
CS420-2011F-12 Artificial Intelligence 1

12-0: Artifical Intelligence

• AI in games is a huge field

• Creating a believable world

• Characters with their own appearnt goals and desires, especially in RPGs and open world games
• Opponents that seem to think and plan

• Simulating human players

• Chess players, FPS “bots”, strategy game opponents, etc

12-1: Most AI is Faked ...

• ... which in unsurprising, since mosteverything is faked, if possible

• Don’t need to have intelligent enemies, just need toappear intelligent

• Surprisingly large quantity is done with Finite State Machines

12-2: Finite state machines

• Each entity has a number of states, that represent behaviors

• Patrolling, advancing to a position, searching, running away, finding cover, etc

• Each behavior can be relatively simple

• Transitions between behaviors can be triggered by timers, scripting, “sensing” by entities, etc

12-3: Case Study: Stealth shooter

• Creating a stealth-based action game (Thief, Splinter Cell, Metal Gear Solid, etc)

• Patrol state (traversing between waypoints)

• Alerted state (simple search pattern)

• Attacking state (advance towards player, attack)

• Each behavior is relatively simple, well-managed transitions between them (especially scripted transitions) can
lead to very intelligent-seeming enemies. Add in some random audio cues, and the enemies can seem quite
smart ...

12-4: Pathfinding

• One aspect of tradional AI that is commonly used in games is pathfinding

• RTS units getting from home base to place they are attacking

• Enemies attacking player in a maze-style game

• Bots finding shortest route to powerups / other players / etc in FPSs

• First step: Simplifiying the problem

12-5: Pathfinding

• Navigating a real-life (or even complex simulated) enviornment is tricky

• Vastly simplify the search space, make it a standard CS-style graph



CS420-2011F-12 Artificial Intelligence 2

• Waypoint System

• Navigation Mesh

• 2D games (RTS, etc), can be easier – just use a grid

12-6: Pathfinding

• OK, so we’ve simplified the problem to searching for a path in a(potentially very complicated) graph

• Verticies (places AI can go)

• Edges (links between verticies, cost – often just a distance, can be mor complicated)

• How do we efficiently search the graph?

12-7: Breadth-First Search

• Examine all nodes that are 1 unit away

• Examine all nodes that are 2 units away

• . . .

• Examine all nodes that aren units away

(Examples)
12-8: Breadth-First Search

• A few more wrinkes:

• Searching a graph instead of a tree

• Get to the same node in more than one way

• Once we’ve found shortest path to a path to a node, don’t need to consider any other paths

12-9: Breadth-First Search

• Maintain two data structures

• “Open List” – search horizon

• “Closed list” – nodes we’ve already found the shortest path to, don’t need to examine again

12-10:Breadth-First Search

void BFS(Graph G, Vertex v) {

Queue Q = new Queue();
Closed = new ClosedList();

Q.enquque(v);
while (!Q.empty()) {

nextV = Q.dequeue()
if (v not in Closed)
{

Closed.Add(v);
forach (Vertex neighbor adjacent to v in G)

Q.enqueue(neighbor);
}

}
}

}

12-11:Breadth-First Search

• Problem #1 with BFS:



CS420-2011F-12 Artificial Intelligence 3

• Assumes uniform edge cost

• Not actually true with most graphs we will be searching

• Solution?

12-12:Best-first Search

• Uniform-cost search

• Store nodeand cost to get to node in queue

• Use a priority queue instead of a standard queue

• Always choose the cheapeast node to expand

• “Expand” means examine children of node

12-13:Uniform-Cost Search

• Uniform-Cost Pseudocode

enqueue(initialState)
do
node = prioroty-dequeue()
if (node not in closed list)

add node to closed list
if goalTest(node)

return node (potenially path as well)
else

children = successors(node)
for child in children

prioroty-enqueue(child, dist(child))

• dist is the cost of the path from the initial state to the child node

(EXAMPLES!) 12-14:Uniform-Cost Search

• Problem with Uniform cost search

• To find a goal that is 100 units away from the start, we examineall nodes that are 100 units away from the
start

• RTS example on board

• Make a minor change to Uniform cost serach, make it much more general

12-15:Best-First Search

enqueue(initialState)
do

node = prioroty-dequeue()
if (node not in closed list)

add node to closed list
if goalTest(node)

return node (potenially path as well)
else

children = successors(node)
for child in children

prioroty-enqueue(child, f(child))

• f(n) is a function that describes how “good” a node is

12-16:Best-first Search


