### 08-0: Orentation

- Orientation is *almost* the direction that the model is pointing.
- We can describe the *direction* that a model is pointing using two numbers, polar coordinattes

## 08-1: Direction in Polar Cooridnates

- We can describe *direction* using two values ( $\alpha$  and  $\beta$ )
- What's missing for orientation?



## 08-2: Orientation

• Orientaion needs at least 3 numbers to describe



08-3: Absoulte Orientation?

- Recall vectors are actually a displacement, not a position
  - Need a reference point (origin) to get a position
  - If we think in terms of displacement instead of absoulte position, multiple reference frames easier to understand
- Orientation is the same way
  - Think of orentation as  $\Delta$ Orientation instead of absoulte
  - Use  $\Delta$  from a fixed reference frame (like origin) to get absoulte orientation

### 08-4: Absoulte Orientation?

- Of course, if our orientation is a  $\Delta$ , we need to be careful about what kind of change
  - Change from Object space to Inertial Space?
  - Change from Inertial Space to Object Space?
- If we use Matrices, then one is the inverse of the other
- Rotational matrices are orthoginal, finding inverse is easy Transpose

### 08-5: Matrices as Orientation

- We can represent orientation using 3x3 matrices
  - Delta from Object Space to Inertial Space

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix}$$

• Delta from Inertial Space to Object Space

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{bmatrix}$$

#### 08-6: 4x4 Matricies

- We can completely describe the position and orientation of an object using a 4x4 matrix
  - Alternately, a 3x3 matrix and a 1x3 (or 3x1) position vector
- When we use matrices, we are using  $\Delta$  orientation and  $\Delta$  position
- Easily combine two matrices just a matrix multiplication

#### 08-7: Matrix Problems

- Matricies are great for describing orientation and position
  - · Easy to combine
  - How orientation is described within most graphics engines, and by OpenGL and DirectX
- What are some drawbacks to using matrices for orientation?

## 08-8: Matrix Problems

- Requires 9 numbers instead of 3
  - Uses more space
  - Not all matrices are valid rotational matrices
    - What happens when you use more values that you have degrees of freedom
    - Overconstraint problems

#### 08-9: Matrix Problems

- Requires 9 numbers instead of 3
  - Consider a 3x3 matrix
  - The z basis vector (3 numbers) gives the direction
  - x basis vector needs to be parallel to z we can describe the relative position of the x basis vector given the z basis vector with a single number (not 3!)
  - Once we have x and z, y is completely determined!

#### 08-10: Matrix Problems

- Only orthoginal matrices are valid rotational matrices
  - Matrices can become non-orthoginal via matrix creep
  - Data can be a little off if not cleaned up properly (though the solution to that is to clean up your data!)
  - Can fix this problem by orthogonalizing matrices (as per last lecture)

# 08-11: Matrix Problems

- Go to your artist / animator
- Tell him / her that all angles need to be described in terms of rotational matrices
- Duck as digitizing tablet is thrown at you
  - Matrices aren't exactly easily human readable

# 08-12: Euler Angles

- Describe rotation in terms of *roll*, *pich*, and *yaw* 
  - Roll is rotation around the z axis
  - Pitch is rotation around the x axis
  - Yaw is rotation around the y axis

#### 08-13: Euler Angles



08-14: Euler Angles

- We can describe any orientation using Euler Angles
  - Order is important!
  - 30 degree roll followed by 10 degree pitch  $\neq$  10 degree pitch followed by 30 degree roll!

### 08-15: Euler Angles

- Standard order is
  - Roll, pitch yaw
- Converting from object space to Inertial Space
- To convert from Inertial Space to Object space, go in reverse order

### 08-16: Euler Angles

- Object Space vs. World Space
  - We can define roll/ptich/yaw in object space
    - Rotate around the object's z axis
    - Rotate around the object's x axis
    - Rotate around the object's y axis
  - Examples, using model

## 08-17: Euler Angles

- Object Space vs. World Space
  - We can define roll/ptich/yaw in world space
    - Rotate around the world's z axis
    - Rotate around the world's x axis
    - Rotate around the world's y axis
  - Examples, using model

## 08-18: Euler Angles

- So, what does Ogre use?
  - Both!
    - If we call roll/pitch/yaw functions with a single parameter, we rotate in object space (though we can do world space, too, using a second parameter)
    - If we ask for the euler angles, we get them in world space
      - RPY in word space is the same as YPR in object space

# 08-19: Euler Angle Problems

- Some issues with Euler angles
  - Any triple of angles describes a unique orientaion (given an order of application)
  - ... But the same orientation can be described with more than one set of Euler Angles!
    - Trivial example: Roll of 20 degrees is same as roll of 380 degrees
    - Can you think of a more complicated example?

### 08-20: Euler Angle Problems

• Aliasing Issues

- (Same orientation with different angles, using object space or world space)
- Roll 90 degrees, Pitch 90 degrees, Yaw 90 degrees
- Pitch -90 degrees

### 08-21: Gimbal Lock

- When using Euler angles, we always rotate in a set order
  - Roll, pitch, yaw
- What happens when the 2nd parameter is 90 degrees?
  - Physical system
  - In game engine

## 08-22: Angle Interpoloation

- Given two angles, we want to interpolate between them
  - Camera pointing at one object
  - Want to rotate camera to point to another object
  - Want to rotate a *little* bit each frame
- Find the "delta" between the angles, move along it a little bit

## 08-23: Angle Interpoloation

- Naive approach:
  - Initial Angle:  $\Theta_0$ , Final angle  $\Theta_1$
  - Want to interpolate from  $\Theta_0$  to  $\Theta_1$ : at time t = 0 be at angle  $\Theta_0$ , at time t = 1 be at angle  $\Theta_1$ 
    - $\Delta \Theta = \Theta_1 \Theta_0$
    - $\Theta_t = \Theta_0 + t\Delta\Theta$
  - When does this not "work" (that is, when does it do what we don't expect?)

### 08-24: Angle Interpoloation



•  $\Theta_t = 45 + 450t$ 

### 08-25: Angle Interpoloation

- The naive approach spins all the way around (450 degrees), instead of just moving 45 degrees
- This is an aliasing problem
  - We can fix it by insisting on canonical angles
    - $-180 \le roll \le 180$
    - $-90 \le pich \le 90$
    - $-180 \le yaw \le 180$

#### 08-26: Angle Interpoloation

$$\Theta_0 = 170$$

$$\Theta_1 = -170$$

- $\Delta \Theta = -170 170$
- $\Theta_t = 170 340t$

## 08-27: Angle Interpoloation

- We can fix this by forcing  $\Delta$ ,  $\Theta$  to be in the range  $-180 \dots 180$ 
  - $wrap(x) = x 360\lfloor (x + 180)/360 \rfloor$
  - $\Delta \Theta = wrap(\Theta_1 \Theta_0)$
  - $\Theta_t = \Theta_0 + t\Delta\Theta$
- Gimbal lock is still a problem, though
- Gimbal lock (or something analogous) will *always* be a problem if we use 3 numbers to represent angles (exactly why this is so is beyond the scope of this course, however)

#### 08-28: Euler Angle Advantages

- Compact representation (3 numbers matrices take 9, and Quaternians (up next!) take 4)
- Any set of 3 angles represents a valid orentation (not so with matricies any 9 numbers are not a valid rotational matrix!)
- Conceptually easy to understand

### 08-29: Euler Angle Disadvantages

• Can't combine rotations as easily as matrices

• Aliasing & Gimal Lock

#### 08-30: Quaternians

- Roating about any axis can be duplicaed by rotations around the 3 cardinal axes
- Goes the other way as well
  - Any set of rotations around x, y, and z can be duplicated by a single rotation around an arbitrary axis



### 08-31: Rotational Equivalence

- When using Quaternions for rotation:
  - Quaternion encodes an axis and an angle
  - Represents rotation about that axis by an amount specified by the angle
  - Encoded in a slightly odd way to understand it, we need to talk about complex numbers

### 08-33: Imaginary Numbers

- Define  $i = \sqrt{-1}$
- Imaginary number is k \* i for some real number k
- Complex number has a real and an imaginary component

• c = a + bi

## 08-34: Complex Plane

- A complex number can be used to represent a point (or a vector) on the complex plane
- "Real" axis and "Imaginary" axis



### 08-35: Complex Numbers

- Complex numbers can be added, subtracted and multiplied
  - (a+bi) + (c+di) = (a+c) + (b+d)i
  - (a+bi) (c+di) = (a-c) + (b-d)i
  - $(a+bi)(c+di) = ac + adi + bci + bdi^2 = ac bd + (ad + bc)i$
- (Dividing is a wee bit more tricky ...)

#### 08-36: Complex Conjugate

- Complex number p = a + bi
- Conjugate of  $p, p^* = a bi$
- What happens when we multiply a number by its conjugate?
  - Think of the geometric interpretation ...

## 08-37: Complex Conjugate

- Complex number p = a + bi
- Conjugate of  $p, p^* = a bi$
- What happens when we multiply a number by its conjugate?

$$(a+bi)(a-bi) = a2 + abi - abi - b2i2$$
$$= a2 + b2$$

### 08-38: Complex Conjugate

- The magnitude of a complex number is the square root of the product of its conjugate
- $||p|| = \sqrt{pp^*}$
- What is the magnitude of a number with no imaginary part?

### 08-39: Complex Conjugate

- The conjugate of a complex number is also is also handy because the product of a number and it's conjuate has no imaginary part.
  - We can use this fact to do complex division

$$\frac{4+3i}{3-2i} = \frac{(4+3i)(3+2i)}{(3-2i)(3+2i)} \\ = \frac{12+12i-6}{9+4} \\ = \frac{6+12i}{13} \\ = \frac{6}{13} + \frac{12}{13}i$$

## 08-40: Complex Conjugate

- The conjugate of a complex number is also is also handy because the product of a number and it's conjuate has no imaginary part.
  - We can use this fact to do complex division

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)}$$
$$= \frac{ac+bd+(bc-ad)i}{(c^2+d^2)}$$
$$= \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i$$

#### **08-41:** Complex Rotations

- We can use complex numbers to represent rotations
  - We can create a "rotational" complex number  $r_{\Theta}$
  - Multiplying a complex number p by  $r_{\Theta}$  rotates  $p \Theta$  degrees counter-clockwise
  - Similar to a rotational matrix in "standard" 2D space

## 08-42: Complex Rotations

- We can use complex numbers to represent rotations
  - $r_{\Theta} = \cos \Theta + (\sin \Theta)i$
  - p = (a + bi)

$$pr_{\Theta} = a\cos\Theta + (a\sin\Theta) + (b\cos\Theta)i - b\sin\Theta$$
$$= (a\cos\Theta - b\sin\Theta) + (a\sin\Theta + b\cos\Theta)i$$

• Does this look at all familiar?

### 08-43: Quaternions

- So, we can use complex numbers to represent points in 2D space, and rotations in 2D space
  - How can we extend this to 3D space?
  - Add an extra imaginary component for the 3rd dimension?

### 08-44: Quaternions

- So, we can use complex numbers to represent points in 2D space, and rotations in 2D space
  - How can we extend this to 3D space?
  - Add an extra imaginary component for the 3rd dimension?
    - Actually, we'll add two additional imaginary components

### 08-45: Quaternions

- A quaternion is a number with a real part and 4 imaginary parts:
  - p = a + bi + cj + dk
- Where *i*, *j* and *k* are all different imaginary numbers, with:
  - $i^2 = j^2 = k^2 = -1$
  - i \* j = k, j \* i = -k
  - jk = i, kj = -i
  - ki = j, ik = -j

## 08-46: Quaternions

- Quaternions are often divided into a scalar part (real part of the number) and a vector (complex part of the number)
  - p = w + xi + yj + xk
  - p = [w, (x, y, z)]
  - $p = [w, \mathbf{v}]$

## 08-47: Geometric Quaternions

- Complex numbers represent points/vectors in 2D space, and rotations in 2D space
- Quaternions only represent rotations in 3D space (Technically, you can use quaternions to represent scale as well, but we'll only do rotations in this class)
  - Can condier a quaternion to represent an orientation as an offset from some given orientation
  - Just like a vector can represent a point at an offset from the origin

#### 08-48: Geometric Quaternions

- Quaternions represent rotation about an arbitrary axis
- Let n represent an arbitary unit vector

• Rotation of  $\Theta$  degrees around n (using the appropriate handedness rule) is represented by the quaternion:

 $q = [\cos(\Theta/2), \sin(\Theta/2)\mathbf{n}]$ =  $[\cos(\Theta/2), (\sin(\Theta/2)n_x, \sin(\Theta/2)n_y, \sin(\Theta/2)n_z)]$ 

• So, we can represent the position and orientation of a model as a vector and a quaternion (displacement from the origin, and rotation from initial orientation)

#### 08-49: Quaternion Negation

- Negate quaternions by negating each component
  - $-\mathbf{q} = -[w, (x, y, z)] = [-w, (-x, -y, -z)]$ •  $-\mathbf{q} = -[w, \mathbf{v}] = [-w, -\mathbf{v}]$
- What is the geometric meaning of negating a quaternion?
- What happens to the orientation represented by a quaternion if it is negated?

#### 08-50: Quaternion Negation

- Recall: Rotation of  $\Theta$  degress around n is represented by
  - $\mathbf{q} = [\cos(\Theta/2) + \sin(\Theta/2)\mathbf{n}]$
- What happens if we add 360 degrees to  $\Theta$ 
  - How does it change the rotation represented by q?
  - How does it change q?

## 08-51: Quaternion Negation

- Each anglular displacement has two different quaternion representations q, q'
- q = -q'

## 08-52: Identity Quaternion

- Identity Quaternion represents no anglular displacement
  - [1, 0] = [1, (0, 0, 0)]
- Rotation of 0 degrees around a vector n
  - $q = [\cos 0, \sin 0 * \mathbf{v}] = [1, \mathbf{0}]$
- What about [-1, 0]?

## 08-53: Identity Quaternion

- What about [-1, 0]?
  - Also represents no angular displacement (think rotation of 360 degrees)
  - Geometrically equivalent to identity quaternion
  - Not a true identity
    - q and -q represent the same orientation, but are different quaternions.

#### 08-54: Quaternion Magnitude

- Magnitude of a quaternion is defined as:
  - $||\mathbf{q}|| = ||[w, (x, y, z)]|| = \sqrt{w^2 + x^2 + y^2 + z^2}$
  - $||\mathbf{q}|| = ||[w, \mathbf{v}]|| = \sqrt{w^2 + ||\mathbf{v}||^2}$
- Let's take a look a geometric interpretation:

$$\begin{aligned} ||[w, \mathbf{v}|| &= \sqrt{w^2 + ||\mathbf{v}||^2} \\ &= \sqrt{\cos^2(\Theta/2) + (\sin(\Theta/2)||\mathbf{n}||)^2} \\ &= \sqrt{\cos^2(\Theta/2) + \sin^2(\Theta/2)||\mathbf{n}||^2} \end{aligned}$$

• If we restrict **n** to be a unit vector ...

## 08-55: Quaternion Magnitude

$$\begin{aligned} |[w, \mathbf{v}|| &= \sqrt{w^2 + ||\mathbf{v}||^2} \\ &= \sqrt{\cos^2(\Theta/2) + (\sin^2(\Theta/2)||\mathbf{n}||)^2} \\ &= \sqrt{\cos^2(\Theta/2) + \sin^2(\Theta/2)||\mathbf{n}||^2} \\ &= \sqrt{\cos^2(\Theta/2) + \sin^2(\Theta/2)} \\ &= \sqrt{1} \\ &= 1 \end{aligned}$$

• All quaternions that represent orienation (using normalized **n**) are *unit quaternions* 

# 08-56: Conjugate & Inverse

- The conjugate of a quaternion is very similar to the complex conjugate
  - $\mathbf{q} = [w, \mathbf{v}] = [w, (x, y, z)]$
  - $\mathbf{q}^* = [w, -\mathbf{v}] = [w, (-x, -y, -z)]$
- The *inverse* of a quaternion is defined in terms of the conjugate

• 
$$\mathbf{q}^{-1} = \frac{\mathbf{q}^*}{||\mathbf{q}||} = q^*$$
 (for unit quaternions)

## 08-57: Quaternion Multiplication

• Quaternion Multiplication is just like complex multiplication:

$$\begin{aligned} \mathbf{q_1}\mathbf{q_2} &= (w_1 + x_1i + y_1j + z_1k)(w_2 + x_2i + y_2j + z_2k) \\ &= w_1w_2 + w_1x_2i + w_1y_2j + w_1z_2k + \\ & x_1w_2i + x_1x_2i^2 + x_1y_2ij + x_1z_2ik + \\ & y_1w_2j + y_1x_2ji + y_1y_2j^2 + y_1z_2jk + \\ & z_1w_2k + z_1x_2ki + z_1y_2kj + z_1z_2k^2 + \end{aligned}$$

$$= w_1w_2 + w_1x_2i + w_1y_2j + w_1z_2k + \\ & x_1w_2i + x_1x_2(-1) + x_1y_2(k) + x_1z_2(-j) + \\ & y_1w_2j + y_1z_2(-k) + y_1y_2(-1) + y_1z_2i + \\ & z_1w_2k + z_1x_2j + z_1y_2(-i) + z_1z_2(-1) + \end{aligned}$$

#### 08-58: Quaternion Multiplication

• Quaternion Multiplication is just like complex multiplication:

```
 \begin{split} \mathbf{q_1}\mathbf{q_2} &= & (w_1+x_1i+y_1j+z_1k)(w_2+x_2i+y_2j+z_2k) \\ &= & \dots \\ &= & w_1w_2+w_1x_2i+w_1y_2j+w_1z_2k+ \\ & & x_1w_2i+x_1x_2(-1)+x_1y_2(k)+x_1z_2(-j)+ \\ & & y_1w_2j+y_1x_2(-k)+y_1y_2(-1)+y_1z_2i+ \\ & & z_1w_2k+z_1x_2j+z_1y_2(-i)+z_1z_2(-1)+ \\ &= & w_1w_2-x_1x_2-y_1y_2-z_1z_2+ \\ & & (w_1x_2+x_1w_2+y_1z_2-z_1y_2)i+ \\ & & (w_1y_2+y_1w_2+z_1x_2+x_1z_2)j+ \\ & & (w_1z_2+z_1w_2+x_1y_2+y_1x_2)k \end{split}
```

### 08-59: Quaternion Multiplication

- Quaternion Multiplication is associative, but not commutative
  - $(\mathbf{q}_1\mathbf{q}_2)\mathbf{q}_3 = \mathbf{q}_1(\mathbf{q}_2\mathbf{q}_3)$
  - $\mathbf{q}_1\mathbf{q}_2 \neq \mathbf{q}_2\mathbf{q}_1$
- Mangnitude of product = product of magnitude
  - $||q_1q_2|| = ||q_1||||q_2||$ 
    - Result of multiplying two unit quaternions is a unit quaternion

## 08-60: Quaternion Multiplication

- Given any two quaternions  $q_1$  and  $q_2$ :
  - $(\mathbf{q}_1\mathbf{q}_2)^{-1} = \mathbf{q}_2^{-1}\mathbf{q}_1^{-1}$

### 08-61: Quaternion Rotation

- We can use quaternions to rotate a vector around an axis n by angle  $\Theta$ 
  - Let q be a quaternion [w, (x, y, z)] that represents rotation about n by  $\Theta$
  - Let v be a "quaternion" version of the vector (same vector part, real part zero)
  - Rotated vector is:  $qvq^{-1}$

#### 08-62: Quaternion Rotation

- How can we prove that the rotated version of  $\mathbf{v}$  is  $\mathbf{q}\mathbf{v}\mathbf{q}^{-1}$ ? Do the multiplication!
- Given  $\mathbf{n}, \Theta$ , and  $\mathbf{v} = [v_x, v_y, v_z]$ :
- Create:
  - $\mathbf{q} = [\cos(\Theta/2), \sin(\Theta/2)(n_x, n_y, n_z)]$
  - $\mathbf{q}^{-1} = [\cos(\Theta/2), -\sin(\Theta/2)(n_x, n_y, n_z)]$
  - $v = [0, (v_x, v_y, v_z)]$

• Calculate  $qvq^{-1}$ 

#### 08-63: Quaternion Rotation

- Calculate  $v' = \mathbf{q}\mathbf{v}\mathbf{q}^{-1}$ 
  - ... Much ugly algebra later ...
  - Vector portion of v' is:

```
\mathbf{v}' = \cos \Theta(\mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n}) + \sin \Theta(\mathbf{n} \times \mathbf{v}) + (\mathbf{v} \cdot \mathbf{n})\mathbf{n}
```

Which is what we calculated earlier for rotation of  $\Theta$  degrees around an aritrary axis n

#### 08-64: Quaternion Rotation

- What it we wanted to do more than one rotation?
  - First rotate by  $q_1$ , and then rotate by  $q_2$
- First, rotate by  $q_1: q_1 v q_1^{-1}$
- Next, rotate that quantity by  $q_2$ :  $q_2(q_1vq_1^{-1})q_2^{-1}$
- $\mathbf{q}_2 \mathbf{q}_1 \mathbf{v} \mathbf{q}_1^{-1} \mathbf{q}_2^{-1} = (\mathbf{q}_2 \mathbf{q}_1) \mathbf{v} (\mathbf{q}_2 \mathbf{q}_1)^{-1}$

# 08-65: Quaternion "Difference"

- Given two quaternions **p** and **q**, find the rotation required to get from **p** to **q**
- That is, given p and q, find a d such that
  - dp = q

• 
$$\mathbf{d} = \mathbf{q}\mathbf{p}^{-1}$$

• Given two orientations p and q, we can generated the angular displacement from one to another

## 08-66: Quaternion Log and Exp

- We'll now define a few "helper" functions, that aren't useful in and of themselves, but they will allow us to do a slerp, which is *very* useful
  - Quaternion Log
  - Quaternion Exp ("Anti-log")

### 08-67: Quaternion Log and Exp

- Define  $\alpha = \Theta/2$  (as a notational convenience)
  - $\mathbf{q} = [\cos \alpha, (\sin \alpha)\mathbf{n}]$
  - $\mathbf{q} = [\cos \alpha, (\sin \alpha n_x, \sin \alpha n_y, \sin \alpha n_z)]$
- $\log \mathbf{q} = \log([\cos \alpha, (\sin \alpha)\mathbf{n}] \equiv [0, \alpha \mathbf{n}]$

### 08-68: Quaternion Log and Exp

- Given a quaternion p of the form:
  - $\mathbf{q} = [0, \alpha \mathbf{n}] = [0, (\alpha n_x, \alpha n_y, \alpha n_z)]$

- $\exp(p) = \exp([0, \mathbf{n}]) \equiv [\cos \alpha, \sin \alpha \mathbf{n}]$
- Note that  $\exp(\log(\mathbf{q})) = \mathbf{q}$

## 08-69: Scalar Multipication

- Given any quaternion  $\mathbf{q} = [w, (x, y, z)]$  and scalar a
- $a\mathbf{q} = \mathbf{q}a = [aw, (ax, ay, az)]$

# 08-70: Quaternion Exponentiation

- q is a quaternion that represents a rotation about an axis
- Define  $q^t$  such that:
  - $q^0$  = identity quaternion
  - $q^1 = q$
  - $q^{1/2}$  = half the rotation around the axis defined by q
  - $q^{-1/2}$  = half the rotation around the axis defined by q, in the opposite direction

## 08-71: Quaternion Exponentiation

- $q^0 =$ identity quaternion
- $q^1 = q$
- $q^2$  = twice half the rotation around the axis defined by q
  - Well, sort of.
  - Displacement using the shortest possible arc
  - Can't use exponentiation to represent multiple spins around the axis
  - Compare  $(q^4)^{1/2}$  to  $q^2$ , when q represents 90 degrees ...

# 08-72: Quaternion Exponentiation

- We can define quaternion exponentiation mathematically:
  - $\mathbf{q}^t = \exp(t \log \mathbf{q})$
- Why does this work?
  - Log function extracts  $\mathbf{n}$  and  $\Theta$  from q
  - Multiply  $\Theta$  by t
  - "Undo" log operation

# 08-73: Slerp

- Spherical Linear Interpolation
- Input: Two orientations (quaternions)  $q_1$  and  $q_2$ , and a value  $0 \le t \le 1$
- Output: An orientation that is between  $q_1$  and  $q_2$ 
  - If t = 0, result is  $q_1$

- If t = 1, result is  $q_2$
- if t = 1/2, result is 1/2 way between them

# 08-74: Slerp

- $slerp(q_1,q_2,t)$ :
  - Start with orientation  $q_1$
  - Find the difference between  $q_1$  and  $q_2$
  - Calcualte portion t of the difference
- $\operatorname{slerp}(q_1, q_2, t) = q_1 (q_1^{-1} q_2)^t$

# 08-75: Slerp

- Finding Slerp, version II
  - Let's say we had two 2-dimensional unit vectors, and we wanted to interpolate between them.
  - All 2-dimensional unit vectors live on a circle
  - To interpolate 30% between  $\mathbf{v}_1$  and  $\mathbf{v}_2$ , go 30% of the way along the arc between them

# 08-76: Slerp



08-77: Slerp



08-78: Slerp

- Finding Slerp, version II
  - Let's say we had two 3-dimensional unit vectors, and we wanted to interpolate between them.
  - All 3-dimensional unit vectors live on a sphere
  - To interpolate 30% between  $\mathbf{v}_1$  and  $\mathbf{v}_2,$  go 30% of the way along the arc between them

08-79: Slerp



08-80: Slerp



08-81: Slerp



08-82: Slerp

- Finding Slerp, version II
  - Let's say we had two 4-dimensional unit vectors, and we wanted to interpolate between them.
  - All 4-dimensional unit vectors live on a hypersphere
  - To interpolate 30% between  $\mathbf{v}_1$  and  $\mathbf{v}_2,$  go 30% of the way along the arc between them

# 08-83: Slerp

(Sorry, no 4D diagram)

- slerp( $\mathbf{q_1}, \mathbf{q_2}, t$ ) =  $\frac{\sin(1-t)\omega}{\sin\omega}q_1 + \frac{\sin t\omega}{\sin\omega}q_1$
- $\omega$  is the angle between  $q_1$  and  $q_2$ , can get it using a dot product

• We can get  $\cos \omega$  easily using the dot product, and can then get  $\sin \omega$  from that

### 08-84: Using Quaternions

- Orientations in Ogre use quaternions
- Multiplication operator for multiplying a quaternion and a vector is overloaded to do the "right thing"
  - Ogre::Quaternion q
  - Ogre::Vector v;
  - q\*v returns v rotated by q

# 08-85: Using Quaternions

- Tank example:
  - Quaternion & Position vector for tank
  - Quaternion & Position vector for barrel
  - End of barrel is 3 units down barrel's z axis
- Where is the end of the barrel in world space

### 08-86: Using Quaternions

- Tank: Orientation  $q_t$ , Position  $p_t$
- Barrel: Orientation **q**<sub>b</sub>, Position **p**<sub>b</sub>
- End of barrel in world space:

$$\mathbf{q}_t(\mathbf{q}_b[0,0,3] + \mathbf{p}_b) + \mathbf{p}_t$$

### 08-87: Change Representations

- We are not restricted to using just matrices, or just euler angles, or just quaternions to represent orientation
  - We can go back and forth between representations
  - Given a set of Euler Angles, create a Rotational Marix
  - Given a Rotational Matrix, create a quaternion
  - ... etc

## 08-88: Euler Angles -; Matrix

- Given Euler angles in world space (as opposed to object space), it is easy to create an equivalent rotational matrix
- How?

## 08-89: Euler Angles -; Matrix

- Euler angles in world space represent a rotation around each axis
- We can create a matrix for each rotation, and combine them
  - Creating a rotational matrix for the cardinal axes is easy

### 08-90: Euler Angles -; Matrix

• For the euler angles *r*,*p*, *y*, the matrix would be:

| [ _ c |                                                  | $\frac{\sin(r)}{\cos(r)}$                         | $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ | $\begin{array}{ccc} 1 & 0 \\ 0 & \cos(p) \\ 0 & -\sin(p) \end{array}$ | $0\\ \sin(p)\\ \cos(p)$                  | $\left[\begin{array}{c}\cos(y)\\0\\\sin(y)\end{array}\right]$ | $\begin{array}{ccc} 0 & -\sin(y) \\ 1 & 0 \\ 0 & \cos(y) \end{array}$ | ()<br>) ] = |
|-------|--------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-------------|
|       | $\begin{bmatrix} \cos r \\ \cos r \end{bmatrix}$ | $   \cos y + s $ $   \sin p \sin y $ $   \cos p $ |                                                                                       |                                                                       | $\cos p$ sin<br>$\cos p$ cos<br>$\sin p$ | $r \sin p \cos y$ $r \sin p \cos y$ $\cos p \cos p$           | $-\cos r \sin y$<br>$+\sin b \sin y$<br>$\cos y$                      | ]           |

### 08-91: Euler Angles -¿ Matrix

- What if your euler angles are in object space, and not world space?
- Then how do you create the appropriate matrix?

## 08-92: Euler Angles -; Matrix

- What if your euler angles are in object space, and not world space?
- Then how do you create the appropriate matrix?
  - Create the RPY matrices as before
  - Multiply them in the reverse order

## 08-93: Matrix -; Euler Angle

- What if we have a matrix, and we want to create a world-relative euler angle triple?
- Little more complicated than the other direction recall the definition of a martrix from euler angles (we'll work backwards, kind of like a sudoku puzzle)

|                                                                                                                | $\begin{bmatrix} m_{11} \\ m_{21} \\ m_{31} \end{bmatrix}$ | $m_{12} \\ m_{22} \\ m_{32}$ | $m_{13} \\ m_{23} \\ m_{33}$ | ] =                          |                                                               |                      |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------------------------------------|----------------------|
| $\begin{array}{c} \cos r \cos y + \sin r \sin r \\ \cos r \sin p \sin y - \sin r \\ \cos p \sin y \end{array}$ | $p \sin y$<br>$r \cos y$                                   |                              | sp si<br>sp c                | in r sin p $     os r sin p$ | $p \cos y - \cos y$<br>$p \cos y + \sin b$<br>$\cos p \cos y$ | $\sin y$<br>$\sin y$ |

## 08-94: Matrix -; Euler Angle

- From the previous equation:
  - $m_{32} = -\sin p$
  - $p = \arcsin(-m_{32})$
- So we have p next up is y once we have p, how can we get y?

| $\begin{array}{ccc} \cos r \sin p \sin y - \sin r \cos y & \cos r \cos p & \cos r \sin p \cos y + \sin b \sin y \\ \cos p \sin y & -\sin p & \cos p \cos y \end{array} \right]$ |   | $\cos r \cos y + \sin r \sin p \sin y$ | $\sin r \cos p$ | $\sin r \sin p \cos y - \cos r \sin y$ | - 1 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------|-----------------|----------------------------------------|-----|--|
| $\cos p \sin y$ $-\sin p$ $\cos p \cos y$                                                                                                                                       |   | $\cos r \sin p \sin y - \sin r \cos y$ | $\cos r \cos p$ | $\cos r \sin p \cos y + \sin b \sin y$ |     |  |
|                                                                                                                                                                                 | _ | $\cos p \sin y$                        | $-\sin p$       | $\cos p \cos y$                        | ]   |  |

### 08-95: Matrix -¿ Euler Angle

- Assume that  $\cos p \neq 0$  for the moment:
  - $m_{31} = \cos p \sin y$
  - $\sin y = m_{31} / \cos p$
  - $y = \arcsin(m_{31}/\cos p)$
  - (can do this a litle more efficiently with atan2)

## 08-96: Matrix -¿ Euler Angle

- Once we have p and y (again assuming  $\cos p! = 0$ ) it is relatively easy to get r:
  - $m_{12} = \sin r \cos p$
  - $r = \arcsin(m_{12}/\cos p)$

## 08-97: Matrix -¿ Euler Angle

- What if  $\cos p = 0$ ?
  - That means that p = 90 degrees
  - Gimbal lock case!
  - Yaw, roll do the same operation!
  - We need to make some assumptions about how much to roll and yaw

### 08-98: Matrix -; Euler Angle

- What if  $\cos p = 0$ ?
  - p = 90 degrees
  - Assume no yaw (since roll does the same thing)
  - $\cos p = 0$ ,  $\sin p = 1$ , y = 0  $\sin y = 0$ ,  $\cos y = 1$

$$\begin{bmatrix} \cos r \cos y + \sin r \sin p \sin y & \sin r \cos p & \sin r \sin p \cos y - \cos r \sin y \\ \cos r \sin p \sin y - \sin r \sin y & \cos r \cos p & \cos r \sin p \cos y + \sin p \sin y \\ \cos p \sin y & -\sin p & \cos p \cos y \end{bmatrix}$$
$$= \begin{bmatrix} \cos r & 0 & \sin r \\ -1 \sin r & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$$

### 08-99: Matrix -; Euler Angle

- $m_{11} = \cos r$ , and we're set!
  - (We can use  $m_{12} = \sin r$  and atan2 for some more efficiency)

## 08-100: Quaternion -; Matrix

- Since we can use quaternions to rotate vectors, going from a quaternion to a matrix is easy.
- How?

## 08-101: Quaternion -; Matrix

- Rotational matrix == position of x, y, and z axes after rotation
- So, all we need to do is rotation basis vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1] by the quaternion!
  - $\mathbf{x}_{new} = q[0, (1, 0, 0)]q^{-1}$  (just q[1, 0, 0] in ogre)
  - $\mathbf{y}_{new} = q[0, (0, 1, 0)]q^{-1}$  (just q[0, 1, 0] in ogre)
  - $\mathbf{z}_{new} = q[0, (0, 0, 1)]q^{-1}$  (just q[0, 0, 1] in ogre)
- Combine these 3 vectors into a matrix

### 08-102: Other conversions

- We can do other conversions as well
  - Matrix-¿Quaternion
  - Euler-¿Quaternion
  - Quaternion-¿Matrix
  - ... etc
- Basic approach is the same, some of the math is a little uglier