Game Engineering: 2D
CS420-2013S-19
Introduction to Threading

Davi |

Department of Computer Science
University of San Francisco


http://www.cs.usfca.edu/galles

0-0: Parallel Programming

® Xbox has 3 cores, each of which has 2 hardware
threads

® Of these 6 hardware threads, XNA programs have
access to 4

® | et’'s not let that processing power go to waste!



9-1: 1hread vs. Process

® Different processes contain their own stack,
address space, etc.

® Different processes can only communicate through
some form of message passing

® Processes tend to be loosly coupled

® Fasy example: Web browser and a word processor
running simultaneously on your system, different
processes



9-2: Thread vs. Process

® Threads are much lighter weight than processes
 Threads share the same address space
 Communicate through shared memory
* Tend to be more tightly coupled than processes



0-3: 1hreading in C#

® (Games that utilize parallelism are usually
multi-threaded

® Main thread starts up the game, does initialization

® Main thread starts subthreads to do additional
processing




9-4: C#f Thread Basics

® Thread class

® Create an instace of this class, passing in the
function that the thread will run

® Start the thread up, runs in parallel



9-5: C#f Thread Basics

® Thread Basics program (see Lecture Notes page
for code)

® What does this output?



9-6: C#f Thread Basics

® Thread Basics program (see Lecture Notes page
for code)

® What does this output?
 Something like:

AAAAAAABBBBBEBBEBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBB
BBBEBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB
BBBBBBBEBBBBBEBBBEBBBBBBBBEBBBEBBBEBBBBBEBBBBAAAAAAAAAAAAAAAAAABBBB
BBBBBBBBBBB



9.7 C#f Thread Basics

® All new threads need a function to start with
® The Delegate for function to start thread is:
void ThreadStart ()

® (Given any object, and any void method on that
object that takes no parameters, we can start a
thread to run that method



9-8: C#f Thread Basics

ass MyClass
void Method() { ... }
Class ¢ = new MyClass();

read t = new Thread(new ThreadStart(c.Method));
Start();



9-9: C# Thread Basics

® Examples using Delegate.cs



9-10: C# Thread Basics

ass C {
int mRepeat = 5;
void Process() {
for (;mRepeat > 0O; mRepeat--)
Console.Write("X");

}
cl = new C();
c2 = new C();

read t1 = new Thread(cl.Process);
read t2 = new Thread(c2.Process);
.Start () ;
.Start () ;



9-11: C# Thread Basics

ass C {
int mRepeat = 5;
void Process() {
for (;mRepeat > 0O; mRepeat--)
Console.Write("X");

cl = new C();

read t1 = new Thread(cl.Process);
read t2 = new Thread(cl.Process);
.Start();

.Start () ;



9-12: C# Thread Basics

® |n the second example, the single variable
mRepeat IS shared among both threads

® Sharing data among threads is a powerful way for
threads to communicate, can lead to difficulties ...



0-13: Shared Memory

ass Program {
public static int counter = O0;
static void increment() {
for (int i = 0; i < 1000; i++)
counter = counter + 1;
Console.WriteLine("Counter = " + counter.ToString());
+
public static void main(string[] args) {
Thread t1 = new Thread(increment) ;
Thread t2 = new Thread(increment) ;
Thread t3 = new Thread(increment) ;
Thread t4 = new Thread(increment) ;
tl.Start();
t2.Start();
t3.Start();
t4.Start () ;



0-14: Shared Memory

® Since the commands in the previous example
could be interleaved in any way, we have no way of
knowing what will be printed out for each thread

® Do we know anything about what the output will
be?

® What about the /ast counter value that is printed
out?



0-15: Shared Memory

® Alas, we don’t know very much at all about what
any of the print statements will be, including the
last one!

® | ook at the statement

counter = counter + 1;

* First, the right-hand side of the statement is
evaluated

e Next, the value is stored in counter



0-16: Shared Memory

Count er Val ue Thr eadl Thr ead2

o) Eval uate counter+1 (1)

Set Counter =1
Eval uate counter+1 (2)

Set Counter = 2
Eval uate counter+1 (3)
Set Counter = 3
Eval uate counter+1 (4)
Set Counter = 4

A W OWDNDNPEP P




0-17: Shared Memory

Count er Val ue Thr ead1 Thread2
0 Eval uate counter+1 (1)
0 Eval uate counter+1 (1)
1 Set Counter =1
1 Set Counter =1
1 Eval uate counter+1 (2)
1 Eval uate counter+1 (2)
2 Set Counter = 2
2 Set Counter = 2




0-18: Shared Memory

® What if we change:

e counter = counter+1
® {0:

* counter++



0-19: Shared Memory

® What if we change:
e counter = counter+1

® {o:
e counter++

® Alas, still have the same problem



0-20: 1hread Safety

® A program or method is Thread Safe if it can be
called from multiple threads without unwanted
interaction between the threads.

® A program or method that is not thread-safe will

potentially have different behavior each time you
run it

e This kind of non-determinism is very, very bad
® How can we make our code Thread safe?



0-21: Thread Safety

® Most Thread-unsafe behavior comes from data
shared between threads

e Thread1 move some data from memory to
register / cache

 Thread2 changes the value of this memory
location

 Threadl writes a value back to the same
memory location

® We could eliminate the problem by eliminating any
shared data between threads — but that’s not

practical



0-22: LOCKing

® We need to prevent two different threads from
accessing the same data at the same time

® Use Locks



0-23: LOcking

® QOperating System mainains a token

® Threads can ask for the token

* |f the token is available, the thread gets the
token

e |f not the thread blocks, and waits for the token
to become available

* When a thread gives the token back, it
becomes available for other threads to use



0-24: Locking

® Jo use a lock:

* Before accessing a shared variable, first
acquire a lock

Do any calculation that you want to do

* When you are done, give up the lock so that
other threads can accses the variable



0-25: LOCKINg

ass Program {
public static Object token = new Object();
public static int counter = 0;
static void increment() {
for (int 1 = 0; i < 1000; i++)
lock (token)

{
counter = counter + 1;
}
Console.WriteLine("Counter = " + counter.ToString());

+

public static void main(string[] args) {
Thread t1 = new Thread(increment) ;
Thread t2 = new Thread(increment) ;
Thread t3 = new Thread(increment) ;
Thread t4 = new Thread(increment) ;
tl.Start();
t2.Start () ;
t3.Start();
t4.Start () ;



0-26: LOCKING

® When we run this program, the intermediate values
printed out for the counter will all be different — but
the last one will be 4000

® Before any thread tries to access counter, it first
tries to get a token

e |f the token is available, it takes the token and
does its work

e |f the token is not available, it waits until the
token is available

® No longer have any of the interleaving problems
that we did before



0-27: LOCKINg

® |n order for Locking to work, acquiring a lock needs
to be an atomic operation

e Can’t have two threads ask for a lock
simultaneously, and both get it

® Fortunately, locks are atomic, and you don’t need
to worry too much about how they are
iImplemented, just that they work



0-28: LOCKING

® Any object can be locked
® \We can have as many different locks as we like

® Object(s) we are using as locks need not have any
relation to the data we are modifying

* Alock is just a token source



0-29: LOCKINg

® Class Example: Locking & Tokens



0-30: Locking

® What if you forget a lock?



0-31: Locking

ass Program {
public static readonly Object token = new Object();

public static int counter = 0;

static void inc() { public static void inc2() {
for (int i = 0O; for (int i = Oy
i < 1000; i < 1000;
i++) i++)
lock (token) {
{ counter = counter + 1;
counter = counter + 1; }
}
Console.WriteLine(counter) ;
+

public static void main(string[] args) {
Thread t1 = new Thread(inc);
Thread t2 = new Thread(inc);
Thread t3 = new Thread(inc2);
Thread t4 = new Thread(inc);
tl.Start();



0-32: Locking

® |n order for locking to work properly, you need to
acquire a lock every time you want to access a

variable

® Often be a good idea to acquire a lock, even if you
are just examining the value of a variable (why?)



0-33: Locking

® |n order for locking to work properly, you need to
acquire a lock every time you want to access a
variable

® Often be a good idea to acquire a lock, even if you
are just examining the value of a variable (why?)

* Some other thread may be currently modifying
the variable, might be in an in-between state

* |f you can acquire a lock, you know that no one
IS currently modifying the variable — not in an
Inconsistent state



9-34: What to Lock

® |n C#, any object can be used as a lock
* Remember, a lock object is just a token source
* Does not need to have any relation to the data
you are accessing

® \We can however, use the actual object we are
modifying as a lock object



9-35: What to Lock

ass MyStack

int[] data;
int top;

void Push(int elem)

{
lock(this)
{
data[top++] = elem;
+
}
int Pop()
{
lock(this)
{
return datal[--topl];
}



9-36: What to Lock

® We can use one token to lock a large group of
variables

* An entire large data structure

® We can to finer grained locks
 Use a number of tokens to lock different pieces
of a larger data structure

® What is the advantage of each kind of locking
strategy?



9-37: C# Collections

® Most C# Collections are not thread safe

* (Like the non-locked version of the stack
example)

® Why not?



9-38: C# Collections

® Most C# Collections are not thread safe

* |Incur locking cost (which is pretty small, 20ns)
even for non-parallel programs

e Even if the structures themselves were
thread-safe, often still need to use locking
constructs



9-30: C# Collections

® Even if myList was thread-safe, the following
would not be:

f (!myList.Contains(newItem))
myList.Add(nwltem)



9-40: C# Collections

® Even if myList was thread-safe, the following
would not be:

f (!myList.Contains(newItem))
myList.Add(nwltem)

® Solution: Wrap this access (and all other accesses
of myList inside a lock

® |f myList was thread-safe, duplicated effort.



0-41: Nested Locking

blic static readonly lockl = new Object();
atic void runi()

lock(lockl)

{
lock(lockl)

{
// do something

}

® Will only block a thread on the outermost lock
®* Why would you ever want to do nested locking?



0-42: Nested Locking

ass Stack {
bool Empty()

{
lock(this)

{

return mTop == 0;

}
void Pop()

{
lock(this)

{
if (!Empty)

return Data[--mTop]

. (rest of class definition)



9-43: Deadlock

blic static readonly lockl
blic static readonly lock2

atic void runi1()

lock(lockl) {
Thread.Sleep(1000) ;
lock (lock2);

atic void run2()

lock(lock?2) {
Thread.Sleep(1000) ;
lock (lockl);

read t1 = new Thread(runl);

read t2 = new Thread(run2);

.Start(); t2.Start();

new Object();
new Object();



9-44: Deadlock

® Dinining Philosophers
* 5 Philosophers sit around a table

* Philosophers alternate between thinking and
eating

* |In order to eat, need to pick up both forks, eat,
put them down



0-45: DiNing Philosphers

@*Q e

—E

O w O



0-46: DiNing Philosphers

-
O
O 4= DC

ANO O

e C



0-47: Dining Philosphers



0-48: Dining Philosphers




0-49: Dining Philosphers

® Potential Solution:

* Try to pick up first fork
- If not available, block
* Try to pick up second fork

- If not available, put down both forks, wait 5
minutes



0-50: DiNning Philosphers

® Everyone picks up left fork

® Everyone tries to pick up right fork
* None available
* Everone puts down left fork, waits 5 minutes

® Repeat



o-51: Dining Philosphers

® Order the forks, 1 — 5

® Fach philosopher tries to pick up the smaller
numbered fork first.

® |f the first fork is successfully picked up, try the
second fork

® Assuming that no philosopher dies mid meal, will
this work?



0-52: 1hread Synchronization

® What if you want all of your threads to syncronize

e All frames to agree on what frame we're
currently on

e All frames to start each frame at the same time



9-53: AUtOResetEvent

® An AutoResetEvent is like a ticket turnstile
* When closed, no one can get through

* |f you insert a ticket, the turnstile opens to let
exacty one person through, then closes again
- Called “AutoReset” because of this automatic
closing (reseting) after someone has gone
through



9-54: AUtOResetEvent

atic EventWaitHandle waitHandle = new AutoResetEvent(false);

atic void Main()

new Thread (Waiter).Start();
Thread.Sleep (1000);
waitHandle.Set();

atic void Waiter()
Console.WriteLine ("Waiting...");

waithandle.WaitOne() ;

Console.WriteLine ("Notified");



9-55: AUtOResetEvent

® When we create an AutoResetEvent, we pass in a
boolean to note if we want the turnstile to start out

open (true) or closed (false)

® Call Set() method to open the turnstile (putting in a
ticket)

® Call WaitOne() method to wait for the turnstile to
be open



9-56: AUtOResetEvent

® When we call Set() on an AutoResetEvent, it stays
open until a thread goes through and closes it

® Calling Set() on an open AutoResetEvent is a
no-op



9-57: AUtOResetEvent

atic EventWaitHandle waitHandle - new AutoResetEvent(false);

atic void Main()

new Thread (Work).Start();
waitHandle.Set () ;
Thread.Sleep(100) ;
waitHandle.Set();
Thread.Sleep(100);
waitHandle.Set();

atic void Work()

waitHandle.WaitOne();
Console.WriteLine("Step 1");
Thread.Sleep(3);
waitHandle.WaitOne() ;
Console.WriteLine("Step 2");
Thread.Sleep(3);
waitHandle.WaitOne() ;
Console.WriteLine("Step 3");



9-58: AUtOResetEvent

atic EventWaitHandle waitHandle - new AutoResetEvent(false);

atic void Main()

new Thread (Work).Start();
waitHandle.Set () ;
Thread.Sleep(100) ;
waitHandle.Set();
Thread.Sleep(100);
waitHandle.Set();

atic void Work()

waitHandle.WaitOne();
Console.WriteLine("Step 1");
Thread.Sleep(300) ;
waitHandle.WaitOne() ;
Console.WriteLine("Step 2");
Thread.Sleep(300) ;
waitHandle.WaitOne() ;
Console.WriteLine("Step 3");



9-50: AUtOResetEvent

atic EventWaitHandle waitHandle - new AutoResetEvent(false);

atic void Main()

new Thread (Work).Start();
waitHandle.Set () ;
Thread.Sleep(100) ;
waitHandle.Set();
Thread.Sleep(100);
waitHandle.Set();

atic void Work()

waitHandle.WaitOne();
Console.WriteLine("Step 1");
Thread.Sleep(100) ;
waitHandle.WaitOne() ;
Console.WriteLine("Step 2");
Thread.Sleep(100) ;
waitHandle.WaitOne() ;
Console.WriteLine("Step 3");



9-60: AUtOResetEvent

® Main thread signals worker thread several times
® Don’'t want to miss any of the signals
® What can we do?



9-61: AUtOResetEvent

® Main thread signals worker thread several times
® Don’'t want to miss any of the signals

® \What can we do?

e Hint: It’'s OK for the main thread to wait on the
worker ...



0-62: 2-Way Signalling

® Two AutoResetEvents

* One for the worker thread, waiting for work to
be ready

* One for the main thread, waiting for worker to
be done



0-63: 2-Way Signalling

static EventWaitHandle workerReady = new AutoResetEvent (false);
static EventWaitHandle workerGo = new AutoResetEvent (false);
static readonly object locker = new object();

static string message;

static void Main()

{
new Thread (Work).Start();
workerReady.WaitOne() ;
lock (locker) message = "First Message";
workerGo.Set () ;
workerReady.WaitOne () ;
lock (locker) message = "Second Message";
workerGo.Set () ;
workerReady.WaitOne() ;

lock (locker) message
workerGo.Set () ;

"Third Message";

workerReady.WaitOne () ;
lock (locker) message = null;
workerGo.Set () ;



0-64: 2-Way Signalling

static void Work()
{
while (true)
{
workerReady.Set () ;
workerGo.WaitOne() ;
lock (locker)
{
if (message == null)
return;

Console.WriteLine (message) ;

}



9-65: Producer/Consumer Queue

® Main thread adds tasks to a task queue

® One or more worker Threads pull tasks off the
queue

® Code on website



	{small lecturenumber -	heblocknumber :} Parallel Programmingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread vs. Processaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread vs. Processaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Threading in C#addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Thread Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Shared Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Safetyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Safetyaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What to Lockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Collectionsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nested Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Nested Lockingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deadlockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Deadlockaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dining Philosphersaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Thread Synchronizationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} AutoResetEventaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} 2-Way Signallingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Producer/Consumer Queueaddtocounter {blocknumber}{1}

