

05-48: Arbitrary Axis Rotation

• v = [1, 0, 0]

• v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

• cos θ([1, 0, 0]− ([1, 0, 0] · [nx, ny, nz])[nx, ny, nz])

• cos θ([1, 0, 0]− (nx)[nx, ny, nz])

• cos θ([1 − n2

x,−nxny,−nxnz])

05-49: Arbitrary Axis Rotation

• v = [1, 0, 0]

• v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

• sin θ(n× v)

• sin θ([nx, ny, nz]× [1, 0, 0])

• sin θ([0, nz,−nz]

05-50: Arbitrary Axis Rotation

• v = [1, 0, 0]

CS420-2016S-05 Linear Transforms 13

• v′ = cos θ(v − (v · n)n) + sin θ(n× v) + (v · n)n

• (v · n)n

• ([1, 0, 0] · [nx, ny, nz])[nx, ny, nz]

• nx[nx, ny, nz]

• [n2

x, nxny, nxnz]

05-51: Arbitrary Axis Rotation

• Add them all up, and simplify, to get

[n2
x(1 − cos θ) + cos θ, nxny(1 − cos θ) + nz sin θ, nxnz(1 − cos θ) − ny sin θ] 05-52: Arbitrary Axis Rotation

• Do the same thing for the other two basis vectors, and get:

• y basis vector

[nxny(1 − cos θ) − nz sin θ, n2
y(1 − cos θ) + cos θ, nynz(1 − cos θ) + nx sin θ]

• z basis vector

[nxnz(1 − cos θ) + ny sin θ, nynz(1 − cos θ) − nx sin θ, n2
z(1 − cos θ) + cos θ]

05-53: Arbitrary Axis Rotation

• Giving the final matrix:







n2
x(1 − cos θ) + cos θ nxny(1 − cos θ) + nz sin θ nxnz(1 − cos θ) − ny sin θ

nxny(1 − cos θ) − nz sin θ n2
y(1 − cos θ) + cos θ nynz(1 − cos θ) + nx sin θ

nxnz(1 − cos θ) + ny sin θ nynz(1 − cos θ) − nx sin θ n2
z(1 − cos θ) + cos θ







05-54: Scaling

• Uniform Scaling occurs when we scale an object uniformly in all directions

• Uniform scaling preserves angles, but not areas or volumes

x

y

x

y

2
0

0
2

05-55: Scaling

• Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions

• Non-uniform scaling does not preserve angles, areas, or volumes

CS420-2016S-05 Linear Transforms 14

x

y

x

y

1
0

0
2

05-56: Scaling

• Non-Uniform Scaling occurs when we scale an object by different amounts in different dimensions

• Non-uniform scaling does not preserve angles, areas, or volumes

x

y

x

y
1
0
0
2

Square Parallelogram

05-57: Scaling in 3D

• The transformation matrix for scaling (both uniform and non-uniform) is straightforward:

S(kx, ky, kz) =





kx 0 0
0 ky 0
0 0 kz





• sx, sy , and sz are the scaling factors for x, y and z

• if sx = sy = sz , then we have uniform scaling

05-58: Scaling Along a Vector

CS420-2016S-05 Linear Transforms 15

Scale by 2 along x axis

05-59: Scaling Along a Vector

Before Scale: v =

vx

vx

vx vx+

Scale by 2 along x axis

vx

vx2*

After Scale: v = 2 * vx vx+

05-60: Scaling Along a Vector

CS420-2016S-05 Linear Transforms 16

Before Scale: v =

vy

vy

vy vy+

Scale by 2 along y axis

vy

vy2*

After Scale: v = 2 * vy vy+

05-61: Scaling Along a Vector

• To scale a vector along an axis:

• Divide the vector into a component parallel to the axis, and perpendicular to the axis

• Scale the component parallel to the axis

• Leave the component perpendicular to the axis alone

05-62: Scaling Along a Vector

• We can use the same technique to scale a vector v along an arbitrary vector n

• Divide v into a component parallel to n, and a component perpendicular to n

• Scale the component parallel n

• Leave the component perpendicular to n alone

05-63: Scaling Along a Vector

Decompse v into: v = vn vn+

Scale v by 2 along n

After Scale: v’= 2 * vy vy+

v

n

v

n nv

vn v’

n
nv

vn

2

CS420-2016S-05 Linear Transforms 17

05-64: Scaling Along a Vector

Scale box by 2 along n

n

n

05-65: Scaling Along a Vector

• Scaling a vector v by k along unit vector n

• Break v into v‖ and v⊥

• v = v‖ + v⊥

• v′ = k ∗ v‖ + v⊥

• v‖ = ?, v⊥ = ?

05-66: Scaling Along a Vector

• Scaling a vector v by k along unit vector n

• Break v into v‖ and v⊥

• v = v‖ + v⊥

• v′ = k ∗ v‖ + v⊥

• v‖ = (v · n) ∗ n

• v⊥ = v − v‖

05-67: Scaling Along a Vector

• v‖ = (v · n) ∗ n

• v⊥ = v − v‖

• v′ = k ∗ v‖ + v⊥

• v′ = k ∗ v‖ + v − v‖

• v′ = (k − 1) ∗ v‖ + v

• v′ = (k − 1) ∗ (v · n) ∗ n+ v

CS420-2016S-05 Linear Transforms 18

05-68: Scaling Along a Vector

• Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?

05-69: Scaling Along a Vector

• Now that we know how to scale a vector along a different vector, how do we create the transformaion matrix?

• Transform each of the axes

• Fill in rows (columns, when using column vectors) of matrix

05-70: Scaling Along a Vector

• v′ = (k − 1) ∗ (v · n) ∗ n+ v

• x-axis:

(k − 1)([1, 0, 0] · [nx, ny, nz]) ∗ [nx, ny, nz] + [1, 0, 0] = (k − 1)(nx) ∗ [nx, ny, nz] + [1, 0, 0] = [(k − 1)n2
x + 1, (k − 1)nxny, (k − 1)nxnz]

05-71: Scaling Along a Vector

• v′ = (k − 1) ∗ (v · n) ∗ n+ v

• y-axis:

(k − 1)([0, 1, 0] · [nx, ny, nz]) ∗ [nx, ny, nz] + [0, 1, 0] = (k − 1)(ny) ∗ [nx, ny, nz] + [0, 1, 0] = [(k − 1)nxny, (k − 1)n2
y + 1, (k − 1)nxnz]

05-72: Scaling Along a Vector

• v′ = (k − 1) ∗ (v · n) ∗ n+ v

• z-axis:

(k − 1)([0, 0, 1] · [nx, ny, nz]) ∗ [nx, ny, nz] + [0, 0, 1] = (k − 1)(nz) ∗ [nx, ny, nz] + [0, 0, 1] = [(k − 1)nxnz, (k − 1)nynz, (k − 1)n2
z + 1] 05-73:

Scaling Along a Vector

S(n, k) =







(k − 1)n2
x + 1 (k − 1)nxny (k − 1)nxnz

(k − 1)nxny (k − 1)n2
y + 1 (k − 1)nxnz

(k − 1)nxnz (k − 1)nynz (k − 1)n2
z + 1







05-74: Reflections 2D

• Another transformation that we can do with matrices is reflections

• Carndinal axes are easy to reflect around

05-75: Reflections 2D
x

y

x

y

05-76: Reflections 2D

CS420-2016S-05 Linear Transforms 19

• Another transformation that we can do with matrices is reflections

• Carndinal axes are easy to reflect around

• How does the y basis vector change when reflecting around the y axis?

• How does the x basis vector change when reflecting around the y axis?

05-77: Reflections 2D

• Another transformation that we can do with matrices is reflections

• Carndinal axes are easy to reflect around

• How does the y basis vector change when reflecting around the y axis?

• It doesn’t!

• How does the x basis vector change when reflecting around the y axis?

• Multiplied by -1

05-78: Reflections 2D

• Reflecting around the y axis is the same as scaling the x axis by -1

[

−1 0
0 1

]

05-79: Reflections 2D

• To reflect along the x axis, we scale y by -1

[

1 0
0 −1

]

• What happens when we reflect around the y axis, and then reflect around the y axis?

• Is this equivalent to doing some other operation?

05-80: Reflections 2D

x

y

x

y

x

y

05-81: Reflections 2D

CS420-2016S-05 Linear Transforms 20

• Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis:

[

x y
]

[

−1 0
0 1

] [

1 0
0 −1

]

05-82: Reflections 2D

• Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

• Matrix Multiplication is associative

[

x y
]

([

−1 0
0 1

] [

1 0
0 −1

])

05-83: Reflections 2D

• Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

• Matrix Multiplication is associative

[

x y
]

([

−1 0
0 −1

])

05-84: Reflections 2D

• Let’s say that we took a vector, then reflected it around the y axis, and then reflected it around the x axis

• Equivalent to 180 degree (π radians) rotation

[

x y
]

([

cosπ sinπ
− sinπ cosπ

])

05-85: Reflections 3D

• What about reflecting around the yz-plane?

x

y

z

x

y

z

05-86: Reflections 3D

• To reflect around the yz plane, scale x by -1

• To reflect around the xy plane, scale z by -1

CS420-2016S-05 Linear Transforms 21

• To reflect around the xz plane, scale y by -1

05-87: Reflections 3D

• To reflect around any plane

• Find the normal of the plane (there are 2 – doesn’t matter which one)

• Scale around this normal, with magnitude of -1

05-88: Reflections 3D

x

y

z

Reflect vector around yz-plane

Scale by -1 along normal to plane

05-89: Reflections 3D

x

y

z

Reflect vector around yz-plane

Scale by -1 along normal to plane

x

y

z

05-90: Reflections 3D

CS420-2016S-05 Linear Transforms 22

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane

05-91: Reflections 3D

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane

05-92: Reflections 3D

CS420-2016S-05 Linear Transforms 23

x

y

z

x

y

z

Reflect vector around any plane

Scale by -1 along normal to plane

05-93: Reflections 3D

• To reflect around any plane

• Find the normal of the plane (there are 2 – doesn’t matter which one)

• Scale along this normal, with magnitude of -1

• If only we had some way of scaling along the normal

• ... can we scale along an arbitrary vector?

05-94: Reflection in 3D

• To scale along an arbitrary vector n by a scaling factor of k:

S(n, k) =







(k − 1)n2
x + 1 (k − 1)nxny (k − 1)nxnz

(k − 1)nxny (k − 1)n2
y + 1 (k − 1)nxnz

(k − 1)nxnz (k − 1)nynz (k − 1)n2
z + 1







• Just need to set k = −1

05-95: Reflection in 3D

• To reflect around the plane normal to vector n:

R(n) = S(n,−1) =







−2n2
x + 1 (−2)nxny −2nxnz

−2nxny −2n2
y + 1 −2nxnz

−2nxnz −2nynz −2n2
z + 1







05-96: Reflections

• Any two reflections are equivalent to a single rotation

• Doesn’t matter what axes (2D) or planes (3D) we’re reflecting around

• Reflect around any plane, then reflect around any other plane, still just a rotation

• First reflection flips model “inside out”, second reflection flips model “right-side out”

• A reflection around any axis is equivalent to a reflection around a cardinal axis, followed by a rotation

05-97: Shearing

CS420-2016S-05 Linear Transforms 24

• A two-dimensional shear transform adds a multiple of x to y (while leaving x alone), or adds a multiple of y to

x (while leaving y alone)

• [x, y] ⇒ [x+ sy, y]

• [x, y] ⇒ [x, y + sx]

• Result is to “tilt” the object / image

05-98: Shearing

x

y

x

y

Shearing along x in 2D

y’ = y (unchagned)
x’ = x + sy

05-99: Shearing

• Shearing along x axis by s:

• [x, y] ⇒ [x+ sy, y]

• What should the matrix be?

05-100: Shearing

• Shearing along x axis by s:

• [x, y] ⇒ [x+ sy, y]

• What should the matrix be?

[

x y
]

[

1 0
s 1

]

05-101: Shearing

• Shearing along y axis by s:

• [x, y] ⇒ [x, y + sx]

CS420-2016S-05 Linear Transforms 25

[

x y
]

[

1 s

0 1

]

05-102: Shearing

• We can extend shearing to 3 dimensions

• Add a multiple of x to y, leaving x and y unchanged

• Matrix?

05-103: Shearing

• We can extend shearing to 3 dimensions

• Add a multiple of y to x, leaving y and z unchanged

[

x y z
]





1 0 0
s 1 0
0 0 1





05-104: Shearing

• We can extend shearing to 3 dimensions

• Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged

• Matrix?

05-105: Shearing

• We can extend shearing to 3 dimensions

• Add a multiple s of z to x, and a multiple t of z to y, leaving z unchanged

[

x y z
]





1 0 0
0 1 0
s t 1





• Other shears? (adding a multiple s of x to y, and a multiple t of x to z, for instance)

05-106: Shearing

• Shearing is equivalent to rotation and non-uniform scale

• Technically, rotation and non-uniform scale gives a sheared shape

• Need to rotate back to get the same orientation

CS420-2016S-05 Linear Transforms 26

05-107: Shearing

x

y

x

y

x

y

x

y

Rotate clockwise 45

Non-uniform scale
(strech x, shrink y)

Rotate counter-
clockwise (~32)

05-108: Shearing

• When shearing, angles are not preserved

• Areas (volumes) are preserved

• Parallel lines remain parallel

05-109: Combining Transforms

• A series of operations on a vector (model) is just a series of matrix multiplications

• Rotate, scale, rotate (as above)

• ((vMrot)Mscale)Mrot

• Matrix multiplication is associative (but not communative!)

((vMrot)Mscale)Mrot = v((Mrot)(MscaleMrot))

= vM ′

• We can create one matrix that does all transformations at once

05-110: Linear Transforms

• A transfomation is Linear if:

• F(a+ b) = F(a) + F(b)

• F(ka) = kF(a)

• That is:

• Transforming two vectors and then adding them is the same as adding them, and then transforming

• Scaling a vector and then transforming it is the same as transforming a vector, and then scaling it

05-111: Linear Transforms

CS420-2016S-05 Linear Transforms 27

• All transformations that can be represented by matrix multiplication are linear

F(a+ b) = (a+ b)M

= aM+ bM

= F(a) + F(b)

F(ka) = (ka)M

= k(aM)

= kF(a)

05-112: Linear Transforms

• Rotation, scale (both uniform and non-uniform), reflection, and shearing are all linear transforms

• Is translation a linear transform?

05-113: Linear Transforms

• All linear transforms need to map the zero vector to the zero vector

• Why?

05-114: Linear Transforms

• All linear transforms need to map the zero vector to the zero vector

• Assume that F (0) = v

• F (k0) = F (0) = v

• F(ka) = kF(a)

• Thus, v = kv for all k, only true if v is the zero vector

05-115: Linear Transforms

• All linear transforms need to map the zero vector to the zero vector

• Translations do not map the zero vector to the zero vector

• Translations are not linear

• Can’t represent translations using matrix multiplication

• (We will use matricies to represent translations later, but we will need to use highter dimensions ...)

05-116: Linear Transforms

• In a linear transformation, parallel lines remain parallel after translation

• Angles may or may not be preserved

• Areas / volumes may or may not be preserved

CS420-2016S-05 Linear Transforms 28

05-117: Affine Transforms

• An Affine Transformation is a linear transformation followed by a translation

• Any transform of form F(v) = vM+ b is affine

• We will only concern ourselves with affine transforms in this class

05-118: Angle-Preserving Transforms

• A transform is angle preserving if angles are preserved.

• Which transformations are angle preserving?

05-119: Angle-Preserving Transforms

• A transform is angle preserving if angles are preserved.

• Which transformations are angle preserving?

• Translations

• Rotation

• Uniform Scale

• Why not reflection?

05-120: Rigid Body Transforms

• Rigid body transforms change only:

• Orientaton of an object

• Position of an object

• Only translation and rotation are rigid-body transforms

• Reflection is not rigid body

• Also known as “proper” transformations

