
CS420-2016S-08 Orientation & Quaternions 1

08-0: Orentation

• Orientation is almost the direction that the model is pointing.

• We can describe the direction that a model is pointing using two numbers, polar coordinattes

08-1: Direction in Polar Cooridnates

• We can describe direction using two values (α and β)

• What’s missing for orientation?

α
β

α

β

08-2: Orientation

• Orientaion needs at least 3 numbers to describe

08-3: Absoulte Orientation?

• Recall vectors are actually a displacement, not a position

• Need a reference point (origin) to get a position

• If we think in terms of displacement instead of absoulte position, multiple reference frames easier to

understand

• Orientation is the same way

• Think of orentation as ∆Orientation instead of absoulte

• Use ∆ from a fixed reference frame (like origin) to get absoulte orientation

CS420-2016S-08 Orientation & Quaternions 2

08-4: Absoulte Orientation?

• Of course, if our orientation is a ∆, we need to be careful about what kind of change

• Change from Object space to Inertial Space?

• Change from Inertial Space to Object Space?

• If we use Matrices, then one is the inverse of the other

• Rotational matrices are orthoginal, finding inverse is easy – Transpose

08-5: Matrices as Orientation

• We can represent orientation using 3x3 matrices

• Delta from Object Space to Inertial Space

M =





m11 m12 m13

m21 m22 m23

m31 m32 m33





• Delta from Inertial Space to Object Space

M =





m11 m21 m31

m12 m22 m32

m13 m23 m33





08-6: 4x4 Matricies

• We can completely describe the position and orientation of an object using a 4x4 matrix

• Alternately, a 3x3 matrix and a 1x3 (or 3x1) position vector

• When we use matrices, we are using ∆orientation and ∆position

• Easily combine two matrices – just a matrix multiplication

08-7: Matrix Problems

• Matricies are great for describing orientation and position

• Easy to combine

• How orientation is described within most graphics engines, and by OpenGL and DirectX

• What are some drawbacks to using matrices for orientation?

08-8: Matrix Problems

• Requires 9 numbers instead of 3

• Uses more space

• Not all matrices are valid rotational matrices

• What happens when you use more values that you have degrees of freedom

• Overconstraint problems

08-9: Matrix Problems

CS420-2016S-08 Orientation & Quaternions 3

• Requires 9 numbers instead of 3

• Consider a 3x3 matrix

• The z basis vector (3 numbers) gives the direction

• x basis vector needs to be parallel to z – we can describe the relative position of the x basis vector given

the z basis vector with a single number (not 3!)

• Once we have x and z, y is completely determined!

08-10: Matrix Problems

• Only orthoginal matrices are valid rotational matrices

• Matrices can become non-orthoginal via matrix creep

• Data can be a little off if not cleaned up properly (though the solution to that is to clean up your data!)

• Can fix this problem by orthogonalizing matrices (as per last lecture)

08-11: Matrix Problems

• Go to your artist / animator

• Tell him / her that all angles need to be described in terms of rotational matrices

• Duck as digitizing tablet is thrown at you

• Matrices aren’t exactly easily human readable

08-12: Euler Angles

• Describe rotation in terms of roll, pich, and yaw

• Roll is rotation around the z axis

• Pitch is rotation around the x axis

• Yaw is rotation around the y axis

08-13: Euler Angles

Z

X

Y

Z

X

Y

Pitch

Yaw

Roll

Roll

Pitch

Yaw

08-14: Euler Angles

• We can describe any orientation using Euler Angles

• Order is important!

• 30 degree roll followed by 10 degree pitch 6= 10 degree pitch followed by 30 degree roll!

CS420-2016S-08 Orientation & Quaternions 4

08-15: Euler Angles

• Standard order is

• Roll, pitch yaw

• Converting from object space to Inertial Space

• To convert from Inertial Space to Object space, go in reverse order

08-16: Euler Angles

• Object Space vs. World Space

• We can define roll/ptich/yaw in object space

• Rotate around the object’s z axis

• Rotate around the object’s x axis

• Rotate around the object’s y axis

• Examples, using model

08-17: Euler Angles

• Object Space vs. World Space

• We can define roll/ptich/yaw in world space

• Rotate around the world’s z axis

• Rotate around the world’s x axis

• Rotate around the world’s y axis

• Examples, using model

08-18: Euler Angles

• So, what does Ogre use?

• Both!

• If we call roll/pitch/yaw functions with a single parameter, we rotate in object space (though we can

do world space, too, using a second parameter)

• If we ask for the euler angles, we get them in world space

• RPY in word space is the same as YPR in object space

08-19: Euler Angle Problems

• Some issues with Euler angles

• Any triple of angles describes a unique orientaion (given an order of application)

• ... But the same orientation can be described with more than one set of Euler Angles!

• Trivial example: Roll of 20 degrees is same as roll of 380 degrees

• Can you think of a more complicated example?

08-20: Euler Angle Problems

• Aliasing Issues

CS420-2016S-08 Orientation & Quaternions 5

• (Same orientation with different angles, using object space or world space)

• Roll 90 degrees, Pitch 90 degrees, Yaw 90 degrees

• Pitch -90 degrees

08-21: Gimbal Lock

• When using Euler angles, we always rotate in a set order

• Roll, pitch, yaw

• What happens when the 2nd parameter is 90 degrees?

• Physical system

• In game engine

08-22: Angle Interpoloation

• Given two angles, we want to interpolate between them

• Camera pointing at one object

• Want to rotate camera to point to another object

• Want to rotate a little bit each frame

• Find the “delta” between the angles, move along it a little bit

08-23: Angle Interpoloation

• Naive approach:

• Initial Angle: Θ0, Final angle Θ1

• Want to interpolate from Θ0 to Θ1: at time t = 0 be at angle Θ0, at time t = 1 be at angle Θ1

• ∆Θ = Θ1 −Θ0

• Θt = Θ0 + t∆Θ

• When does this not “work” (that is, when does it do what we don’t expect?)

08-24: Angle Interpoloation

Θ = 450

Θ = 4951

• ∆Θ = 495− 45

• Θt = 45 + 450t

CS420-2016S-08 Orientation & Quaternions 6

08-25: Angle Interpoloation

• The naive approach spins all the way around (450 degrees), instead of just moving 45 degrees

• This is an aliasing problem

• We can fix it by insisting on canonical angles

• -180 ≤ roll ≤ 180

• -90 ≤ pich ≤ 90

• -180 ≤ yaw ≤ 180

08-26: Angle Interpoloation

Θ = 1700

Θ = -1701

• ∆Θ = −170− 170

• Θt = 170− 340t

08-27: Angle Interpoloation

• We can fix this by forcing ∆, Θ to be in the range −180 . . .180

• wrap(x) = x− 360⌊(x+ 180)/360⌋
• ∆Θ = wrap(Θ1 −Θ0)

• Θt = Θ0 + t∆Θ

• Gimbal lock is still a problem, though

• Gimbal lock (or something analogous) will always be a problem if we use 3 numbers to represent angles (exactly

why this is so is beyond the scope of this course, however)

08-28: Euler Angle Advantages

• Compact representation (3 numbers – matrices take 9, and Quaternians (up next!) take 4)

• Any set of 3 angles represents a valid orentation (not so with matricies – any 9 numbers are not a valid rotational

matrix!)

• Conceptually easy to understand

08-29: Euler Angle Disadvantages

• Can’t combine rotations as easily as matrices

CS420-2016S-08 Orientation & Quaternions 7

• Aliasing & Gimal Lock

08-30: Quaternians

• Roating about any axis can be duplicaed by rotations around the 3 cardinal axes

• Goes the other way as well –

• Any set of roations around x, y, and z can be duplicaed by a single rotation around an arbitary axis

08-31: Rotational Equivalence 08-32: Quatenrions

• When using Quaternions for rotation:

• Quaternion encodes an axis and an angle

• Represents rotation about that axis by an amount specified by the angle

• Encoded in a slightly odd way – to understand it, we need to talk about complex numbers

08-33: Imaginary Numbers

• Define i =
√
−1

• Imaginary number is k ∗ i for some real number k

• Complex number has a real and an imaginary component

• c = a+ bi

08-34: Complex Plane

• A complex number can be used to represent a point (or a vector) on the complex plane

• “Real” axis and “Imaginary” axis

CS420-2016S-08 Orientation & Quaternions 8

1 + i

(-1 - 2i)
(2 + i)

real

imaginary

08-35: Complex Numbers

• Complex numbers can be added, subtracted and multiplied

• (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

• (a+ bi)− (c+ di) = (a− c) + (b− d)i

• (a+ bi)(c+ di) = ac+ adi+ bci+ bdi2 = ac− bd+ (ad+ bc)i

• (Dividing is a wee bit more tricky ...)

08-36: Complex Conjugate

• Complex number p = a+ bi

• Conjugate of p, p∗ = a− bi

• What happens when we multiply a number by its conjugate?

• Think of the geometric interpretation ...

08-37: Complex Conjugate

• Complex number p = a+ bi

• Conjugate of p, p∗ = a− bi

• What happens when we multiply a number by its conjugate?

(a+ bi)(a− bi) = a2 + abi− abi− b2i2

= a2 + b2

08-38: Complex Conjugate

• The magnitude of a complex number is the square root of the product of its conjugate

• ||p|| = √
pp∗

• What is the magnitude of a number with no imaginary part?

08-39: Complex Conjugate

CS420-2016S-08 Orientation & Quaternions 9

• The conjugate of a complex number is also is also handy because the product of a number and it’s conjuate has

no imaginary part.

• We can use this fact to do complex division

4 + 3i

3− 2i
=

(4 + 3i)(3 + 2i)

(3− 2i)(3 + 2i)

=
12 + 12i− 6

9 + 4

=
6 + 12i

13

=
6

13
+

12

13
i

08-40: Complex Conjugate

• The conjugate of a complex number is also is also handy because the product of a number and it’s conjuate has

no imaginary part.

• We can use this fact to do complex division

a+ bi

c+ di
=

(a+ bi)(c− di)

(c+ di)(c− di)

=
ac+ bd+ (bc− ad)i

(c2 + d2)

=
ac+ bd

c2 + d2
+

bc− ad

c2 + d2
i

08-41: Complex Rotations

• We can use complex numbers to represent rotations

• We can create a “rotational” complex number rΘ

• Multiplying a complex number p by rΘ rotates p Θ degrees counter-clockwise

• Similar to a rotational matrix in “standard” 2D space

08-42: Complex Rotations

• We can use complex numbers to represent rotations

• rΘ = cosΘ + (sinΘ)i

• p = (a+ bi)

prΘ = a cosΘ + (a sinΘ) + (b cosΘ)i− b sinΘ

= (a cosΘ− b sinΘ) + (a sinΘ + b cosΘ)i

• Does this look at all familiar?

CS420-2016S-08 Orientation & Quaternions 10

08-43: Quaternions

• So, we can use complex numbers to represent points in 2D space, and rotations in 2D space

• How can we extend this to 3D space?

• Add an extra imaginary component for the 3rd dimension?

08-44: Quaternions

• So, we can use complex numbers to represent points in 2D space, and rotations in 2D space

• How can we extend this to 3D space?

• Add an extra imaginary component for the 3rd dimension?

• Actually, we’ll add two additional imaginary components

08-45: Quaternions

• A quaternion is a number with a real part and 4 imaginary parts:

• p = a+ bi+ cj + dk

• Where i, j and k are all different imaginary numbers, with:

• i2 = j2 = k2 = −1

• i ∗ j = k, j ∗ i = −k

• jk = i, kj = −i

• ki = j, ik = −j

08-46: Quaternions

• Quaternions are often divided into a scalar part (real part of the number) and a vector (complex part of the

number)

• p = w + xi+ yj + xk

• p = [w, (x, y, z)]

• p = [w,v]

08-47: Geometric Quaternions

• Complex numbers represent points/vectors in 2D space, and rotations in 2D space

• Quaternions only represent rotations in 3D space (Technically, you can use quaternions to represent scale as

well, but we’ll only do rotations in this class)

• Can condier a quaternion to represent an orientation as an offset from some given orientation

• Just like a vector can represent a point at an offset from the origin

08-48: Geometric Quaternions

• Quaternions represent rotation about an arbitrary axis

• Let n represent an arbitary unit vector

CS420-2016S-08 Orientation & Quaternions 11

• Rotation of Θ degrees around n (using the appropriate handedness rule) is represented by the quaternion:

q = [cos(Θ/2), sin(Θ/2)n]

= [cos(Θ/2), (sin(Θ/2)nx, sin(Θ/2)ny, sin(Θ/2)nz)]

• So, we can represent the position and orientation of a model as a vector and a quaternion (displacement from

the origin, and rotation from initial orientation)

08-49: Quaternion Negation

• Negate quaternions by negating each component

• −q = −[w, (x, y, z)] = [−w, (−x,−y,−z)]

• −q = −[w,v] = [−w,−v]

• What is the geometric meaning of negating a quaternion?

• What happens to the orientation represented by a quaternion if it is negated?

08-50: Quaternion Negation

• Recall: Rotation of Θ degress around n is represented by

• q = [cos(Θ/2) + sin(Θ/2)n]

• What happens if we add 360 degrees to Θ

• How does it change the rotation represented by q?

• How does it change q?

08-51: Quaternion Negation

• Each anglular displacement has two different quaternion representations q, q′

• q = −q′

08-52: Identity Quaternion

• Identity Quaternion represents no anglular displacement

• [1,0] = [1, (0, 0, 0)]

• Rotation of 0 degrees around a vector n

• q = [cos 0, sin 0 ∗ v] = [1,0]

• What about [−1,0]?

08-53: Identity Quaternion

• What about [−1,0]?

• Also represents no angular displacement (think rotation of 360 degrees)

• Geometrically equivalent to identity quaternion

• Not a true identity

• q and −q represent the same orientation, but are different quaternions.

CS420-2016S-08 Orientation & Quaternions 12

08-54: Quaternion Magnitude

• Magnitude of a quaternion is defined as:

• ||q|| = ||[w, (x, y, z)]|| =
√

w2 + x2 + y2 + z2

• ||q|| = ||[w,v]|| =
√

w2 + ||v||2

• Let’s take a look a geometric interpretation:

||[w,v|| =
√

w2 + ||v||2

=
√

cos2(Θ/2) + (sin(Θ/2)||n||)2

=

√

cos2(Θ/2) + sin2(Θ/2)||n||2

• If we restrict n to be a unit vector ...

08-55: Quaternion Magnitude

||[w,v|| =
√

w2 + ||v||2

=

√

cos2(Θ/2) + (sin2(Θ/2)||n||)2

=

√

cos2(Θ/2) + sin2(Θ/2)||n||2

=

√

cos2(Θ/2) + sin2(Θ/2)

=
√
1

= 1

• All quaternions that represent orienation (using normalized n) are unit quaternions

08-56: Conjugate & Inverse

• The conjugate of a quaternion is very similar to the complex conjugate

• q = [w,v] = [w, (x, y, z)]

• q∗ = [w,−v] = [w, (−x,−y,−z)]

• The inverse of a quaternion is defined in terms of the conjugate

• q−1 = q
∗

||q|| = q∗ (for unit quaternions)

08-57: Quaternion Multiplication

• Quaternion Multiplication is just like complex multiplication:

q1q2 = (w1 + x1i + y1j + z1k)(w2 + x2i + y2j + z2k)

= w1w2 + w1x2i + w1y2j + w1z2k +

x1w2i + x1x2i
2

+ x1y2ij + x1z2ik +

y1w2j + y1x2ji + y1y2j
2

+ y1z2jk +

z1w2k + z1x2ki + z1y2kj + z1z2k
2

+

= w1w2 + w1x2i + w1y2j + w1z2k +

x1w2i + x1x2(−1) + x1y2(k) + x1z2(−j) +

y1w2j + y1x2(−k) + y1y2(−1) + y1z2i +

z1w2k + z1x2j + z1y2(−i) + z1z2(−1) +

CS420-2016S-08 Orientation & Quaternions 13

08-58: Quaternion Multiplication

• Quaternion Multiplication is just like complex multiplication:

q1q2 = (w1 + x1i + y1j + z1k)(w2 + x2i + y2j + z2k)

= . . .

= w1w2 + w1x2i + w1y2j + w1z2k +

x1w2i + x1x2(−1) + x1y2(k) + x1z2(−j) +

y1w2j + y1x2(−k) + y1y2(−1) + y1z2i +

z1w2k + z1x2j + z1y2(−i) + z1z2(−1) +

= w1w2 − x1x2 − y1y2 − z1z2 +

(w1x2 + x1w2 + y1z2 − z1y2)i +

(w1y2 + y1w2 + z1x2 + x1z2)j +

(w1z2 + z1w2 + x1y2 + y1x2)k

08-59: Quaternion Multiplication

• Quaternion Multiplication is associative, but not commutative

• (q1q2)q3 = q1(q2q3)

• q1q2 6= q2q1

• Mangnitude of product = product of magnitude

• ||q1q2|| = ||q1||||q2||
• Result of multiplying two unit quaternions is a unit quaternion

08-60: Quaternion Multiplication

• Given any two quaternions q1 and q2:

• (q1q2)
−1 = q−1

2 q−1
1

08-61: Quaternion Rotation

• We can use quaternions to rotate a vector around an axis n by angle Θ

• Let q be a quaternion [w, (x, y, z)] that represents rotation about n by Θ

• Let v be a “quaternion” version of the vector (same vector part, real part zero)

• Rotated vector is: qvq−1

08-62: Quaternion Rotation

• How can we prove that the rotated version of v is qvq−1? Do the multiplication!

• Given n, Θ, and v = [vx, vy, vz]:

• Create:

• q = [cos(Θ/2), sin(Θ/2)(nx, ny, nz)]

• q−1 = [cos(Θ/2),− sin(Θ/2)(nx, ny, nz)]

• v = [0, (vx, vy, vz)]

CS420-2016S-08 Orientation & Quaternions 14

• Calculate qvq−1

08-63: Quaternion Rotation

• Calculate v′ = qvq−1

• ... Much ugly algebra later ...

• Vector portion of v′ is:

v′ = cos Θ(v − (v · n)n) + sinΘ(n × v) + (v · n)n

Which is what we calculated earlier for rotation of Θ degrees around an aritrary axis n

08-64: Quaternion Rotation

• What it we wanted to do more than one rotation?

• First rotate by q1, and then rotate by q2

• First, rotate by q1: q1vq
−1
1

• Next, rotate that quantity by q2: q2(q1vq
−1
1)q−1

2

• q2q1vq
−1
1 q−1

2 = (q2q1)v(q2q1)
−1

08-65: Quaternion “Difference”

• Given two quaternions p and q, find the rotation required to get from p to q

• That is, given p and q, find a d such that

• dp = q

• d = qp−1

• Given two orientations p and q, we can generated the angular displacement from one to another

08-66: Quaternion Log and Exp

• We’ll now define a few “helper” functions, that aren’t useful in and of themselves, but they will allow us to do a

slerp, which is very useful

• Quaternion Log

• Quaternion Exp (“Anti-log”)

08-67: Quaternion Log and Exp

• Define α = Θ/2 (as a notational convenience)

• q = [cosα, (sinα)n]

• q = [cosα, (sinαnx, sinαny , sinαnz)]

• logq = log([cosα, (sinα)n] ≡ [0, αn]

08-68: Quaternion Log and Exp

• Given a quaternion p of the form:

• q = [0, αn] = [0, (αnx, αny, αnz)]

CS420-2016S-08 Orientation & Quaternions 15

• exp(p) = exp([0,n]) ≡ [cosα, sinαn]

• Note that exp(log(q)) = q

08-69: Scalar Multipication

• Given any quaternion q = [w, (x, y, z)] and scalar a

• aq = qa = [aw, (ax, ay, az)]

08-70: Quaternion Exponentiation

• q is a quaternion that represents a rotation about an axis

• Define qt such that:

• q0 = identity quaternion

• q1 = q

• q1/2 = half the rotation around the axis defined by q

• q−1/2 = half the rotation around the axis defined by q, in the opposite direction

08-71: Quaternion Exponentiation

• q0 = identity quaternion

• q1 = q

• q2 = twice half the rotation around the axis defined by q

• Well, sort of.

• Displacement using the shortest possible arc

• Can’t use exponentiation to represent multiple spins around the axis

• Compare (q4)1/2 to q2, when q represents 90 degrees ...

08-72: Quaternion Exponentiation

• We can define quaternion exponentiation mathematically:

• qt = exp(t log q)

• Why does this work?

• Log function extracts n and Θ from q

• Multiply Θ by t

• “Undo” log operation

08-73: Slerp

• Spherical Linear Interpolation

• Input: Two orientations (quaternions) q1 and q2, and a value 0 ≤ t ≤ 1

• Output: An orientation that is between q1 and q2

• If t = 0, result is q1

CS420-2016S-08 Orientation & Quaternions 16

• If t = 1, result is q2

• if t = 1/2, result is 1/2 way between them

08-74: Slerp

• slerp(q1,q2,t):

• Start with orientation q1

• Find the difference between q1 and q2

• Calcualte portion t of the difference

• slerp(q1,q2,t) = q1(q
−1
1 q2)

t

08-75: Slerp

• Finding Slerp, version II

• Let’s say we had two 2-dimensional unit vectors, and we wanted to interpolate between them.

• All 2-dimensional unit vectors live on a circle

• To interpolate 30% between v1 and v2, go 30% of the way along the arc between them

08-76: Slerp

t= 0.3

v1
v2

08-77: Slerp

CS420-2016S-08 Orientation & Quaternions 17

t= 0.3

v1
v2

08-78: Slerp

• Finding Slerp, version II

• Let’s say we had two 3-dimensional unit vectors, and we wanted to interpolate between them.

• All 3-dimensional unit vectors live on a sphere

• To interpolate 30% between v1 and v2, go 30% of the way along the arc between them

08-79: Slerp

t= 0.3

v1
v2

08-80: Slerp

CS420-2016S-08 Orientation & Quaternions 18

t= 0.3

v1
v2

08-81: Slerp

t= 0.3

v1
v2

08-82: Slerp

• Finding Slerp, version II

• Let’s say we had two 4-dimensional unit vectors, and we wanted to interpolate between them.

• All 4-dimensional unit vectors live on a hypersphere

• To interpolate 30% between v1 and v2, go 30% of the way along the arc between them

08-83: Slerp

(Sorry, no 4D diagram)

• slerp(q1,q2, t) =
sin(1−t)ω

sinω q1 +
sin tω
sinω q1

• ω is the angle between q1 and q2, can get it using a dot product

CS420-2016S-08 Orientation & Quaternions 19

• We can get cosω easily using the dot product, and can then get sinω from that

08-84: Using Quaternions

• Orientations in Ogre use quaternions

• Multiplication operator for multiplying a quaternion and a vector is overloaded to do the “right thing”

• Ogre::Quaternion q

• Ogre::Vector v;

• q*v returns v rotated by q

08-85: Using Quaternions

• Tank example:

• Quaternion & Position vector for tank

• Quaternion & Position vector for barrel

• End of barrel is 3 units down barrel’s z axis

• Where is the end of the barrel in world space

08-86: Using Quaternions

• Tank: Orientation qt, Position pt

• Barrel: Orientation qb, Position pb

• End of barrel in world space:

qt(qb[0, 0, 3] + pb) + pt

08-87: Change Representations

• We are not restricted to using just matrices, or just euler angles, or just quaternions to represent orientation

• We can go back and forth between representations

• Given a set of Euler Angles, create a Rotational Marix

• Given a Rotational Matrix, create a quaternion

• ... etc

08-88: Euler Angles -¿ Matrix

• Given Euler angles in world space (as opposed to object space), it is easy to create an equivalent rotational

matrix

• How?

08-89: Euler Angles -¿ Matrix

• Euler angles in world space represent a rotation around each axis

• We can create a matrix for each rotation, and combine them

• Creating a rotational matrix for the cardinal axes is easy

08-90: Euler Angles -¿ Matrix

CS420-2016S-08 Orientation & Quaternions 20

• For the euler angles r,p, y, the matrix would be:





cos(r) sin(r) 0
− sin(r) cos(r) 0

0 0 1









1 0 0
0 cos(p) sin(p)
0 −sin(p) cos(p)









cos(y) 0 − sin(y)
0 1 0

sin(y) 0 cos(y)



 =





cos r cos y + sin r sin p siny sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b siny

cos p sin y − sin p cos p cos y





08-91: Euler Angles -¿ Matrix

• What if your euler angles are in object space, and not world space?

• Then how do you create the appropriate matrix?

08-92: Euler Angles -¿ Matrix

• What if your euler angles are in object space, and not world space?

• Then how do you create the appropriate matrix?

• Create the RPY matrices as before

• Multiply them in the reverse order

08-93: Matrix -¿ Euler Angle

• What if we have a matrix, and we want to create a world-relative euler angle triple?

• Little more complicated than the other direction – recall the definition of a martrix from euler angles (we’ll work

backwards, kind of like a sudoku puzzle)





m11 m12 m13
m21 m22 m23
m31 m32 m33



 =





cos r cos y + sin r sin p siny sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b siny

cos p sin y − sin p cos p cos y





08-94: Matrix -¿ Euler Angle

• From the previous equation:

• m32 = − sin p

• p = arcsin(−m32)

• So we have p – next up is y – once we have p, how can we get y?





cos r cos y + sin r sin p siny sin r cos p sin r sin p cos y − cos r sin y

cos r sin p sin y − sin r cos y cos r cos p cos r sin p cos y + sin b siny

cos p sin y − sin p cos p cos y





08-95: Matrix -¿ Euler Angle

• Assume that cos p 6= 0 for the moment:

• m31 = cos p sin y

• sin y = m31/ cosp

• y = arcsin(m31/ cosp)

• (can do this a litle more efficiently with atan2)

08-96: Matrix -¿ Euler Angle

CS420-2016S-08 Orientation & Quaternions 21

• Once we have p and y (again assuming cos p! = 0) it is relatively easy to get r:

• m12 = sin r cos p

• r = arcsin(m12/ cosp)

08-97: Matrix -¿ Euler Angle

• What if cos p = 0?

• That means that p = 90 degrees

• Gimbal lock case!

• Yaw, roll do the same operation!

• We need to make some assumptions about how much to roll and yaw

08-98: Matrix -¿ Euler Angle

• What if cos p = 0?

• p = 90 degrees

• Assume no yaw (since roll does the same thing)

• cos p = 0, sin p = 1, y = 0 sin y = 0, cos y = 1




cos r cos y + sin r sin p siny sin r cos p sinr sin p cos y − cos r sin y

cos r sin p sin y − sin r sin y cos r cos p cos r sin p cos y + sin p sin y

cos p sin y − sin p cos p cos y





=





cos r 0 sin r

−1 sin r 0 0
0 −1 0





08-99: Matrix -¿ Euler Angle

• m11 = cos r, and we’re set!

• (We can use m12 = sin r and atan2 for some more efficiency)

08-100: Quaternion -¿ Matrix

• Since we can use quaternions to rotate vectors, going from a quaternion to a matrix is easy.

• How?

08-101: Quaternion -¿ Matrix

• Rotational matrix == position of x, y, and z axes after rotation

• So, all we need to do is rotation basis vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1] by the quaternion!

• xnew = q[0, (1, 0, 0)]q−1 (just q[1, 0, 0] in ogre)

• ynew = q[0, (0, 1, 0)]q−1 (just q[0, 1, 0] in ogre)

• znew = q[0, (0, 0, 1)]q−1 (just q[0, 0, 1] in ogre)

• Combine these 3 vectors into a matrix

08-102: Other conversions

• We can do other conversions as well

• Matrix-¿Quaternion

• Euler-¿Quaternion

• Quaternion-¿Matrix

• ... etc

• Basic approach is the same, some of the math is a little uglier

