Game Engineering CS420-2011F-12 Artificial Intelligence

David Galles

Department of Computer Science University of San Francisco

12-0: Artifical Intelligence

- Al in games is a huge field
 - Creating a believable world
 - Characters with their own appearnt goals and desires, especially in RPGs and open world games
 - Opponents that seem to think and plan
 - Simulating human players
 - Chess players, FPS "bots", strategy game opponents, etc

12-1: Most Al is Faked ...

- ... which in unsurprising, since most *everything* is faked, if possible
- Don't need to have intelligent enemies, just need to appear intelligent
- Surprisingly large quantity is done with Finite State Machines

12-2: Finite state machines

- Each entity has a number of states, that represent behaviors
 - Patrolling, advancing to a position, searching, running away, finding cover, etc
- Each behavior can be relatively simple
- Transitions between behaviors can be triggered by timers, scripting, "sensing" by entities, etc

12-3: Case Study: Stealth shooter

- Creating a stealth-based action game (Thief, Splinter Cell, Metal Gear Solid, etc)
 - Patrol state (traversing between waypoints)
 - Alerted state (simple search pattern)
 - Attacking state (advance towards player, attack)
- Each behavior is relatively simple, well-managed transitions between them (especially scripted transitions) can lead to very intelligent-seeming enemies. Add in some random audio cues, and the enemies can seem quite smart ...

12-4: Pathfinding

 One aspect of tradional AI that is commonly used in games is pathfinding

- RTS units getting from home base to place they are attacking
- Enemies attacking player in a maze-style game
- Bots finding shortest route to powerups / other players / etc in FPSs
- First step: Simplifying the problem

12-5: Pathfinding

- Navigating a real-life (or even complex simulated) enviornment is tricky
- Vastly simplify the search space, make it a standard CS-style graph
 - Waypoint System
 - Navigation Mesh
- 2D games (RTS, etc), can be easier just use a grid

12-6: Pathfinding

- OK, so we've simplified the problem to searching for a path in a (potentially very complicated) graph
 - Verticies (places AI can go)
 - Edges (links between verticies, cost often just a distance, can be mor complicated)
- How do we efficiently search the graph?

12-7: Breadth-First Search

- Examine all nodes that are 1 unit away
- Examine all nodes that are 2 units away
- • •
- Examine all nodes that are *n* units away
- (Examples)

12-8: Breadth-First Search

- A few more wrinkes:
 - Searching a graph instead of a tree
 - Get to the same node in more than one way
 - Once we've found shortest path to a path to a node, don't need to consider any other paths

12-9: Breadth-First Search

- Maintain two data structures
 - "Open List" search horizon
 - "Closed list" nodes we've already found the shortest path to, don't need to examine again

12-10: Breadth-First Search

```
void BFS(Graph G, Vertex v) {
```

```
Queue Q = new Queue();
Closed = new ClosedList();
```

```
Q.enquque(v);
while (!Q.empty()) {
  nextV = Q.dequeue()
  if (v not in Closed)
    {
      Closed.Add(v);
      forach (Vertex neighbor adjacent to v in G)
        Q.enqueue(neighbor);
    }
}
```

12-11: Breadth-First Search

- Problem #1 with BFS:
 - Assumes uniform edge cost
 - Not actually true with most graphs we will be searching
- Solution?

12-12: Best-first Search

- Uniform-cost search
 - Store node and cost to get to node in queue
 - Use a priority queue instead of a standard queue
 - Always choose the cheapeast node to expand
 - "Expand" means examine children of node

12-13: Uniform-Cost Search

Uniform-Cost Pseudocode

```
enqueue(initialState)
do
node = prioroty-dequeue()
if (node not in closed list)
   add node to closed list
   if goalTest(node)
      return node (potenially path as well)
   else
      children = successors(node)
      for child in children
           prioroty-enqueue(child, dist(child))
```

• *dist* is the cost of the path from the initial state to the child node

12-14: Uniform-Cost Search

• Problem with Uniform cost search

- To find a goal that is 100 units away from the start, we examine *all* nodes that are 100 units away from the start
- RTS example on board
- Make a minor change to Uniform cost serach, make it much more general

12-15: Best-First Search

```
enqueue(initialState)
do
 node = prioroty-dequeue()
  if (node not in closed list)
     add node to closed list
     if goalTest(node)
        return node (potenially path as well)
     else
        children = successors(node)
        for child in children
           prioroty-enqueue(child, f(child))
```

f(n) is a function that describes how "good" a node is

12-16: Best-first Search

- (Almost) all searches are instances of best-first, with different evaluation functions f
- What functions *f* would yield the following searches:
 - Depth-First Search
 - Breadth-First Search
 - Uniform Cost Search

12-17: Best-first Search

- (Almost) all searches are instances of best-first, with different evaluation functions f
- What functions *f* would yield the following searches:
 - Breadth-First Search f(n) = depth(n)
 - Depth-First Search f(n) = -depth(n)
 - Uniform Cost Search f(n) = g(n) (actual cost to get to n)

12-18: Heuristic Function

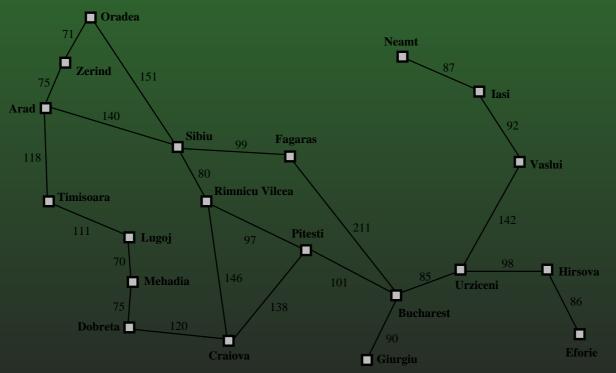
- A Heuristic Function h(n) is an estimate of how much it would cost to get to the solution from node n
- h(n) is not perfect
 - What could we do if h was perfect?
- Example heuristic: Route planning: straight-line distance to the goal
- How could we use a heuristic function as part of best-first search to find a goal quickly?

12-19: Greedy Search

- Best-First search with f(n) = h(n)
- Route-planning example: Always travel to the city that looks like it is closest to out destination

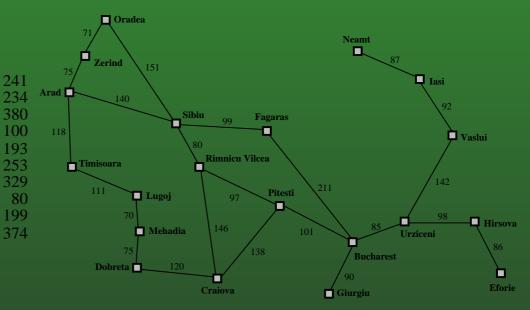
12-20: Greedy Search Example

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374



12-21: Greedy Search Example

Arad	366	Mehadia
Bucharest	0	Neamt
Craiova	160	Oradea
Dobreta	242	Pitesti
Eforie	161	Rimnicu Vilce
Fagaras	176	Sibiu
Giurgiu	77	Timisoara
Hirsova	151	Urziceni
Iasi	226	Vaslui
Lugoj	244	Zerind



(A, 336) (S,253), (T,329), (Z,374) (F,176), (RV,193), (T,329), (A,336), (Z,374), (O,380) (B,0), (RV,193), (S,253), (T,329), (A,336), (Z,374), (O,380)

Solution: $A \rightarrow S \rightarrow F \rightarrow B$

Optimal: $A \rightarrow S \rightarrow RV \rightarrow P \rightarrow B$

12-22: Greedy Search Problems

- Optimal solution can involve moving 'away' from goal
 - Sliding tile puzzle: "undo" a partial solution
 - Rubic's cube: "Mess up" part of cube to solve
- Not really moving away from goal as a measure of the number of moves to a solution, you are actually getting closer to the goal. Only relative to your heuristic function are you going backwards
 - Perfect h == no need to search

12-23: Greedy Search Problems

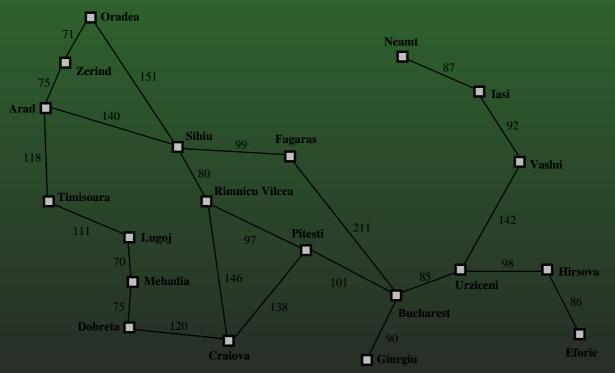
- Greedy search has similar strengths / weaknesses to DFS
 - Expands a linear number of nodes
 - Not optimal
 - May not even necessarily find goal (depending upon the heuristic function)
- What are the flaws of greedy search?
- How could we fix them?

12-24: **A* search**

- A* search is a combination of uniform cost search and greedy search.
- f(n) = g(n) + h(n)
 - g(n) = current path cost
 - h(n) = heuristic estimate of distance to goal.
- Favors nodes with best estimated total cost to goal
- If h(n) satisfies certain conditions, A* is both complete (always finds a solution) and optimal (always finds the best solution).

12-25: A* Search Example

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Dobreta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374



12-26: A* Search Example

Arad = 0 + 366 = 366

- (dequeue A: g = 0) S = 140 + 253 = 393, T = 118 + 329 = 447, Z = 75 + 374 = 449
- (dequeue S: g = 140) RV = 220 + 193 = 413, F = 239 + 176 = 415, T = 118 + 329 = 447, Z = 374 + 75 = 449, A = 280 + 336 = 616, O = 291 + 380 = 671,
- (dequeue RV: g = 220) F = 239 + 176 = 415, P = 317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449, C = 366 + 160 = 526, S = 300 + 253 = 553, A = 280 + 336 = 616, O = 291 + 380 = 671

• (dequeue F: g = 239) P = 317 + 100 = 417, T = 118 + 329 = 447, Z = 374 + 75 = 449, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591, A = 280 + 336 = 616, O = 291 + 380 = 671

12-27: A* Search Example

(dequeue P: g = 317) T = 118 + 329 = 447, Z = 374 + 75 = 449, B = 518 + 0 = 518, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue T: g = 118) Z = 374 + 75 = 449, L = 229 + 244 = 473, B = 518 + 0 = 518, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, O = 291 + 380 = 671

(dequeue Z: g = 75) L = 229 + 244 = 473, A = 150 + 336 = 486, B = 518 + 0 = 518, O
 = 146 + 380 = 526, C = 366 + 160 = 526, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A
 = 280 + 336 = 616, O = 291 + 380 = 671

12-28: A* Search Example

(dequeue L: g = 229) A = 150 + 336 = 486, B = 518 + 0 = 518, O = 146 + 380 = 526, C = 366 + 160 = 526, M = 299 + 241 = 540, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, T = 340 + 329 = 669, O = 291 + 380 = 671

 (dequeue A: g = 150) B = 518 + 0 = 518, O = 146 + 380 = 526, C = 366 + 160 = 526, M = 299 + 241 = 540, S = 290 + 253 = 543, B = 550 + 0 = 550, S = 300 + 253 = 553, A = 236 + 336 = 572, S = 338 + 253 = 591, T = 268 + 329 = 597, Z = 225 + 374 = 599, RV = 414 + 193 = 607, C = 455 + 160 = 615, A = 280 + 336 = 616, T = 340 + 329 = 669, O = 291 + 380 = 671

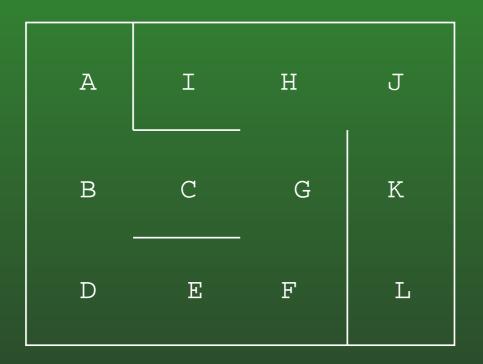
(dequeue B: g = 518) solution. A -> S -> RV -> P -> B

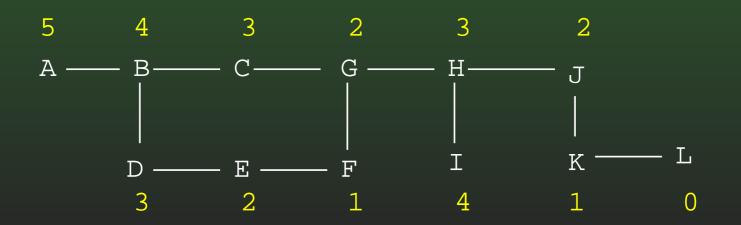
()

12-29: A* Example II

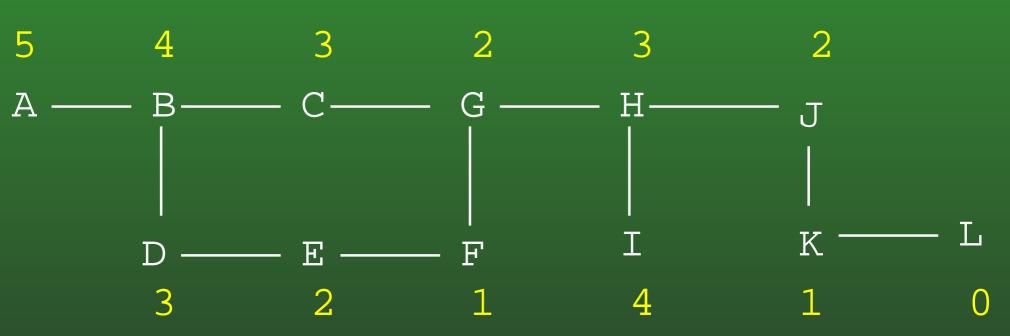
A	I	H	J
B	С	G	K
D	E	F	L

12-30: A* Example II

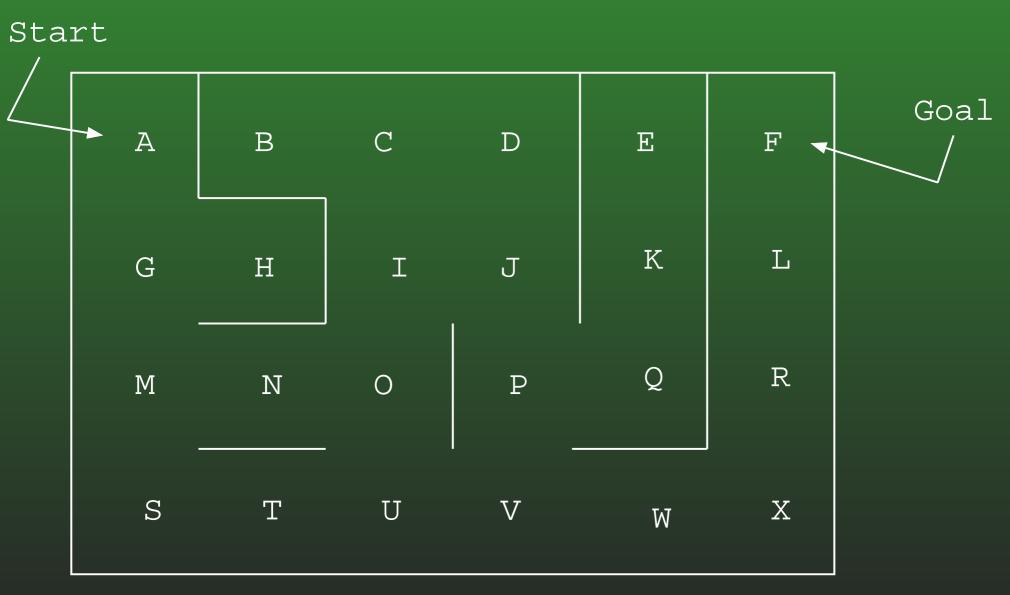




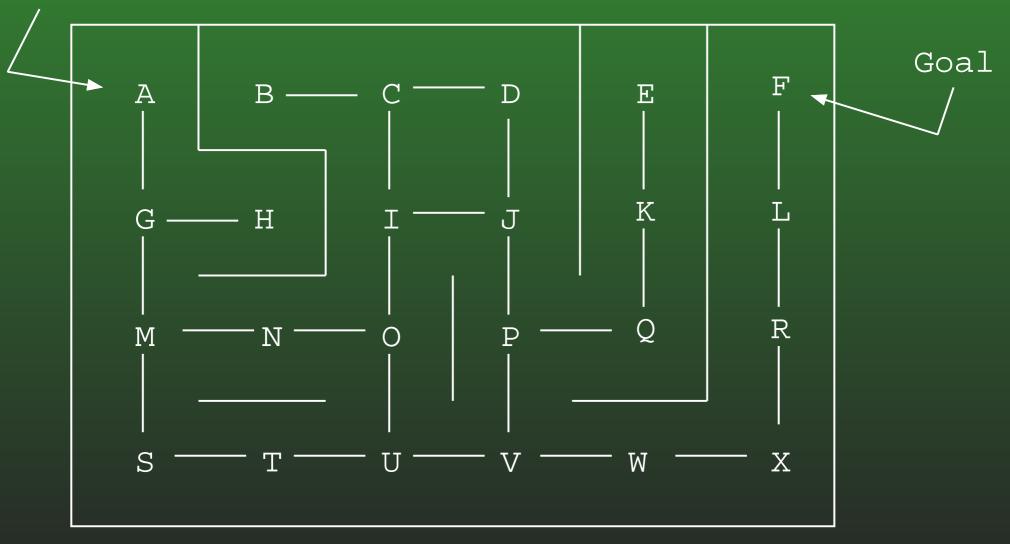
12-31: A* Example II



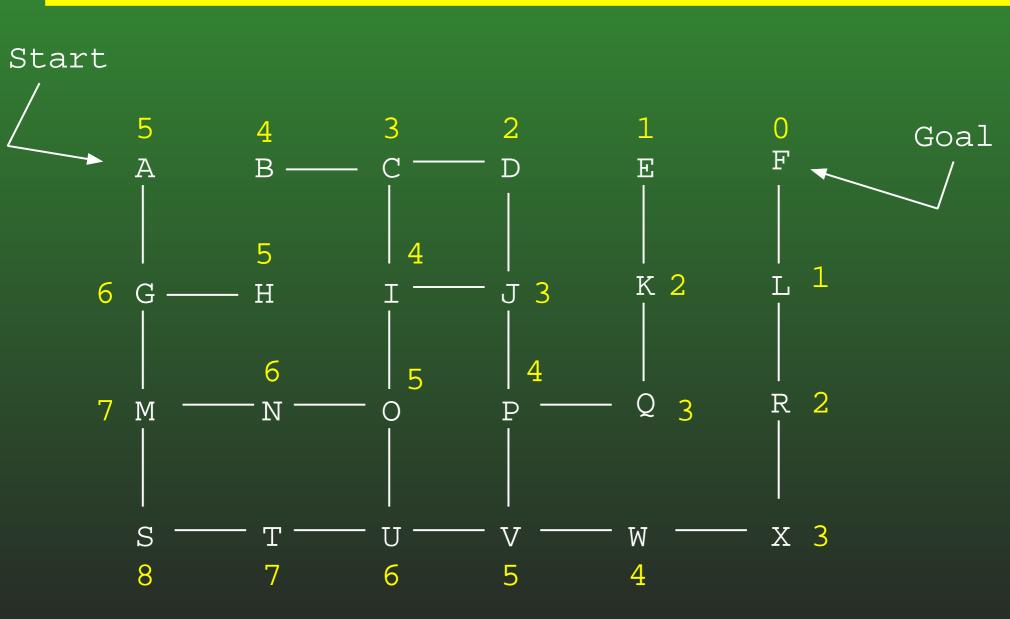
12-32: A* Example II



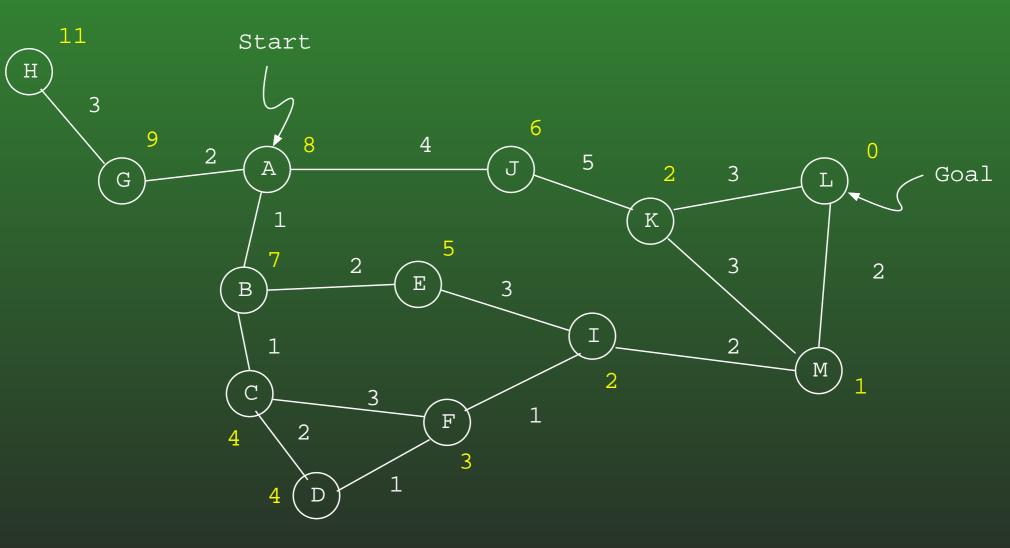
12-33: A* Example II



12-34: A* Example II



12-35: A* Example IV



h() values in yellow edge costs in white

Node expsnsion order for BFS, Uniform Cost, Greedy, A*

12-36: A* Example IV

• BFS:

- AGBJHCEKDIML (goal found)
- (Other orderings are possible)

12-37: A* Example IV

• Uniform Cost Search:

- ABCGEJDHFIMKL
- (Other orderings are possible)

12-38: A* Example IV

• Greedy

- AJKL
- (Other orderings are possible)

12-39: A* Example IV

• A*

- ABCFIEMJL
- (Other orderings are possible)

12-40: Optimality of A*

- A* is optimal (finds the shortest solution) as long as our h function is admissible.
 - Admissible: always underestimates the cost to the goal.
- Proof: When we dequeue a goal state, we see g(n), the actual cost to reach the goal. If h underestimates, then a more optimal solution would have had a smaller g + h than the current goal, and thus have already been dequeued.
- Or: If h overestimates the cost to the goal, it's possible for a good solution to "look bad" and get buried further back in the queue.

12-41: Optimality of A*

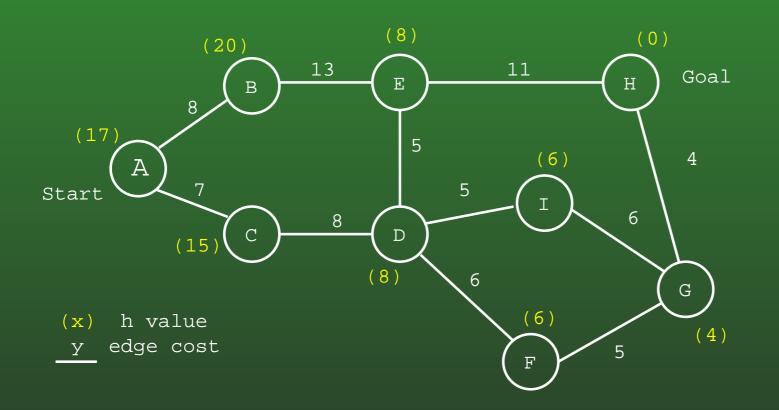
Notice that we can't discard repeated states.

- We could always keep the version of the state with the lowest \boldsymbol{g}
- More simply, we can also ensure that we always traverse the best path to a node first.
- a *monotonic* heuristic guarantees this.
- A heuristic is monotonic if, for every node n and each of its successors (n'), h(n) is less than or equal to stepCost(n, n') + h(n').
 - In geometry, this is called the triangle inequality.

12-42: Optimality of A*

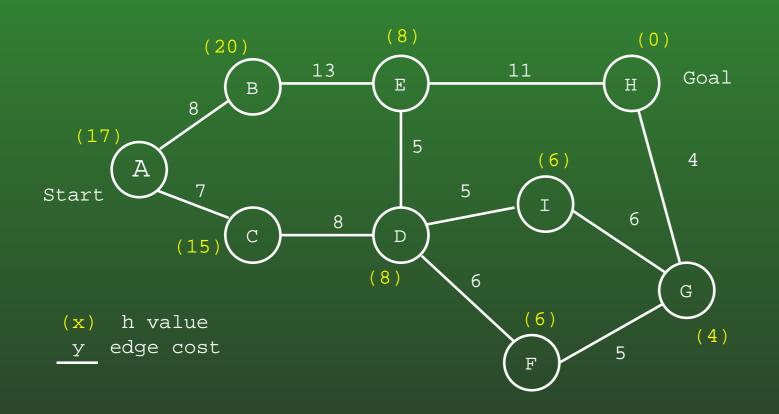
- SLD is monotonic. (In general, it's hard to find realistic heuristics that are admissible but not monotonic).
- Corollary: If *h* is monotonic, then *f* is nondecreasing as we expand the search tree.
- Alternative proof of optimality.
- Notice also that UCS is A* with h(n) = 0
- A* is also optimally efficient
 - No other complete and optimal algorithm is guaranteed to expand fewer nodes.

12-43: A* Example II



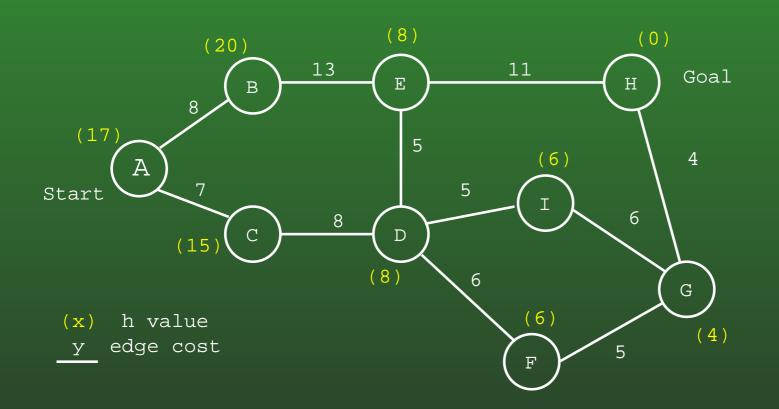
Is h() admissible?Is h() monotonic?

12-44: A* Example II



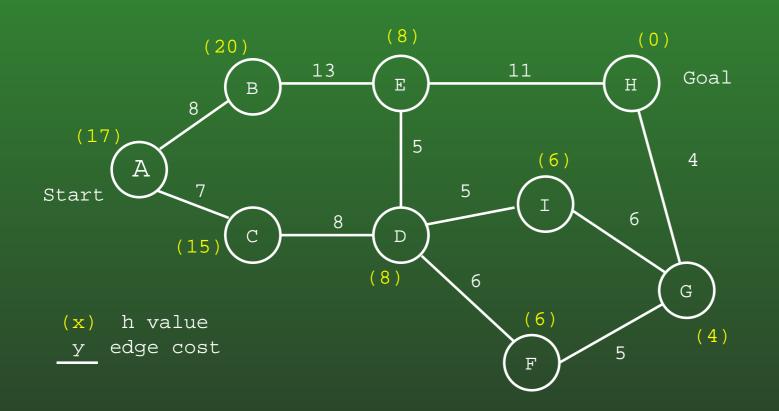
Node: Queue : -- [(A f = 17, g = 0, h = 17)]

12-45: A* Example II



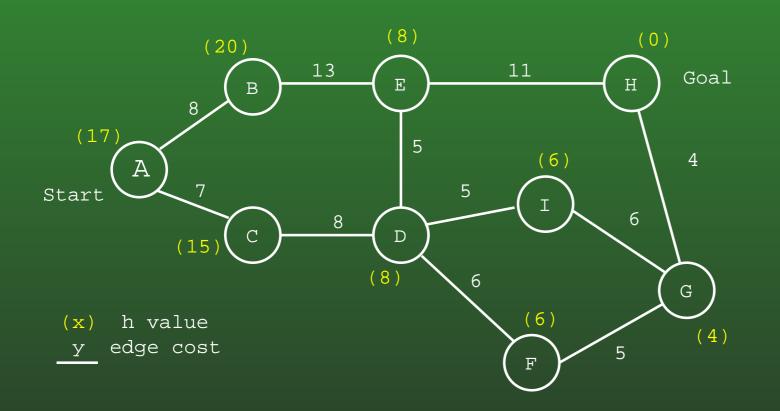
Node: Queue : A [(C f = 22, g = 7, h = 15), (B f = 28, <u>g = 8, h = 20)]</u>

12-46: A* Example II



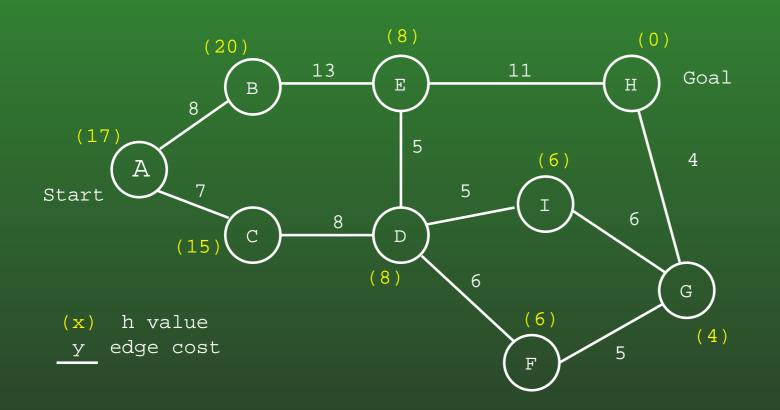
Node: Queue : C [(D f = 23, g = 15, h = 8), (B f = 28, g = 8, h = 20)]

12-47: A* Example II



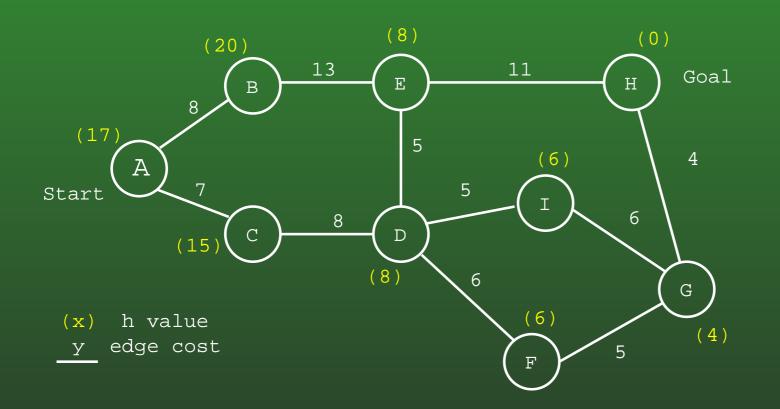
Node: Queue :
D [(I f = 26, g = 20, h = 6), (F f = 27, g = 21, h = 6),
(B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8)]

12-48: A* Example II

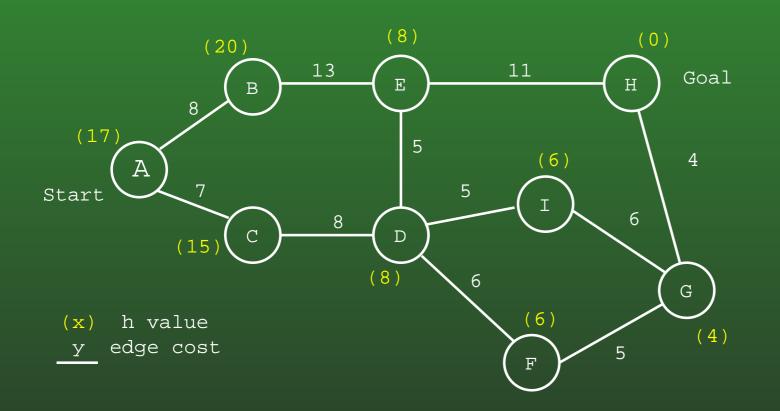


Node: Queue : I [(F f = 27, g = 21, h = 6), (B f = 28, g = 8, h = 20), (E f = 28, g = 20, h = 8), (G f = 30 g = 26, h = 4)]

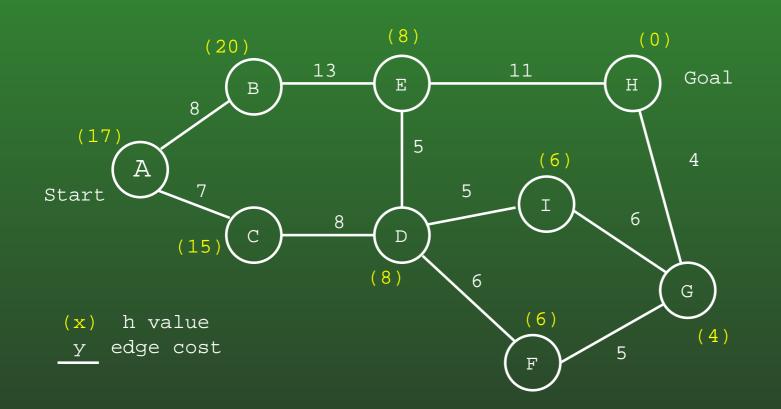
12-49: A* Example II



12-50: A* Example II

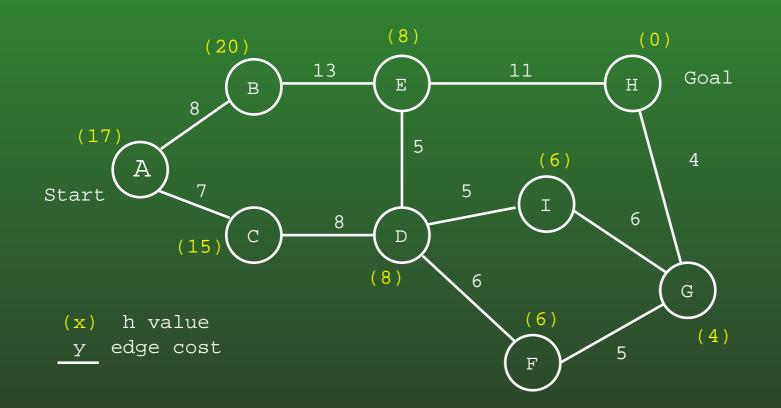


12-51: A* Example II



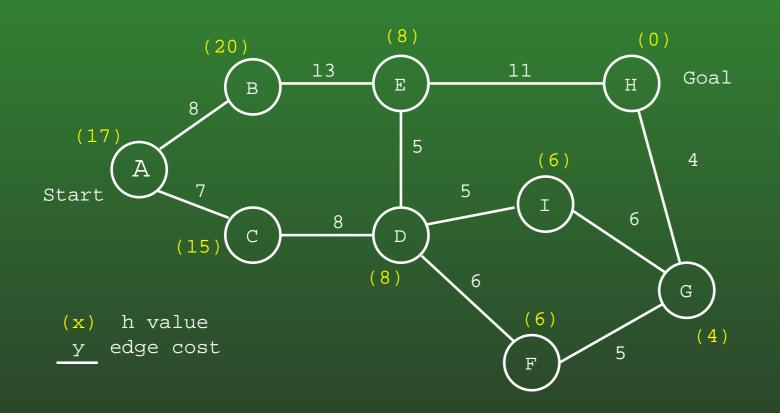
Node: Queue : E [(E f = 29, g = 21, h = 8), (G f = 30 g = 26, h = 4), (G f = 30 g = 26 h = 4), (H f = 31, g = 31, h = 0)] (next E can be discarded)

12-52: A* Example II



Node: Queue :
G [(G f = 30 g = 26 h = 4), (H f = 30, g = 30, h = 0),
(H f = 31, g = 31, h = 0)]
(next G can be discarded)

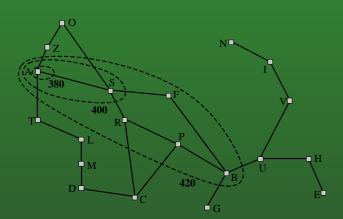
12-53: A* Example II



Node: Queue : H. Goal. [(H f = 31, g = 31, h = 0)]

Solution: A,C,D,I,G,H (or A,C,D,F,G,H)

12-54: Pruning and Contours



- Topologically, we can imagine A* creating a set of contours corresponding to *f* values over the search space.
- A* will search all nodes within a contour before expanding.
- This allows us to *prune* the search space.
 - We can chop off the portion of the search tree corresponding to Zerind without searching it.

- A* has one big weakness Like BFS, it potentially keeps an exponential number of nodes in memory at once.
- Iterative deepening A* is a workaround
 - IDS was depth-limited search IDA* is f-limited search
 - Each iteration, increase bound to smallest value that allows search to continue

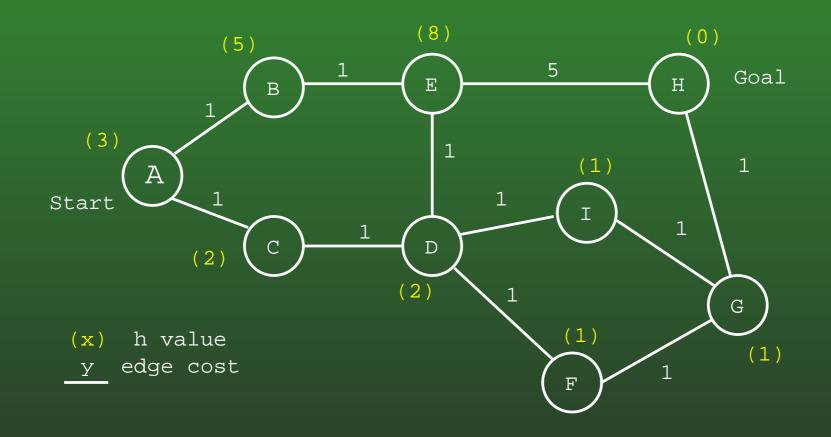
12-56: Iterative Deepening A* (IDA*)

```
f-limited-DFS(node, limit)
    if g(n) + h(n) > limit
        return fail, g(node) + h(node)
    if goalTest(node)
        return node, g(node)
    children = successor(node)
    smallestFail = MAX_VALUE
    for child in children
        sol, cost = depth-limited-DFS(child, limit)
        if sol != fail
            return sol, cost
        smallestFail = min(cost, smallestFail)
    return smalestFail, fail
```

12-57: Iterative Deepening A* (IDA*)

```
ida-star(node)
  limit = h(node)
  while true
    sol, limit = f-limited-DFS(node, limit)
    if (sol != fail)
       return sol
```

12-58: IDA* Example



12-59: **DA***

- Works well in works with discrete-valued step costs
 - Prefereably with steps having the same cost
- Each iteration brings in a large section of nodes
- What is the worst case performance for IDA*?
- When does the worst case occur?

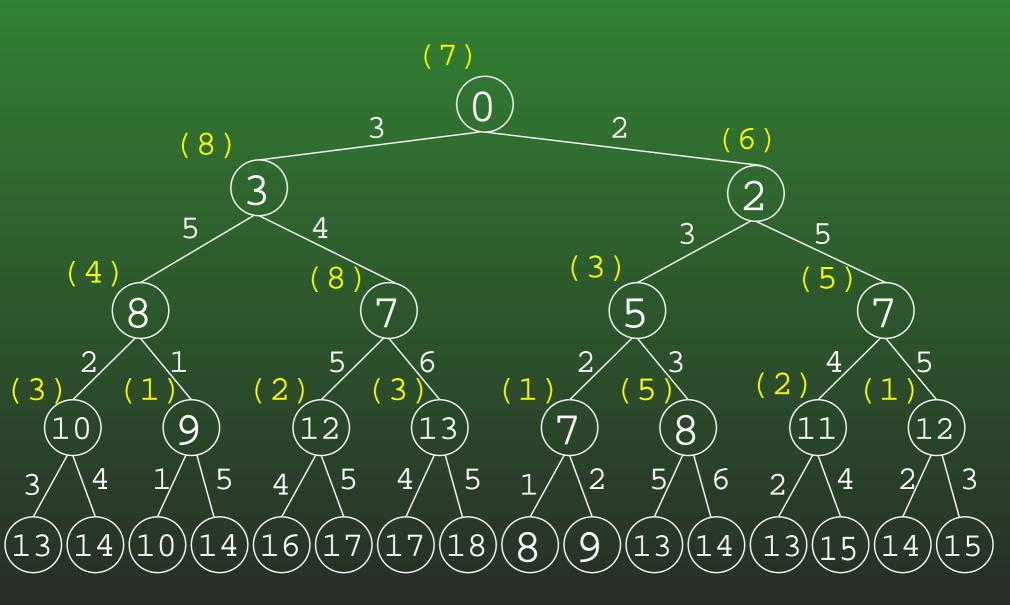
12-60: SMA*

- Run regular A*, with a fixed memory limit
- When limit is reached, discard node with highest f
- Value of discarded node is assigned to the parent
 - Use the discarded node to get a better f value for parent
 - 'remember' the value of that branch
 - If all other branches get higher f value, regenerate
- SMA* is complete and optimal
- Very hard problems can case SMA* to thrash, repeatedly regenerating branches

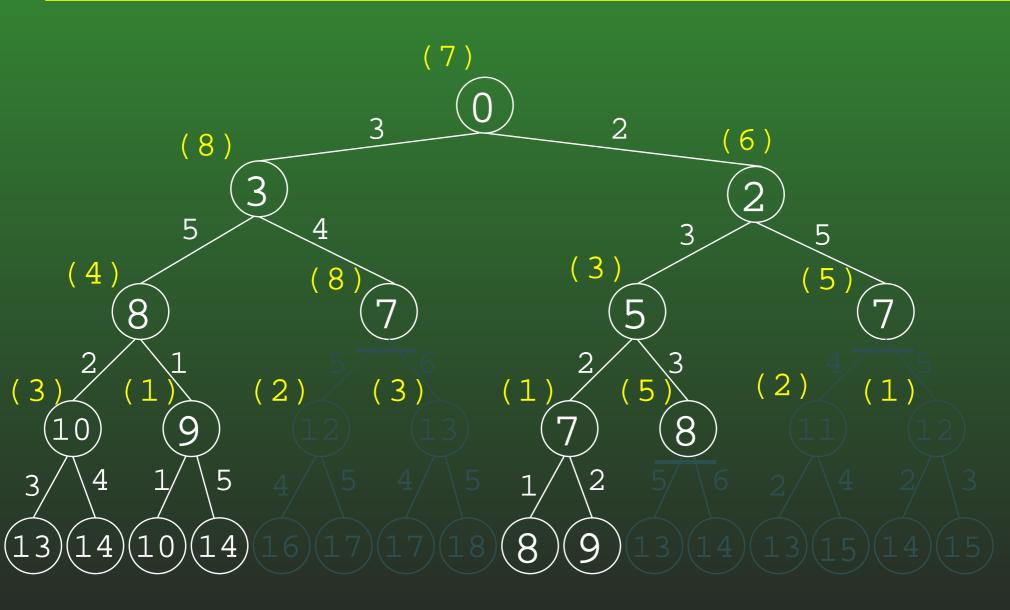
12-61: DFB&B

- Depth-First Branch and Bound
 - Run f-limited DFS, with limit set to infinity
 - When a goal is found, don't stop record it, and set limit to the goal depth
 - Keep going until all branches are searched or pruned.
- We will use something similar in 2-player games
- (DFB&B not in the text)

12-62: DFB&B



12-63: DFB&B



12-64: DFB&B

- What kinds of problems might Depth-First Branch and Bound work well for?
- Is DFB&B Complete? Optimal?
- How could we improve performance?

• What kinds of problems might Depth-First Branch and Bound work well for?

- Optimization: Finding a solution is easy, finding the best is hard (TSP)
- Is DFB&B Complete? Optimal?
 - If we can find a solution easily, it is complete and optimal
- How could we improve performance?
 - Examine children in increasing g() value

12-66: DFB&B

- Some nice features:
 - Quickly find a solution
 - Best solution so far gradually gets better
 - Run DFB&B until it finishes (we have an optimal solution), or we run out of time (use the best so far)

12-67: Building Effective Heuristics

- While A* is optimally efficient, actual performance depends on developing accurate heuristics.
- Ideally, h is as close to the actual cost to the goal (h*) as possible while remaining admissible.
- Developing an effective heuristic requires some understanding of the problem domain.

12-68: Effective Heuristics - 8-puzzle

- h_1 number of misplaced tiles.
 - This is clearly admissible, since each tile will have to be moved at least once.
- *h*₂ *Manhattan distance* between each tile's current position and goal position.
 - Also admissible best case, we'll move each tile directly to where it should go.
- Which heuristic is better?

12-69: Effective Heuristics - 8-puzzle

- h_2 is better.
 - We want h to be as close to h^* as possible.
- If $h_2(n) > h_1(n)$ for all n, we say that h_2 dominates h_1 .
- We would prefer a heuristic that dominates other known heuristics.

12-70: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
 - 8-puzzle:
 - Tile can be moved from A to B if:
 - A is adjacent to B
 - B is blank
 - Remove restriction that A is adjacent to B
 - Misplaced tiles
 - Remove restriction that B is blank
 - Manhattan distance

12-71: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
 - Romania path-finding
 - Add an extra road from each city directly to goal
 - (Decreases restrictions on where you can move)
 - Straight-line distance heuristic

12-72: Finding a heuristic

- So how do we find a good heuristic?
- Solve a relaxed version of the problem.
 - Traveling Salesman
 - Connected graph
 - Each node has 2 neighbors
 - Minimum Cost Spanning Tree Heuristic

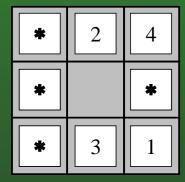
12-73: Finding a heuristic

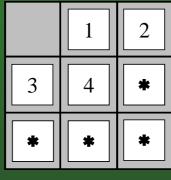
Solve subproblems

- Cost of getting a subset of the tiles in place (ignoring the cost of moving other tiles)
- Save these subproblems in a database (could get large, depending upon the problem)

12-74: Finding a heuristic

• Using subproblems





Start State

Goal State

12-75: Finding a heuristic

- Number of heurisitcs $h_1, h_2, \ldots h_k$
- No one heuristic dominates any other
 - Different heuristics have different performances with different states
- What can you do?

12-76: Finding a heuristic

- Number of heurisitcs $h_1, h_2, \ldots h_k$
- No one heuristic dominates any other
 - Different heuristics have different performances with different states
- What can you do?
 - $\bullet h(n) = \max(h_1(n), h_2(n), \dots h_k(n))$

12-77: Summary

- Problem-specific heuristics can improve search.
- Greedy search
- A*
- Memory limited search (IDA*, SMA*)
- Developing heuristics
 - Admissibility, monotonicity, dominance