
Game Engineering: 2D
CS420-2013S-19

Introduction to Threading

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

19-0: Parallel Programming

Xbox has 3 cores, each of which has 2 hardware
threads

Of these 6 hardware threads, XNA programs have
access to 4

Let’s not let that processing power go to waste!

19-1: Thread vs. Process

Different processes contain their own stack,
address space, etc.

Different processes can only communicate through
some form of message passing

Processes tend to be loosly coupled

Easy example: Web browser and a word processor
running simultaneously on your system, different
processes

19-2: Thread vs. Process

Threads are much lighter weight than processes

Threads share the same address space

Communicate through shared memory

Tend to be more tightly coupled than processes

19-3: Threading in C#

Games that utilize parallelism are usually
multi-threaded

Main thread starts up the game, does initialization

Main thread starts subthreads to do additional
processing

19-4: C# Thread Basics

Thread class

Create an instace of this class, passing in the
function that the thread will run

Start the thread up, runs in parallel

19-5: C# Thread Basics

Thread Basics program (see Lecture Notes page
for code)

What does this output?

19-6: C# Thread Basics

Thread Basics program (see Lecture Notes page
for code)

What does this output?

Something like:

AAAAAAAAABBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBB

BBBBBBBBBBBBBBBAAABB

BBAAAAAAAAAAAAAAAAAABBBB

BBBBBBBBBBBBB

19-7: C# Thread Basics

All new threads need a function to start with

The Delegate for function to start thread is:

void ThreadStart()

Given any object, and any void method on that
object that takes no parameters, we can start a
thread to run that method

19-8: C# Thread Basics

class MyClass

{

...

void Method() { ... }

...

}

MyClass c = new MyClass();

Thread t = new Thread(new ThreadStart(c.Method));

t.Start();

19-9: C# Thread Basics

Examples using Delegate.cs

19-10: C# Thread Basics

class C {

int mRepeat = 5;

void Process() {

for (;mRepeat > 0; mRepeat--)

Console.Write("X");

}

}

...

C c1 = new C();

C c2 = new C();

Thread t1 = new Thread(c1.Process);

Thread t2 = new Thread(c2.Process);

t1.Start();

t2.Start();

19-11: C# Thread Basics

class C {

int mRepeat = 5;

void Process() {

for (;mRepeat > 0; mRepeat--)

Console.Write("X");

}

}

...

C c1 = new C();

Thread t1 = new Thread(c1.Process);

Thread t2 = new Thread(c1.Process);

t1.Start();

t2.Start();

19-12: C# Thread Basics

In the second example, the single variable
mRepeat is shared among both threads

Sharing data among threads is a powerful way for
threads to communicate, can lead to difficulties ...

19-13: Shared Memory

class Program {

public static int counter = 0;

static void increment() {

for (int i = 0; i < 1000; i++)

counter = counter + 1;

Console.WriteLine("Counter = " + counter.ToString());

}

public static void main(string[] args) {

Thread t1 = new Thread(increment);

Thread t2 = new Thread(increment);

Thread t3 = new Thread(increment);

Thread t4 = new Thread(increment);

t1.Start();

t2.Start();

t3.Start();

t4.Start();

}

}

19-14: Shared Memory

Since the commands in the previous example
could be interleaved in any way, we have no way of
knowing what will be printed out for each thread

Do we know anything about what the output will
be?

What about the last counter value that is printed
out?

19-15: Shared Memory

Alas, we don’t know very much at all about what
any of the print statements will be, including the
last one!

Look at the statement

counter = counter + 1;

First, the right-hand side of the statement is
evaluated

Next, the value is stored in counter

19-16: Shared Memory

Thread1 Thread2

Evaluate counter+1 (2)

Time Counter Value

 0 Evaluate counter+1 (1)

Set Counter = 1 1

 1

 2

 2

Set Counter = 2

Evaluate counter+1 (3)

Set Counter = 3

Evaluate counter+1 (4)

Set Counter = 4

 3

 3

 4

19-17: Shared Memory

Thread1 Thread2

Evaluate counter+1 (1)

Time Counter Value

 0 Evaluate counter+1 (1)

Set Counter = 1

 0

 1

 1

 1

Set Counter = 1

Evaluate counter+1 (2)

Set Counter = 2

Evaluate counter+1 (2)

Set Counter = 2

 1

 2

 2

19-18: Shared Memory

What if we change:

counter = counter+1

to:

counter++

19-19: Shared Memory

What if we change:

counter = counter+1

to:

counter++

Alas, still have the same problem

19-20: Thread Safety

A program or method is Thread Safe if it can be
called from multiple threads without unwanted
interaction between the threads.

A program or method that is not thread-safe will
potentially have different behavior each time you
run it

This kind of non-determinism is very, very bad

How can we make our code Thread safe?

19-21: Thread Safety

Most Thread-unsafe behavior comes from data
shared between threads

Thread1 move some data from memory to
register / cache

Thread2 changes the value of this memory
location

Thread1 writes a value back to the same
memory location

We could eliminate the problem by eliminating any
shared data between threads – but that’s not
practical

19-22: Locking

We need to prevent two different threads from
accessing the same data at the same time

Use Locks

19-23: Locking

Operating System mainains a token

Threads can ask for the token

If the token is available, the thread gets the
token

If not the thread blocks, and waits for the token
to become available

When a thread gives the token back, it
becomes available for other threads to use

19-24: Locking

To use a lock:

Before accessing a shared variable, first
acquire a lock

Do any calculation that you want to do

When you are done, give up the lock so that
other threads can accses the variable

19-25: Locking

class Program {

public static Object token = new Object();

public static int counter = 0;

static void increment() {

for (int i = 0; i < 1000; i++)

lock (token)

{

counter = counter + 1;

}

Console.WriteLine("Counter = " + counter.ToString());

}

public static void main(string[] args) {

Thread t1 = new Thread(increment);

Thread t2 = new Thread(increment);

Thread t3 = new Thread(increment);

Thread t4 = new Thread(increment);

t1.Start();

t2.Start();

t3.Start();

t4.Start();

}

19-26: Locking

When we run this program, the intermediate values
printed out for the counter will all be different – but
the last one will be 4000

Before any thread tries to access counter, it first
tries to get a token

If the token is available, it takes the token and
does its work

If the token is not available, it waits until the
token is available

No longer have any of the interleaving problems
that we did before

19-27: Locking

In order for Locking to work, acquiring a lock needs
to be an atomic operation

Can’t have two threads ask for a lock
simultaneously, and both get it

Fortunately, locks are atomic, and you don’t need
to worry too much about how they are
implemented, just that they work

19-28: Locking

Any object can be locked

We can have as many different locks as we like

Object(s) we are using as locks need not have any
relation to the data we are modifying

A lock is just a token source

19-29: Locking

Class Example: Locking & Tokens

19-30: Locking

What if you forget a lock?

19-31: Locking

class Program {

public static readonly Object token = new Object();

public static int counter = 0;

static void inc() { public static void inc2() {

for (int i = 0; for (int i = 0;

i < 1000; i < 1000;

i++) i++)

lock (token) {

{ counter = counter + 1;

counter = counter + 1; }

}

Console.WriteLine(counter);

}

public static void main(string[] args) {

Thread t1 = new Thread(inc);

Thread t2 = new Thread(inc);

Thread t3 = new Thread(inc2);

Thread t4 = new Thread(inc);

t1.Start();

t2.Start();

19-32: Locking

In order for locking to work properly, you need to
acquire a lock every time you want to access a
variable

Often be a good idea to acquire a lock, even if you
are just examining the value of a variable (why?)

19-33: Locking

In order for locking to work properly, you need to
acquire a lock every time you want to access a
variable

Often be a good idea to acquire a lock, even if you
are just examining the value of a variable (why?)

Some other thread may be currently modifying
the variable, might be in an in-between state

If you can acquire a lock, you know that no one
is currently modifying the variable → not in an
inconsistent state

19-34: What to Lock

In C#, any object can be used as a lock

Remember, a lock object is just a token source

Does not need to have any relation to the data
you are accessing

We can however, use the actual object we are
modifying as a lock object

19-35: What to Lock

class MyStack

{

int[] data;

int top;

void Push(int elem)

{

lock(this)

{

data[top++] = elem;

}

}

int Pop()

{

lock(this)

{

return data[--top];

}

}

}

19-36: What to Lock

We can use one token to lock a large group of
variables

An entire large data structure

We can to finer grained locks

Use a number of tokens to lock different pieces
of a larger data structure

What is the advantage of each kind of locking
strategy?

19-37: C# Collections

Most C# Collections are not thread safe

(Like the non-locked version of the stack
example)

Why not?

19-38: C# Collections

Most C# Collections are not thread safe

Incur locking cost (which is pretty small, 20ns)
even for non-parallel programs

Even if the structures themselves were
thread-safe, often still need to use locking
constructs

19-39: C# Collections

Even if myList was thread-safe, the following
would not be:

if (!myList.Contains(newItem))
myList.Add(nwItem)

19-40: C# Collections

Even if myList was thread-safe, the following
would not be:

if (!myList.Contains(newItem))
myList.Add(nwItem)

Solution: Wrap this access (and all other accesses
of myList inside a lock

If myList was thread-safe, duplicated effort.

19-41: Nested Locking

public static readonly lock1 = new Object();

static void run1()

{

lock(lock1)

{

lock(lock1)

{

// do something

}

}

}

Will only block a thread on the outermost lock

Why would you ever want to do nested locking?

19-42: Nested Locking

class Stack {

bool Empty()

{

lock(this)

{

return mTop == 0;

}

}

void Pop()

{

lock(this)

{

if (!Empty)

return Data[--mTop]

}

}

... (rest of class definition)

}

19-43: Deadlock

public static readonly lock1 = new Object();

public static readonly lock2 = new Object();

static void run1()

{

lock(lock1) {

Thread.Sleep(1000);

lock (lock2);

}

}

static void run2()

{

lock(lock2) {

Thread.Sleep(1000);

lock (lock1);

}

}

Thread t1 = new Thread(run1);

Thread t2 = new Thread(run2);

t1.Start(); t2.Start();

19-44: Deadlock

Dinining Philosophers

5 Philosophers sit around a table

Philosophers alternate between thinking and
eating

In order to eat, need to pick up both forks, eat,
put them down

19-45: Dining Philosphers

19-46: Dining Philosphers

19-47: Dining Philosphers

19-48: Dining Philosphers

19-49: Dining Philosphers

Potential Solution:

Try to pick up first fork
If not available, block

Try to pick up second fork
If not available, put down both forks, wait 5
minutes

19-50: Dining Philosphers

Everyone picks up left fork

Everyone tries to pick up right fork

None available

Everone puts down left fork, waits 5 minutes

Repeat

19-51: Dining Philosphers

Order the forks, 1 → 5

Each philosopher tries to pick up the smaller
numbered fork first.

If the first fork is successfully picked up, try the
second fork

Assuming that no philosopher dies mid meal, will
this work?

19-52: Thread Synchronization

What if you want all of your threads to syncronize

All frames to agree on what frame we’re
currently on

All frames to start each frame at the same time

19-53: AutoResetEvent

An AutoResetEvent is like a ticket turnstile

When closed, no one can get through

If you insert a ticket, the turnstile opens to let
exacty one person through, then closes again

Called “AutoReset” because of this automatic
closing (reseting) after someone has gone
through

19-54: AutoResetEvent

static EventWaitHandle waitHandle = new AutoResetEvent(false);

static void Main()

{

new Thread (Waiter).Start();

Thread.Sleep (1000);

waitHandle.Set();

}

static void Waiter()

{

Console.WriteLine ("Waiting...");

waithandle.WaitOne();

Console.WriteLine ("Notified");

}

19-55: AutoResetEvent

When we create an AutoResetEvent, we pass in a
boolean to note if we want the turnstile to start out
open (true) or closed (false)

Call Set() method to open the turnstile (putting in a
ticket)

Call WaitOne() method to wait for the turnstile to
be open

19-56: AutoResetEvent

When we call Set() on an AutoResetEvent, it stays
open until a thread goes through and closes it

Calling Set() on an open AutoResetEvent is a
no-op

19-57: AutoResetEvent

static EventWaitHandle waitHandle - new AutoResetEvent(false);

static void Main()

{

new Thread (Work).Start();

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

}

static void Work()

{

waitHandle.WaitOne();

Console.WriteLine("Step 1");

Thread.Sleep(3);

waitHandle.WaitOne();

Console.WriteLine("Step 2");

Thread.Sleep(3);

waitHandle.WaitOne();

Console.WriteLine("Step 3");

}

19-58: AutoResetEvent

static EventWaitHandle waitHandle - new AutoResetEvent(false);

static void Main()

{

new Thread (Work).Start();

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

}

static void Work()

{

waitHandle.WaitOne();

Console.WriteLine("Step 1");

Thread.Sleep(300);

waitHandle.WaitOne();

Console.WriteLine("Step 2");

Thread.Sleep(300);

waitHandle.WaitOne();

Console.WriteLine("Step 3");

}

19-59: AutoResetEvent

static EventWaitHandle waitHandle - new AutoResetEvent(false);

static void Main()

{

new Thread (Work).Start();

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

Thread.Sleep(100);

waitHandle.Set();

}

static void Work()

{

waitHandle.WaitOne();

Console.WriteLine("Step 1");

Thread.Sleep(100);

waitHandle.WaitOne();

Console.WriteLine("Step 2");

Thread.Sleep(100);

waitHandle.WaitOne();

Console.WriteLine("Step 3");

}

19-60: AutoResetEvent

Main thread signals worker thread several times

Don’t want to miss any of the signals

What can we do?

19-61: AutoResetEvent

Main thread signals worker thread several times

Don’t want to miss any of the signals

What can we do?

Hint: It’s OK for the main thread to wait on the
worker ...

19-62: 2-Way Signalling

Two AutoResetEvents

One for the worker thread, waiting for work to
be ready

One for the main thread, waiting for worker to
be done

19-63: 2-Way Signalling

static EventWaitHandle workerReady = new AutoResetEvent (false);

static EventWaitHandle workerGo = new AutoResetEvent (false);

static readonly object locker = new object();

static string message;

static void Main()

{

new Thread (Work).Start();

workerReady.WaitOne();

lock (locker) message = "First Message";

workerGo.Set();

workerReady.WaitOne();

lock (locker) message = "Second Message";

workerGo.Set();

workerReady.WaitOne();

lock (locker) message = "Third Message";

workerGo.Set();

workerReady.WaitOne();

lock (locker) message = null;

workerGo.Set();

}

19-64: 2-Way Signalling

static void Work()

{

while (true)

{

workerReady.Set();

workerGo.WaitOne();

lock (locker)

{

if (message == null)

return;

Console.WriteLine (message);

}

}

}

19-65: Producer/Consumer Queue

Main thread adds tasks to a task queue

One or more worker Threads pull tasks off the
queue

Code on website

	{small lecturenumber -	heblocknumber :} Parallel Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread vs. Processaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread vs. Processaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Threading in C#addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Safetyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Safetyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nested Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nested Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deadlockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deadlockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Synchronizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Producer/Consumer Queueaddtocounter {blocknumber}{1}

