CS420-2016S-08 Orientation & Quaternions 1

08-0: Orentation

e Orientation is almost the direction that the model is pointing.
e We can describe the direction that a model is pointing using two numbers, polar coordinattes
08-1: Direction in Polar Cooridnates

e We can describe direction using two values (« and [3)

e What’s missing for orientation?

08-2: Orientation

e Orientaion needs at least 3 numbers to describe

ya)
o 1N

08-3: Absoulte Orientation?

e Recall vectors are actually a displacement, not a position

e Need a reference point (origin) to get a position

e If we think in terms of displacement instead of absoulte position, multiple reference frames easier to
understand

e Orientation is the same way

e Think of orentation as AOrientation instead of absoulte

e Use A from a fixed reference frame (like origin) to get absoulte orientation

CS420-2016S-08 Orientation & Quaternions

08-4: Absoulte Orientation?

e Of course, if our orientation is a A, we need to be careful about what kind of change

e Change from Object space to Inertial Space?

e Change from Inertial Space to Object Space?
e [f we use Matrices, then one is the inverse of the other

e Rotational matrices are orthoginal, finding inverse is easy — Transpose

08-5: Matrices as Orientation

e We can represent orientation using 3x3 matrices

e Delta from Object Space to Inertial Space

mip M1z M3
M= | ma1 m22 Mma3
m31 Mm32 1MM33

e Delta from Inertial Space to Object Space
mi1 Mma1 M31

M= | mi2 m22 ma32
mi3z MM23 133

08-6: 4x4 Matricies

e We can completely describe the position and orientation of an object using a 4x4 matrix
e Alternately, a 3x3 matrix and a 1x3 (or 3x1) position vector
e When we use matrices, we are using Aorientation and Aposition

e Easily combine two matrices — just a matrix multiplication
08-7: Matrix Problems

e Matricies are great for describing orientation and position

e Easy to combine

e How orientation is described within most graphics engines, and by OpenGL and DirectX
e What are some drawbacks to using matrices for orientation?

08-8: Matrix Problems

e Requires 9 numbers instead of 3
e Uses more space

e Not all matrices are valid rotational matrices

e What happens when you use more values that you have degrees of freedom
e Overconstraint problems

08-9: Matrix Problems

CS420-2016S-08 Orientation & Quaternions 3

e Requires 9 numbers instead of 3

e Consider a 3x3 matrix
e The z basis vector (3 numbers) gives the direction

e 1 basis vector needs to be parallel to z — we can describe the relative position of the x basis vector given
the 2 basis vector with a single number (not 3!)

e Once we have z and z, y is completely determined!
08-10: Matrix Problems
e Only orthoginal matrices are valid rotational matrices

e Matrices can become non-orthoginal via matrix creep
e Data can be a little off if not cleaned up properly (though the solution to that is to clean up your data!)

e Can fix this problem by orthogonalizing matrices (as per last lecture)
08-11: Matrix Problems
e Go to your artist / animator
e Tell him / her that all angles need to be described in terms of rotational matrices
e Duck as digitizing tablet is thrown at you
e Matrices aren’t exactly easily human readable

08-12: Euler Angles

e Describe rotation in terms of roll, pich, and yaw

e Roll is rotation around the z axis
e Pitch is rotation around the x axis

e Yaw is rotation around the y axis

08-13: Euler Angles

Yaw Y Yaw
N
(‘ m Roall
z
= \) X = Q X
Pitch Pitch

Z Roll

08-14: Euler Angles

e We can describe any orientation using Euler Angles

e Order is important!

e 30 degree roll followed by 10 degree pitch # 10 degree pitch followed by 30 degree roll!

CS420-2016S-08 Orientation & Quaternions

08-15: Euler Angles

e Standard order is
e Roll, pitch yaw
e Converting from object space to Inertial Space

e To convert from Inertial Space to Object space, go in reverse order
08-16: Euler Angles

e Object Space vs. World Space

e We can define roll/ptich/yaw in object space

e Rotate around the object’s z axis
e Rotate around the object’s X axis
e Rotate around the object’s y axis

e Examples, using model
08-17: Euler Angles

e Object Space vs. World Space

e We can define roll/ptich/yaw in world space

e Rotate around the world’s z axis
e Rotate around the world’s x axis
e Rotate around the world’s y axis

e Examples, using model
08-18: Euler Angles

e So, what does Ogre use?

e Both!

e If we call roll/pitch/yaw functions with a single parameter, we rotate in object space (though we can

do world space, too, using a second parameter)
o If we ask for the euler angles, we get them in world space

e RPY in word space is the same as YPR in object space

08-19: Euler Angle Problems

e Some issues with Euler angles

e Any triple of angles describes a unique orientaion (given an order of application)

e ... But the same orientation can be described with more than one set of Euler Angles!

e Trivial example: Roll of 20 degrees is same as roll of 380 degrees

e Can you think of a more complicated example?

08-20: Euler Angle Problems

o Aliasing Issues

CS420-2016S-08 Orientation & Quaternions

e (Same orientation with different angles, using object space or world space)
e Roll 90 degrees, Pitch 90 degrees, Yaw 90 degrees
e Pitch -90 degrees

08-21: Gimbal Lock

e When using Euler angles, we always rotate in a set order
e Roll, pitch, yaw
e What happens when the 2nd parameter is 90 degrees?

e Physical system

e In game engine
08-22: Angle Interpoloation

e Given two angles, we want to interpolate between them

e Camera pointing at one object
e Want to rotate camera to point to another object

e Want to rotate a /ittle bit each frame
e Find the “delta” between the angles, move along it a little bit
08-23: Angle Interpoloation
e Naive approach:

e Initial Angle: O, Final angle ©

e Want to interpolate from ©¢ to ©;: at time ¢ = 0 be at angle Oy, at time £ = 1 be at angle O
e AO=0; -0
e O, =0+ tAO

e When does this not “work” (that is, when does it do what we don’t expect?)

08-24: Angle Interpoloation

©, = 495
O, = 45

e AO =495 —45
e O, =45+ 450t

CS420-2016S-08 Orientation & Quaternions 6

08-25: Angle Interpoloation

e The naive approach spins all the way around (450 degrees), instead of just moving 45 degrees
e This is an aliasing problem

e We can fix it by insisting on canonical angles
e -180 <roll <180
e -90 < pich <90
e -180 < yaw < 180

08-26: Angle Interpoloation

O, = 170

N

N
@1 = - 170

e AO® =—-170—-170
e O, =170 — 340t
08-27: Angle Interpoloation

e We can fix this by forcing A, O to be in the range —180...180

o wrap(x) =x — 360|(z + 180)/360]
e AO = wrap(©1 —)
e O, =0 +tAO

e Gimbal lock is still a problem, though

e Gimbal lock (or something analogous) will always be a problem if we use 3 numbers to represent angles (exactly
why this is so is beyond the scope of this course, however)

08-28: Euler Angle Advantages

e Compact representation (3 numbers — matrices take 9, and Quaternians (up next!) take 4)

e Any set of 3 angles represents a valid orentation (not so with matricies — any 9 numbers are not a valid rotational
matrix!)

e Conceptually easy to understand

08-29: Euler Angle Disadvantages

e Can’t combine rotations as easily as matrices

CS420-2016S-08 Orientation & Quaternions

e Aliasing & Gimal Lock
08-30: Quaternians
e Roating about any axis can be duplicaed by rotations around the 3 cardinal axes

e Goes the other way as well —

e Any set of roations around z, y, and 2z can be duplicaed by a single rotation around an arbitary axis

08-32: Quatenrions

08-31: Rotational Equivalence

e When using Quaternions for rotation:

e Quaternion encodes an axis and an angle
e Represents rotation about that axis by an amount specified by the angle

e Encoded in a slightly odd way — to understand it, we need to talk about complex numbers

08-33: Imaginary Numbers
e Definei = +/—1
e Imaginary number is k * ¢ for some real number k
e Complex number has a real and an imaginary component
e c=a+bi
08-34: Complex Plane
e A complex number can be used to represent a point (or a vector) on the complex plane

e “Real” axis and “Imaginary” axis

CS420-2016S-08 Orientation & Quaternions

imaginary

o 1+i

(Zii)

(-1- 2i)
O —4
08-35: Complex Numbers
e Complex numbers can be added, subtracted and multiplied

o (a+bi)+(c+di)=(a+c)+ (b+d)i
o (a+bi)—(c+di)=(a—c)+ (b—d)i
e (a+bi)(c+di) = ac+ adi+ bei + bdi? = ac — bd + (ad + be)i

e (Dividing is a wee bit more tricky ...)
08-36: Complex Conjugate
e Complex number p = a + bi
e Conjugate of p, p* = a — bi
e What happens when we multiply a number by its conjugate?
e Think of the geometric interpretation ...
08-37: Complex Conjugate
e Complex number p = a + bi
e Conjugateof p, p* =a — bt
e What happens when we multiply a number by its conjugate?

(a+bi)(a—bi) = a4+ abi— abi—b*i?
— a2 4 b2

08-38: Complex Conjugate

e The magnitude of a complex number is the square root of the product of its conjugate

e [|pl| = v/pp*

e What is the magnitude of a number with no imaginary part?

08-39: Complex Conjugate

CS420-2016S-08 Orientation & Quaternions 9

e The conjugate of a complex number is also is also handy because the product of a number and it’s conjuate has
no imaginary part.

e We can use this fact to do complex division

443 (44 3)(3 + 2i)

3—2i (3—2i)(3+2i)

12 +12i — 6
9+4

6+ 12i

13

_ 6, 12
- 13713

08-40: Complex Conjugate

e The conjugate of a complex number is also is also handy because the product of a number and it’s conjuate has
no imaginary part.

e We can use this fact to do complex division

a+bi (a+bi)(c—di)

c+di (c+di)(c—di)
_ac+bd+ (bc — ad)i
B (2 +d?)

ac+bd+ be — ad .
7
c2+d?2 2+d?

08-41: Complex Rotations

e We can use complex numbers to represent rotations

e We can create a “rotational” complex number rg
e Multiplying a complex number p by rg rotates p © degrees counter-clockwise

e Similar to a rotational matrix in “standard” 2D space
08-42: Complex Rotations

e We can use complex numbers to represent rotations

e rg =cosO + (sinO)i
e p=(a+bi)

pro = acosO + (asin®) + (bcosO)i — bsin©
= (acos® —bsin®) + (asin® + beosO)i

e Does this look at all familiar?

Orientation & Quaternions 10

CS420-2016S-08

08-43: Quaternions
e So, we can use complex numbers to represent points in 2D space, and rotations in 2D space

e How can we extend this to 3D space?
e Add an extra imaginary component for the 3rd dimension?

08-44: Quaternions

e So, we can use complex numbers to represent points in 2D space, and rotations in 2D space

e How can we extend this to 3D space?
e Add an extra imaginary component for the 3rd dimension?
e Actually, we’ll add two additional imaginary components

08-45: Quaternions
e A quaternion is a number with a real part and 4 imaginary parts:
e p=a-+bi+cj+dk
e Where 4, j and & are all different imaginary numbers, with:
o ?=j7=k*=-1
o ixj=k jxi=—k
o jk=1i,kj=—i
o ki=jtk=—j
08-46: Quaternions
e Quaternions are often divided into a scalar part (real part of the number) and a vector (complex part of the
number)
e p=w+xi+yj+ak
o p=[w(z,y2)]
°p=wV]
08-47: Geometric Quaternions
e Complex numbers represent points/vectors in 2D space, and rotations in 2D space

e Quaternions only represent rotations in 3D space (Technically, you can use quaternions to represent scale as
well, but we’ll only do rotations in this class)

e Can condier a quaternion to represent an orientation as an offset from some given orientation

e Just like a vector can represent a point at an offset from the origin

08-48: Geometric Quaternions
e Quaternions represent rotation about an arbitrary axis

e Letn represent an arbitary unit vector

CS420-2016S-08 Orientation & Quaternions 11

e Rotation of © degrees around n (using the appropriate handedness rule) is represented by the quaternion:

g = [cos(0©/2),sin(0/2)n]
[cos(©/2), (sin(©/2)n,, sin(0©/2)n,, sin(©/2)n)]

e So, we can represent the position and orientation of a model as a vector and a quaternion (displacement from
the origin, and rotation from initial orientation)

08-49: Quaternion Negation
e Negate quaternions by negating each component

® —q= _[wv (xv Y, Z)] = [_wv (_Iv —Y, _Z)]
e —q=—[w,v] =[-w,—V]

e What is the geometric meaning of negating a quaternion?
e What happens to the orientation represented by a quaternion if it is negated?

08-50: Quaternion Negation

e Recall: Rotation of © degress around n is represented by
e q = [cos(0/2) + sin(©/2)n]
e What happens if we add 360 degrees to ©

e How does it change the rotation represented by q?

e How does it change q?

08-51: Quaternion Negation

e Each anglular displacement has rwo different quaternion representations ¢, ¢’

/

®qg=-q
08-52: Identity Quaternion
e Identity Quaternion represents no anglular displacement
e [1,0] =[1,(0,0,0)]
e Rotation of 0 degrees around a vector n
e ¢ =[cos0,sin0xv] = [1,0]
e What about [—1, 0]?

08-53: Identity Quaternion

e What about [—1, 0]?

e Also represents no angular displacement (think rotation of 360 degrees)
e Geometrically equivalent to identity quaternion
e Not a true identity

e ¢ and —q represent the same orientation, but are different quaternions.

CS420-2016S-08 Orientation & Quaternions

12

08-54: Quaternion Magnitude

e Magnitude of a quaternion is defined as:

o [lall = l[w, (z,y, 2)]]| = Vw? + 2% + 92 + 22
o |lafl = [[[w, v]|| = Vw? + |[v]]?

e Let’s take a look a geometric interpretation:

w? + [v][?
Veos2(9/2) + (sin(0/2)[n]])2
= \/COSQ(@/Q) +sin*(6/2)||n|[?

[|[w, vl

e If we restrict n to be a unit vector ...
08-55: Quaternion Magnitude
flw,v][= Vw?+[[v]]?

cos2(0/2) + (sin?(0/2)||n||)2

cos?(0/2) +sin*(0/2)|n||?

[
=~ = =

cos2(0/2) + sin?(0/2)

\
5

e All quaternions that represent orienation (using normalized n) are unit quaternions
08-56: Conjugate & Inverse

e The conjugate of a quaternion is very similar to the complex conjugate
e q=[w,v]=[w,(z,y,2)
° q" = [w,—v] = [w, (-2, —y,—2)]
o The inverse of a quaternion is defined in terms of the conjugate
e q ' = Hqu*II = ¢* (for unit quaternions)
08-57: Quaternion Multiplication

e Quaternion Multiplication is just like complex multiplication:

(w1 +z1i+y1j + z1k) (w2 + z2i + y2j + 22k)
wiwg + wixgi + wiysj + wizok +

qi1492

zqwoi + wyx0il + xqygij + xq20ik +
. . .2 .
yiwaj +yrxeji +yi1y2i” +yi1z2ik +

zpwok 4+ z1aoki + 21 yaki + 2120k +

= wiwg twiegit+ wiyzj +wizok +
zrwi+ zrea(—1) + z1y2(k) +x122(—7) +
yiwd + yi1@a(—k) + y1y2(—1) + y122i +
ziwok + z1woj + z21y2(—1) + 2122(—1) +

CS420-2016S-08 Orientation & Quaternions

08-58: Quaternion Multiplication

e Quaternion Multiplication is just like complex multiplication:

araz = (wy txrit+y1d+ z1k)(wo + @i+ y2i + 22k)

= wiw +wizgi+ wiygd + wyzok +
zrwi+ zyza(—1) + z1y2(k) +2122(—7) +
yiwaj + y1@2(=k) + y1y2(-1) + y122i +
ziwak + z122) + 21y2(—1) + z122(—1) +

= wjwy —T1T2 —Y1Y2 — 2122 +
(wiwy +zywy +y122 — 21¥2)i +
(wiye + yiwa + z122 + x122)j +
(wyzg + z1wy + @12 + y122)k

08-59: Quaternion Multiplication
e Quaternion Multiplication is associative, but not commutative

i (Q1Q2)Q3 = (11((12(13)
® q1q2 # 9291

e Mangnitude of product = product of magnitude

o llgrgzll = lla:[lllg2ll
e Result of multiplying two unit quaternions is a unit quaternion

08-60: Quaternion Multiplication
e Given any two quaternions ¢; and ¢s:
o (mar) ' =aq;'q;’
08-61: Quaternion Rotation

e We can use quaternions to rotate a vector around an axis n by angle ©

e Let g be a quaternion [w, (x, y, z)] that represents rotation about n by ©

e Let v be a “quaternion” version of the vector (same vector part, real part zero)

e Rotated vector is: qvq !

08-62: Quaternion Rotation

e How can we prove that the rotated version of v is qvq~'? Do the multiplication!
e Givenn, O, and v = [vg, vy, v,]:
o Create:

e g = [cos(0/2),sin(0/2)(ng, ny, n,)]
e g ! =[cos(0/2), —sin(©/2)(ng, ny,n.))

e V= [0, (Umavy7UZ)]

CS420-2016S-08 Orientation & Quaternions

14

e Calculate qvq !

08-63: Quaternion Rotation

e Calculate v' = qvq !

e ... Much ugly algebra later ...

e Vector portion of v’ is:

v/ =cos©(v — (v-n)n) +sinO®(n X v) + (v-n)n

Which is what we calculated earlier for rotation of © degrees around an aritrary axis n
08-64: Quaternion Rotation
e What it we wanted to do more than one rotation?
e First rotate by g1, and then rotate by g2

e First, rotate by ¢1: q1vgq; !

e Next, rotate that quantity by ¢o: ¢2(q1vg; gy *

o qq1vq; 'qy ' = (q2q1)v(g2qr) !
08-65: Quaternion ‘“Difference”
e Given two quaternions p and q, find the rotation required to get from p to q
e That is, given p and ¢, find a d such that
edp=q

ed=qp!

e Given two orientations p and q, we can generated the angular displacement from one to another

08-66: Quaternion Log and Exp

o We’ll now define a few “helper” functions, that aren’t useful in and of themselves, but they will allow us to do a

slerp, which is very useful

e Quaternion Log

e Quaternion Exp (“Anti-log”)
08-67: Quaternion Log and Exp

e Define « = ©/2 (as a notational convenience)

e q = [cosa, (sina)n]

e q = [cosa, (sinan,, sinan,,sinan.)]
e logq = log([cos v, (sin a)n] = [0, an]
08-68: Quaternion Log and Exp
e Given a quaternion p of the form:

e q=[0,an] = [0, (any, an,,an,)]

CS420-2016S-08 Orientation & Quaternions

15

e exp(p) = exp([0,n]) = [cos a, sin an]
e Note that exp(log(q)) = q
08-69: Scalar Multipication
e Given any quaternion q = [w, (z, vy, z)] and scalar a
e aq = qa = [aw, (ax, ay, az))
08-70: Quaternion Exponentiation
e ¢ is a quaternion that represents a rotation about an axis
e Define ¢’ such that:

e ¢ = identity quaternion

°q =gq
e ¢'/2 = half the rotation around the axis defined by ¢
e ¢~ !/2 = half the rotation around the axis defined by g, in the opposite direction

08-71: Quaternion Exponentiation

e ¢" =identity quaternion
° ¢ =gq
e ¢? = twice half the rotation around the axis defined by ¢

e Well, sort of.
e Displacement using the shortest possible arc

e Can’t use exponentiation to represent multiple spins around the axis

1/2

e Compare (¢*)/? to ¢, when ¢ represents 90 degrees ...

08-72: Quaternion Exponentiation

e We can define quaternion exponentiation mathematically:
e q' = exp(tlogq)
e Why does this work?

e Log function extracts n and © from ¢
e Multiply © by ¢

e “Undo” log operation
08-73: Slerp

e Spherical Linear Interpolation
e Input: Two orientations (quaternions) ¢; and g2, and a value 0 < ¢ <1
e Output: An orientation that is between ¢; and g2

o Ift =0, resultis qq

CS420-2016S-08 Orientation & Quaternions

e Ift =1, resultis g9
e if t =1/2, resultis 1/2 way between them

08-74: Slerp

e slerp(q1,q2,t):
e Start with orientation ¢
e Find the difference between ¢; and ¢
e (Calcualte portion ¢ of the difference
e slerp(q1,¢2.t) = ¢1(q; ' q2)*
08-75: Slerp

e Finding Slerp, version II

e Let’s say we had two 2-dimensional unit vectors, and we wanted to interpolate between them.
e All 2-dimensional unit vectors live on a circle

o To interpolate 30% between v; and va, go 30% of the way along the arc between them

t=0.3

08-76: Slerp

V2

08-77: Slerp

CS420-2016S-08 Orientation & Quaternions

17

t=0.3
V2

5

Vi

N

08-78: Slerp

e Finding Slerp, version II

e Let’s say we had two 3-dimensional unit vectors, and we wanted to interpolate between them.
e All 3-dimensional unit vectors live on a sphere

e To interpolate 30% between v and va, go 30% of the way along the arc between them

t=0.3

08-79: Slerp

&

08-80: Slerp

CS420-2016S-08 Orientation & Quaternions

18

t=0.3

®

08-81: Slerp

=0.3

B

08-82: Slerp

e Finding Slerp, version II

e Let’s say we had two 4-dimensional unit vectors, and we wanted to interpolate between them.
e All 4-dimensional unit vectors live on a hypersphere

e To interpolate 30% between v; and va, go 30% of the way along the arc between them

08-83: Slerp
(Sorry, no 4D diagram)

e slerp(qi, qz,t) = Siniilnzf)w q + Snle g,

e w is the angle between ¢; and ¢, can get it using a dot product

CS420-2016S-08 Orientation & Quaternions 19

e We can get cos w easily using the dot product, and can then get sin w from that
08-84: Using Quaternions
e Orientations in Ogre use quaternions
e Multiplication operator for multiplying a quaternion and a vector is overloaded to do the “right thing”

e Ogre::Quaternion g
e Ogre::Vector vy

e g»v returns v rotated by g

08-85: Using Quaternions

e Tank example:

e Quaternion & Position vector for tank
e Quaternion & Position vector for barrel

e End of barrel is 3 units down barrel’s z axis

e Where is the end of the barrel in world space
08-86: Using Quaternions

e Tank: Orientation q;, Position p;

e Barrel: Orientation qp, Position py

e End of barrel in world space:
at(a[0,0, 3] + p) + pr

08-87: Change Representations

e We are not restricted to using just matrices, or just euler angles, or just quaternions to represent orientation

We can go back and forth between representations
e Given a set of Euler Angles, create a Rotational Marix
e Given a Rotational Matrix, create a quaternion

e .. efc
08-88: Euler Angles -; Matrix

e Given Euler angles in world space (as opposed to object space), it is easy to create an equivalent rotational
matrix

e How?
08-89: Euler Angles -; Matrix
e Euler angles in world space represent a rotation around each axis
e We can create a matrix for each rotation, and combine them
e Creating a rotational matrix for the cardinal axes is easy

08-90: Euler Angles -; Matrix

CS420-2016S-08 Orientation & Quaternions 20

e For the euler angles r,p, y, the matrix would be:

cos(r) sin(r) 0 1 0 0 cos(y) 0 —sin(y)
—sin(r) cos(r) 0 0 cos(p) sin(p) 0 1 0 -
0 0 1 0 —sin(p) cos(p) sin(y) 0 cos(y)
cosrcosy + sinrsinpsiny sinrcosp sinrsinpcosy — cosrsiny
cosrsinpsiny — sinrcosy cosTcosp cosTsinpcosy + sinbsiny
cos psiny —sinp cos pcosy

08-91: Euler Angles -; Matrix
e What if your euler angles are in object space, and not world space?
e Then how do you create the appropriate matrix?
08-92: Euler Angles -; Matrix
e What if your euler angles are in object space, and not world space?
e Then how do you create the appropriate matrix?

e Create the RPY matrices as before

e Multiply them in the reverse order
08-93: Matrix -; Euler Angle
e What if we have a matrix, and we want to create a world-relative euler angle triple?

e Little more complicated than the other direction —recall the definition of a martrix from euler angles (we’ll work
backwards, kind of like a sudoku puzzle)

mi1 mi2 mi13
m21 m22 m23 =
m31 m32 m33

cosrcosy 4 sinrsinpsiny sinrcosp sinrsinpcosy — cosrsiny
cosrsinpsiny — sinrcosy cosrcosp cosrsinpcosy + sinbsiny
cos psiny —sinp cos p cos y

08-94: Matrix -, Euler Angle

e From the previous equation:

® M3y = —sinp

e p = arcsin(—msz2)

e So we have p — next up is y — once we have p, how can we get y?

cosrcosy 4 sinrsinpsiny sinrcosp sinrsinpcosy — cosrsiny
cosrsinpsiny — sinrcosy cosrcosp cosrsinpcosy + sinbsiny
cos psiny —sinp cos p cos y

08-95: Matrix -, Euler Angle

e Assume that cosp # 0 for the moment:
® M3 = cospsiny
e siny = mgy/cosp
e y = arcsin(msi/ cosp)

e (can do this a litle more efficiently with atan2)

08-96: Matrix - Euler Angle

CS420-2016S-08 Orientation & Quaternions

21

e Once we have p and y (again assuming cos p! = 0) it is relatively easy to get r:

® myg = sinrcosp

e 7 = arcsin(miz/ cosp)
08-97: Matrix -; Euler Angle
e What if cosp = 0?

e That means that p = 90 degrees
e Gimbal lock case!

Yaw, roll do the same operation!
e We need to make some assumptions about how much to roll and yaw

08-98: Matrix -; Euler Angle
e What if cosp = 0?

o p =90 degrees
e Assume no yaw (since roll does the same thing)

e cosp=0,sinp=1,y=0siny =0,cosy =1

cos rcos y + sinrsin psiny sin r cos p sinrsin pcosy — cos rsiny
cos rsinpsiny — sinrsiny CcOs 1 cos p cos rsinpcosy + sinpsiny
cos psiny — sinp cos p cos y
cos T 0 sin r
= —1sinr 0 0
0 —1 0

08-99: Matrix -, Euler Angle
e my, = cosr, and we’re set!
e (We can use mjo = sinr and atan2 for some more efficiency)
08-100: Quaternion -; Matrix
e Since we can use quaternions to rotate vectors, going from a quaternion to a matrix is easy.
e How?
08-101: Quaternion -; Matrix
e Rotational matrix == position of X, y, and z axes after rotation
e So, all we need to do is rotation basis vectors [1,0, 0], [0, 1, 0] and [0, 0, 1] by the quaternion!
® X, = q[0,(1,0,0)]g7 ! ust ¢[1,0,0] in ogre)

® Yoew = q[0,(0,1,0)]g~* (just ¢[0, 1,0] in ogre)
® Znew = q[0,(0,0,1)]g™* (just ¢[0,0,1] in ogre)

e Combine these 3 vectors into a matrix
08-102: Other conversions
e We can do other conversions as well

e Matrix-;Quaternion
e Euler-;Quaternion
e Quaternion-; Matrix
e .. efc

e Basic approach is the same, some of the math is a little uglier

