
CS420-2016S-01 Java vs. C++ 1

01-0: Syllabus

• Office Hours

• Course Text

• Prerequisites

• Test Dates & Testing Policies

• Check dates now!

• Course load

01-1: C++ v. Java

• We will be coding in C++ for this class

• Java is very similar to C++, with some exceptions:

• Minor, syntactic differences

• Memory management

• Explicit vs. implicit pointers

• Static compilation vs. virtual functions

01-2: Whirlwind Tour of C++

• C++ is a bit of a monster

• Only cover enough to get you started

• Go extremely quickly – holler if you want me to slow down

• Don’t expect you to get it 100% right now – should get just enough that you can easily google solutions when

you have questions coding

• If you already know C, this will be fairly straightforward.

• If you only know Java, it’ll be a little bumpy, but you should be OK

01-3: Java/C++ Comparison

• Start with a simple example:

• Java file Point.java

01-4: Class File Management

• C++ Classes are split into header files (.h), which describe the class data members and method prototypes, and

.cpp files, which describe method bodies

• Take a look at Point.h (Simple)

• Syntax of method declaration in .h files

• Default Values

• Use of public/private/protected

CS420-2016S-01 Java vs. C++ 2

• Much better protected than java!

• m prepended to instance variable names

• Don’t forget the closing semicolon!

01-5: .cpp Files for Classes

• Define methods of a the class foo using the syntax:

<return type>

foo::<method name> (<parameters>)

{

<method body>

}

01-6: Preprocessor

• In Java, the system finds class definitions for you – if it’s in the classpath, you’re golden

• This is (partially) why Java is so strict on class file naming, and on having a single class per file

• In C++, you need to explicitly tell the compiler exactly which files you need

• Allow some more flexibility: Can define multiple classes per file, and names don’t need to match

01-7: Preprocessor

• Including .h files: #include

• Not very subtle – literally including the .h file, as if it was pasted in the front of the file

• #include foo is the same as pasting a copy of foo into the file at that location

• This can lead to problems – such as multiple definitions if more than one .cpp file in a project includes the

same .h file

• Preventing multiple definition

• #define #ifdef #ifndef

01-8: Simple class: Point

#ifndef __POINT_H

#define __POINT_H

class Point

{

public:

Point(float X = 0, float y = 0);

˜Point();

float GetX();

float GetY();

void SetX(float x);

void SetY(float y);

void Print();

private:

float mX;

float mY;

};

#endif // __POINT_H

01-9: Preprocessor

• Can use the preprocessor to handle C-style constants

• Also useful for inline macros

CS420-2016S-01 Java vs. C++ 3

#define PI 3.14159

#define min(x,y) (x < y) ? x : y

01-10: Preprocessor

• What is the output of this code? (Warning, tricky ...)

#include <stdio.h>

#define min(a,b) (a < b) ? a : b

int main()

{

int i = 0;

int j = 2;

printf("%d\n", min(i++,j++));

printf("%d\n", min(i++,j++));

printf("%d\n", min(i++,j++));

}

01-11: Flexibility

• Java tries very hard to prevent you from shooting yourself in the foot.

• C++ (and C, for that matter), loads the gun for you, and helpfully points it in the correct general location of your

lower body

• Example: Splitting code into .cpp and .h files:

• You can place all your code in the .h file if you wish

• Be sure to use #define and #ifdef properly!

• Why is this a bad idea?

01-12: Simple class: Point

class Point

{

public:

Point(float initialX = 0, float initialY = 0);

˜Point();

float GetX() { return x; }

float GetY() { return y; }

void SetX(float newX);

void SetY(float newY);

void Print();

private:

float x;

float y;

};

01-13: Memory Management

• In Java, heap memory is automagically cleaned up using garbage collection

• You can still have “garbage” in Java – how?

• In C/C++, memory needs to be explicity freed using delete

• However, there are more suble differences as well

01-14: Stack vs. Heap

• Java:

• Primitives (int, float, boolean) are stored on the stack

• Complex data structures (arrays, classes) are stored on the heap

CS420-2016S-01 Java vs. C++ 4

• Location is implicit

• C++

• Can store anything anywhere

• Classes declared in the Java style are stored on the stack

• Need explicit pointers to store on the heap

01-15: Stack vs. Heap

int main()

{

Point p1(); // I’m on the stack!

Point *p2;

p2 = new Point(); // I’m on the heap!

p1.SetX(3.0); // Use Java syntax for stack variables

(*p2).SetY(4.0); // Need to explicitly dereference heap

p2->setY(4.0); // Standard shorthand:

// (*x).foo <==> x->foo)

}

01-16: Memory Management

• Anything you call “new” on, you need to call “delete” on to free

• Delete does not delete the pointer, it deletes what the pointer is pointing to

• The second you call delete, the data in that memory is unreliable

• Might be Ok

• Usually OK

• Can lead to really nasty heisenbugs

01-17: Memory Management

• Arrays can be on the stack or heap as well

• int A1[10];

• int *A2 = new int[10];

• Arrays need to be deleted with delete []

• delete [] A2;

• Cannot call delete for arrays on the stack

01-18: Memory Management

int main()

{

Point *p = new Point();

p = new Point(); // Memory leak!

p.SetX(3.0); // OK

delete p; // OK

printf("%f",p.GetX()); // Will usually work ...

// ... but us really, really bad

}

01-19: Destructors

• Destructor is a method that is called when a class is deleted

• Usually used to delete any memory that the class created

CS420-2016S-01 Java vs. C++ 5

• Can also be used to free resources

• Similar to the java finalize method

• Destructors are acually useful...

01-20: Memory Management

• Stack.h, Stack.cpp

• What’s wrong?

• How to fix?

01-21: Constructors

• Problem: How do you call constructors for member variables?

• Variables stored explicitly on the heap are not a problem – call the constructor on “new”

• What about member variables not explicitly on the heap?

01-22: Constructors

#include "Point.h"

class Rectangle

{

public:

Rectangle(float x1, float y1, float x2, float y2)

{

// We’d like to call the constructors for mUpperLeft and

// mLowerRight to set up the points. But constructors

// are called when variables are defined -- what to do?

}

Point GetUpperleft();

Point GetLowerRight();

private:

Point mUpperLeft;

Point mLowerRight;

};

01-23: Constructors

#include "Point.h"

class Rectangle

{

public:

Rectangle(float x1, float y1, float x2, float y2) :

mUpperLeft(x1,y1), mLowerRight(x2, y2)

{

// We now don’t need a body for this constructor

}

Point GetUpperleft();

Point GetLowerRight();

private:

Point mUpperLeft;

Point mLowerRight;

};

01-24: Inheritance

• Inheritance in C++ is very similar to inhertance in Java

class Circle : public point

{

// Inherit all methods & data members of Point

float mRadius;

}

• Inheritance can be public, private or protected – you almost always want public, that’s tha Java behavoir

• Default (if you leave out modifier) is private (yes, that is odd)

CS420-2016S-01 Java vs. C++ 6

01-25: Inheritance

• Constructors

• When a subclass object is created, first the zero-parameter version of the superclass constructor is called,

then the subclass constructor is called

• We can explicitly call a constructor with > 0 parameters in the initialization of the subclass constructor

01-26: Inheritance

class Circle : public point

{

Circle(float x, float y, float radius) :

Point(x,y), mRadius(radius) { }

}

01-27: Inheritance

• See ConstructorFun.cpp for examples!

01-28: Inheritance

• Destructors

• When a subclass object is destroyed (either by a delete, or by a local variable disappearing at the end of a

function), first the destructor of the superclass is called, then the destructor of the subclass is called.

01-29: Calling Superclass Methods

• Normally, if a superclass has a method, we can call it in the subclass without any problems

• What if the *same* method is defined in both the subclass and the superclass?

• We can call the subclass’s method using the notation SuperClassName::MethodName

• Note similarity to Namespace notation

01-30: Calling Superclass Methods

class Circle : public point

{

Circle(float x, float y, float radius) :

Point(x,y), mRadius(radius) { }

void Print()

{

Point::Print();

printf("Radius = %d", mRadius);

}

fload mRadius;

}

01-31: Multiple Inheritance

• C++ allows for multiple inheritance

• A class can inherit from two different superclasses

• Inherit all of the methods / instance variables from both superclasses

• Can assign value of subclass to variable of either superclass

• Java uses interfaces to get much of the same functionality

CS420-2016S-01 Java vs. C++ 7

01-32: Multiple Inheritance

class sub : public base1, public base2 {

// Instances of class sub contain all

// methods and all instance variables of

// base1 and base2

};

01-33: Includes in .h

• It’s usually considered poor form to have #includes in .h files

• Leads to long chains of dependencies

• Hard to see exactly what is being included

• Include more than you need (pain for big projects)

• But rectangles require Points! What else can we do?

• Rectangle.h actually doesn’t need to know anything at all about Points, other than Point is a valid class

• Use a forward declaration

01-34: Constructors

#ifndef RECTANGLE_H

#define RECTANGLE_H

class Point; // Forward declaration of Point

class Rectangle

{

public:

Rectangle(float x1, float y1, float x2, float y2);

Point GetUpperleft();

Point GetLowerRight();

private:

Point *mUpperLeft;

Point *mLowerRight;

};

#endif

01-35: Includes in .h

• But if we just use a forward declaration, and don’t include Point.h, how do we know what can be done with a

Point – what the parameters to the constructor are, and so on?

• We don’t!

• .h files really shouldn’t contain code anyway. (Simple stuff is OK, but if you start to need to have #includes

in .h files, try something else!)

• Sometimes you do need to #include another .h file

01-36: Includes in .h

• Which variables require #includes, and which can be forward declared, and why?

CS420-2016S-01 Java vs. C++ 8

class IncludeTest : public IncludeBase

{

public:

IncludeTest() { }

protected:

protected:

InstanceClass1 mInstance1;

InstanceClass2 *mInstance2;

};

01-37: Includes in .h

#include "IncludeBase.h"

#include "InstanceClass1.h"

class InstaceClass2;

class IncludeTest : public IncludeBase

{

public:

IncludeTest() { }

protected:

protected:

InstanceClass1 mInstance1;

InstanceClass2 *mInstance2;

};

01-38: Virtual Functions

• In Java, all methods are virtual

• Every method call requries extra dereference

• Always get the correct method

• In C++, methods are, by defalut, static

• Determine at compile time which code to call

• Advantages? Disadvantages?

01-39: Virtual Functions

class Base

{

public:

void p1() { printf("p1 in Base\n");}

virtual void p2() { printf("p2 in Base\n");}

};

class Subclass : public Base

{

public:

void p1() { printf("p1 in Subclass\n");}

virtual void p2() { printf("p2 in Subclass\n");}

};

int main()

{

Base *b1 = new Base();

Subclass *s1 = new Subclass();

Base *b2 = s1;

b1->p1(); b1->p2();

b2->p1(); b2->p2();

s1->p1(); s1->p2();

}

CS420-2016S-01 Java vs. C++ 9

01-40: Templates & STL

• We’d like a generic data structure

• Say, a generic list type

• Java method: Create a list of Objects

• Some nasty casting needs to be done

• Checks at runtime to make sure types match

• (Note: modern Java has generics, similar to C++ templates)

01-41: Templates & STL

• We’d like a generic data structure

• Say, a generic list type

• It would be nice to get static typing of generic list

• All checking could be done at compile time

• Templates to the rescue

01-42: Templates & STL

• Basic idea of templates:

• Create a class, with some of the data types undefined

• When we instantiate a templated class, we give the undefined types

• Compiler replaces all of the templated type with the actual types, compiles

• It is as if we hard-coded several versions of the class

01-43: Templates & STL

• TemplateStack.h / TemplateStack.cpp

01-44: Standard Template Library

• Group of template classes

• Handles all of the standard data structures

• Lists, maps, sets, iterators

• Similar to the Java library – slightly more efficient

01-45: C++ Iterators

• C++ Iterators are similar to Java iterators

• One main difference

• In Java, the “next” method returns the next element, and advances the iterator

• In C++, their are separate operations for “give me the current element” and “advance the current element”

• “Give me the next elemet” is overloaded * operator

CS420-2016S-01 Java vs. C++ 10

• “Advance the current element” is overloaded ++ operator

01-46: C++ Iterators

#include <vector>

vector<int> v;

for (int i = 0; i < 10; i++)

{

v.push_back(i);

}

for (vector<int>::iterator it = v.begin();

it != v.end();

it++)

{

printf("%d", *it);

}

01-47: C++ Iterators

• Common iterator mistakes

• Comparing iterator to NULL instead of .end()

• Vectors of pointers

01-48: C++ Iterators

#include <vector>

#include "Point.h"

vector<Point *> points;

for (int i = 0; i < 10; i++)

{

points.push_back(new Point(i,i*10);

}

for (vector<Point *>::iterator it = points.begin();

it != points.end();

it++)

{

(*it)->Print();

}

01-49: Namespaces

• You’re using a large library of code in your project

• You define a new class “foo”

• The class “foo” already in the library

• Oops!

• What can you do?

01-50: Namespaces

• You’re using a large library of code in your project

• You define a new class “foo”

CS420-2016S-01 Java vs. C++ 11

• The class “foo” already in the library

• What can you do?

• Create long names for each of your classes

• Namespaces!

01-51: Namespaces

• Enclose your class (both .h and .cpp files) in a namespace

File: foo.h

namespace <name>

{

<standard body of .h file>

}

File: foo.cpp

namespace <name>

{

<standard body of .h file>

}

01-52: Namespaces

#ifndef POINT_H

#define POINT_H

namespace Geom {

class Point

{

public:

Point(float initialX = 0, float initialY = 0);

˜Point();

float GetX();

float GetY();

void SetX(float newX);

void SetY(float newY);

void Print();

private:

float x;

float y;

};

}

#endif

01-53: Namespaces

• Any class defined within the namespace “foo” can access any other class defined within the same namespace

• Outside the namespace, you can access a class in a different namespace using the syntax<namespace>::<classname>

01-54: Namespaces

namespace Geom

{

class Point;

class Rectangle

{

public:

Rectangle(float x1, float y1, float x2, float y2);

Point *GetUpperleft();

Point *GetLowerRight();

private:

Point *mUpperLeft;

Point *mLowerRight;

};

}

01-55: Namespaces

CS420-2016S-01 Java vs. C++ 12

class Geom::Point;

class Rectangle

{

public:

Rectangle(float x1, float y1, float x2, float y2);

Geom::Point *GetUpperleft();

Geom::Point *GetLowerRight();

private:

Geom::Point *mUpperLeft;

Geom::Point *mLowerRight;

};

01-56: Namespaces

• All of the classes in the STL use the namespace std

• So, our code for vectors and iterators (above) won’t quite compile, need to add std:: namespace reference

01-57: Namespaces

#include <vector>

#include <stdio.h>

int main()

{

std::vector<int> v;

for (int i=0; i < 10; i++)

v.push_back(i);

for (std::vector<int>::iterator it = v.begin();

it != v.end();

it++)

{

printf("%d", *it);

}

return 0;

}

01-58: Using Namespaces

• Using std:: everywhere can get a little cumbersome

• We certainly don’t want to put our code in the std namespace

• using to the rescue

01-59: Using Namespaces

#include <vector>

#include <stdio.h>

using namespace std;

int main()

{

vector<int> v;

for (int i=0; i < 10; i++)

v.push_back(i);

for (vector<int>::iterator it = v.begin();

it != v.end();

it++)

{

printf("%d", *it);

}

return 0;

}

01-60: Using Namespaces

• It may be tempting to have:

• using namespace Ogre

CS420-2016S-01 Java vs. C++ 13

in your project code, since everything in Ogre is in the namespace Ogre

• I strongly recommend that you do not do this

01-61: More Namespaces

• Namespaces can nest

namespace foo {

namespace bar {

class Myclass { ... }

}

}

...

foo::bar::Myclass x;

01-62: Explicit Pointers

• Sometimes hear “Java Has no pointers”

• Of course this is completely incorrect

• Java has no explicit pointers

• C++ has Explicit pointers, just like C (and implicit ones, too!)

• C++ is a superset of C: Every crazy thing you can do in C, you can do in C++

01-63: Explicit Pointers

int main()

{

int x = 3;

int *ptrX = &x;

int *ptrA = new int;

*ptrA = 4;

*ptrX = 5;

printf("ptrA = %d, *ptrA = %d", ptrA, *ptrA);

printf("x = %d",x);

}

Output:

ptrA = 1048912, *ptrA = 4

x = 5

01-64: Explicit Pointers

• What happens if you run this in Java? C/C++?

int main()

{

int A = 1;

int x[5];

int B = 2;

x[-1] = 9;

x[-2] = 10;

x[5] = 11;

x[6] = 12;

printf("%d, %d \n", A, B); // (assuming Java had printf ...)

}

01-65: Explicit Pointers

• What happens if you run this in Java? C/C++?

CS420-2016S-01 Java vs. C++ 14

int main()

{

int A = 1;

int x[5];

int B = 2;

x[-1] = 9;

x[-2] = 10;

x[5] = 11;

x[6] = 12;

printf("%d, %d \n", A, B); // (assuming Java had printf ...)

}

Java: Runtime Error

C: 9, 10

01-66: Explicit Pointers

int main()

{

int *x = new int[4];

int *y = new int[4];

for (int i = 0; i < 5; i++)

{

x[i] = i;

y[i] = i + 10;

}

for (int i = 0; i < 4; i++)

{

printf("%d, %d, %d \n", i, x[i], y[i]);

}

}

Output?

01-67: Explicit Pointers

int main()

{

int *x = new int[4];

int *y = new int[4];

for (int i = 0; i < 5; i++)

{

x[i] = i;

y[i] = i + 10;

}

for (int i = 0; i < 4; i++)

{

printf("%d, %d, %d \n", i, x[i], y[i]);

}

}

Output

0,0,4

1,1,11

2,2,12

3,3,13

01-68: Explicit Pointers

int main()

{

int *x = new int[5];

int *y = new int[5];

for (int i = 0; i < 6; i++)

{

x[i] = i;

y[i] = i + 10;

}

for (int i = 0; i < 5; i++)

{

printf("%d, %d, %d \n", i, x[i], y[i]);

}

}

Output?

01-69: Explicit Pointers

int main()

{

int *x = new int[5];

int *y = new int[5];

for (int i = 0; i < 6; i++)

{

x[i] = i;

y[i] = i + 10;

}

for (int i = 0; i < 5; i++)

{

printf("%d, %d, %d \n", i, x[i], y[i]);

}

}

CS420-2016S-01 Java vs. C++ 15

Output

0,0,10

1,1,11

2,2,12

3,3,13

4,4,14

(!) 01-70: Why does this matter?

• Could have a bug like the second example above – hidden!

• Change the size of one of your data structures

• Bug suddenly appears, apparently unrelated to the change you just made in the code

01-71: Explicit Pointers

• When you do non-standard access strange things happen

• C++ doesn’t protect you

• Can be difficult to debug ...

• Game programming optimizes for speed – do some funky pointer manipulation, and raw access of data

• Need to have good debug-fu

• Discuss some debug strategies later in the semester

01-72: Pass by Reference

• C++ allows you to pass a parameter by reference

• Actually pass a pointer to the object, instead of the object itself

01-73: Pass by Reference

void foo(int x, int &y)

{

x++;

y++;

}

int main()

{

int a = 3;

int b = 4;

foo(a,b);

printf("a = %d, b = %d",a,b);

}

Output:

a = 3, b = 5

01-74: Pass by Reference

void foo(int x, int *y)

{

x++;

(*y)++;

}

int main()

{

int a = 3;

int b = 4;

foo(a,&b);

printf("a = %d, b = %d",a,b);

}

Output:

a = 3, b = 5

01-75: More References...

CS420-2016S-01 Java vs. C++ 16

• C++ allows references outside of parameters, too.

int main()

{

int x = 3;

int *y = &x;

...

*y = 6; // Now x == 6, too

}

01-76: More References...

• C++ allows references outside of parameters, too.

int main()

{

int x = 3;

int &y = x;

...

y = 6; // Now x == 6, too

}

• This allows for implicit pointers

• Handy for defining operators

01-77: References vs. Pointers

Pointers References

Explicit, need * Implicit, don’t use *

Need not be initialized Must be initialized

Can change what it points to always points to the

same thing

Can be null Must point to something

01-78: More Refer-

ences...

• A function can return a reference

• Just like a function returning a pointer

• Don’t need to explicitly follow the pointer, using *

01-79: More References...

#include <stdio.h>

#include <libc.h>

char &FirstChar(char *str)

{

return str[0];

}

int main()

{

char *message = new char[6];

strcpy(message, "Hello");

char &first = FirstChar(message);

first = ’x’;

printf("%s\n",message);

}

Output: xello

01-80: More References...

#include <stdio.h>

#include <libc.h>

char &FirstChar(char *str)

{

return str[0];

}

int main()

{

char *message = new char[6];

strcpy(message, "Hello");

FirstChar(message) = ’y’;

printf("%s\n",message);

}

Output: yello

CS420-2016S-01 Java vs. C++ 17

01-81: More References...

#include <stdio.h>

#include <libc.h>

char &FirstChar(char *str)

{

return str[0];

}

int main()

{

char *message = new char[6];

strcpy(message, "Hello");

char first = FirstChar(message);

first = ’x’;

printf("%s\n",message);

}

Output: hello

01-82: More References...

• What’s wrong with me?

int &Foo(int x)

{

return x

}

01-83: More References...

• What’s wrong with me?

int &Foo(int x)

{

return x

}

• Returning a pointer to an element on the stack, that is immediately going away!

01-84: Const Access

• Sometimes we want to return a pointer to a large data structure

• Copying all of the data would take too much time / memory

• But, we don’t want the variablet to be modified...

• If we have a const pointer or reference, we cannot change what it points to

01-85: Const Access

• This compiles, but crashes with a bus error:

#include <stdio.h>

char *GetText()

{

return "Hello There!";

}

int main()

{

GetText()[3] = ’a’;

}

01-86: Const Access

• This doesn’t compile

CS420-2016S-01 Java vs. C++ 18

#include <stdio.h>

const char *GetText()

{

return "Hello There!";

}

int main()

{

GetText()[3] = ’a’;

}

01-87: Const Access

• Of course there are some tricky bits (there are always tricky bits ...)

• Does the const apply to the pointer, or what is being pointed to?

• Const applies to the closest item on the left, or the item on the right if there is nothing on the left

01-88: Const Access

int x, y, z;

const int *xPtr = &x;

int const *yPtr = &y;

int *const zPtr = &z;

xPtr = yPtr; // OK -- the value is const, not pointer

zPtr = yPtr; // OK -- the value is const, not pointer

*zPtr = 3; // OK -- the pointer is const, not the value

*xPtr = 5; // BAD -- the value is const

*yPtr = 5; // BAD -- the value is const

zptr = xPtr; // BAD -- the pointer is const

01-89: Const Access

class Foo

{

public:

int x;

void foo();

};

int main()

{

Foo f;

const Foo *fooPtr = &f;

int z = fooPtr->x; // OK?

fooPtr.x = 3; // OK?

fooPtr.bar(); // OK?

}

01-90: Const Access

class Foo

{

public:

int x;

void foo();

};

int main()

{

Foo f;

const Foo *fooPtr = &f;

int z = fooPtr->x; // OK -- only getting value

fooPtr.x = 3; // BAD -- setting value

fooPtr.bar(); // BAD -- bar *might* set value

}

01-91: Const Access

class Foo

{

public:

int x;

void foo() const; // This const says that the method

// will not change any method variables

// (nor will it call any non-const

// methods)

};

int main()

CS420-2016S-01 Java vs. C++ 19

{

Foo f;

const Foo *fooPtr = &f;

int z = fooPtr->x; // OK -- only getting value

fooPtr.bar(); // OK -- bar is const, and OK

}

01-92: Const Access

• If a method is const, you can’t change any of the instance variables

class Foo

{

public:

int x;

void bar()

{

// Does nothing

}

void foo() const

{

x = 3; // Illegal, const nethods can’t change values

bar(); // Illegal, can only call const methods

// (even though bar doesn’t do anything)

}

};

01-93: Const Access

• Const access is infectous

• You can assign a non-const value to a const variable

• Can’t go back – once a variable is const, can’t change it, or assign it to a non-const variable

• (Though if you do have non-const access through another pointer, you can still change it, of course)

• Thus it’s useful to denote any function that doesn’t change instance variables as const

01-94: Const Access

• We can use const access for parameters to methods & functions, too

int foo(const int * p1, const Stack &S);

Which of the following are legal?

int foo(Stack S);

int bar(Stack &S);

int foobar(const Stack &S);

...

const Stack constStack = getStack();

foo(constStack);

bar(constStack);

foobar(constStack);

01-95: Const Access

• We can use const access for parameters to methods & functions, too

int foo(const int * p1, const Stack &S);

Which of the following are legal?

int foo(Stack S);

int bar(Stack &S);

int foobar(const Stack &S);

...

const Stack constStack = getStack();

foo(constStack); // Legal (why?)

bar(constStack); // Illegal

foobar(constStack); // Legal

CS420-2016S-01 Java vs. C++ 20

01-96: Operator Oveloading

• Let’s say you are writing a complex number class in Java

• Want standard operations: addition, subtraction, etc

• Write methods for each operation that you want (see code)

• It would be nice to use built-in operators

Complex c1 = new Complex(1,2);

Complex c2 = new Complex(3,4);

Complex c3 = c1 + c2;

01-97: Operator Oveloading

• In C++ you can overload operators

• Essentially just “syntactic sugar”

• Really handy for things like vector & matrix math

• Ogre math libraries make heavy use of operator overloading

• See C++ Complex code example

• Aside: Why no operator overloading in Java?

01-98: Operator Oveloading

• Let’s take a look at the + operator:

const Complex operator+ (const Complex& c) const;

• Why pass in a const reference?

• Why is the return value const?

01-99: Operator Oveloading

• If the return value was not const:

Complex operator+ (const Complex& c) const;

• We could do things like this:

Complex c1, c2, c3;

...

(c1+c2) = c3;

• The const return value prevents this

01-100: Operator Oveloading

• What happens when you assign one class to another (both stored on the stack)?

CS420-2016S-01 Java vs. C++ 21

• Shallow copy

class DeepCopy

{

public:

DeepCopy(int initVal)

{

mPtr = new int;

*mPtr = initVal;

}

int *mPtr;

};

01-101: Operator Oveloading

• What happens when you assign one class to another (both stored on the stack)?

• Values are copied across

• Shallow copy

• What if we want a deep copy?

• Overload the assignment operator

01-102: Operator Oveloading

class DeepCopy

{

int *mPtr;

// You’ll want other methods (including destructor!)

DeepCopy& operator= (DeepCopy const &rhs) {

if (this != &rhs) {

delete mPtr;

mPtr = new int;

(*mptr) = (*rhs.mPtr)

}

return *this;

}

};

01-103: Operator Oveloading

• Why do we need to check for self-assignment

class DeepCopy

{

int *mPtr;

// You’ll want other methods (including destructor!)

DeepCopy& operator= (DeepCopy const &rhs) {

if (this != &rhs) { <-- Why is this if test needed?

delete mPtr;

mPtr = new int;

(*mptr) = (*rhs.mPtr)

}

return *this;

}

};

01-104: Copy Constructors

• Assignment operator (either the default, or user-created) when a value is copied into an existsing variable.

• When a new location is being created, copy constructor is used instead.

01-105: Copy Constructors

class DeepCopy

{

int *mPtr;

DeepCopy (const DeepCopy &rhs) {

mPtr = new int;

(*mptr) = (*rhs.mPtr)

}

};

CS420-2016S-01 Java vs. C++ 22

01-106: Copy Constructors

MyClass a,b;

a = b; // = operator used

MyClass c = a; // Copy Constructor used

void foo(MyClass x);

foo(a); // Copy constructor used

01-107: Copy Constructors

• If you are using a copy constructor, you probably also want to overload assignment = (and vice-versa)

• If you have a copy constructor & overloaded assignment, you probably want a destructor (why?)

• Why does C++ have both copy constructors and overloading of =?

01-108: Operator Overloading

01-109: Variable Initialization

• C++ Does not initialize anything for you

• Value of any uninitialzed variable is whatever value happened to be on the stack at that locaation

• Compiler will often give a warning if you access an uninitialized variable

• But don’t count on compiler warnings! (Don’t ignore them, either!)

01-110: Runtime Checks

• C++ has no bounds checking on arrays

• C++ has no null check on dereferencing pointers

• Pointers can be uninitialized garbage

• Pointers can point to deallocated memory

01-111: More Arrays

• Arrays in C++ are not first-class objects

• Only a list of data

• No length, etc

• Memory created with new foo[x] needs to be deleted with delete [] y

01-112: Const fun

const int *const

MyClass::foo(const int *bar) const;

01-113: Const fun

• What does this const mean?

CS420-2016S-01 Java vs. C++ 23

• Is it meaningful for the interface?

• Does it do anything?

void

MyClass::foo(int *const bar);

01-114: Const fun

const Ogre::SceneManager *getSceneManager();

...

Ogre::SceneNode *node = mWorld->getSceneManager()->getSceneNode("cubenode");

Vector3 currentPos = node->getPosition();

node->setPosition(currentPos + move * time);

