Game Engineering: 2D
CS420-20135-18
Spatial Data Structures

Davi |

Department of Computer Science
University of San Francisco

http://www.cs.usfca.edu/galles

3-0: First-Pass Collision

® We now know how to to pairwise collision
e Fast, less accurate AABB collision
e Slower pixel-by-pixel or separating axis
® Which elements do we compare?

s-1: First-Pass Collision

® Which elements do we compare?
e Brute force

foreach (WorldObject o in mElements)
foreach (WorldObject other in mElements)
if (collide(o, other))

handle collision

e Error!

3-2: First-Pass Collision

® Which elements do we compare?
e Brute force

foreach (WorldObject o in mElements)
foreach (WorldObject other in mElements)
if (other != o && collide(o, other))

handle collision

e Correct, can make it slightly more efficient ...

3-3: First-Pass Collision

® Which elements do we compare?
e Brute force

for (i = 0; i < mElements.Count; i++)
for (k = i+1; k < mElements.Count; k++)
if collide(mElements[i], mElements[k])

handle collision

* Running time still ©(n?), not practical for large
1.

s-4: First-Pass Collision

® How can we do better?

8-5: Grid

® Separate world into a grid
 Each grid element stores a list of all elements
at that grid location

® To do collision, you only need to look at the
elements in the same grid location

s-6: Grid

O

O

roblems with this approach?

s-7: Grid

O

O

lements can overlap grid entries.

s-8: Grid

® |f:
 Each world element is smaller than a grid
o [VE=I(=
 Each world element is stored in the grid square
that contains the center of the object

® Given an object o in our world, how do we
determine which elements to we need to check

against o for intersection / collision?

s-9: Grid

s-10: Grid

s-11: Grid

3-12: Grid

3-13: Grid

® Object o is stored at grid location |z, y|
* Need to consider 6 grid locations for
intersection
0 = Ly — 1]7 [ZIL’,y i 1]7 [ZC—I— 1ay i 1]
N 7y]7 [QZ’,]7 [ZE - 17y]

s-14: Grid

® |mplementation Detalls
* Pick a grid size, make all grid elements the
same size
e 2D array of lists, each list stores elements in
that grid element
* Finding the grid location of an object is easy
(how would you do it?)

* As objects move around in the world, may need
to change grid locations

3-15: Grid

® |mplementation Detalls

* Don't want to be allocating / deallocating all of
the time if you don’t need to (especially with

XNA — allocating & deallocating forces garbage
collection)

* Lists should be lightweight (arrays are likely a
good idea) — If you have enough memory, each
cell location can have a fixed array size. (May
need to deal with overflow — either per-grid cell,
or as a global overflow list)

* |f arrays are unordered, adding and removing
elements is fast (how?)

s-16: Grid

® |mplementation Detalls

* Don't want to be allocating / deallocating all of
the time if you don’t need to (especially with
XNA — allocating & deallocating forces garbage
collection)

* Moving an element from one grid cell to another
can be done quickly, assuming each grid cell
doesn’t hold too many elements (how would
you do it?)

3-17: Grid

® Problems with this method?

s-18: Grid

® Problems with this method?

e Large objects require large grid sizes, may
need to check large number of elements to do
collision
- If large elements are static (big platforms,

etc) we can special case them — split them
iInto smaller objects, place them in several
grid locations, etc

* Big, sparse worlds require large (mostly empty)
grids

® Solution: Use non-uniform grid sizes, dependent
upon actual objects in our world.

3-19: Quadtree

3-20: Quadtree

® [ree data structrue
* Root of the tree represents the entire world

* Four subtrees, one for each quadrant of the
"elgle

 Each quadrant can be divided into 4 as well

3-21: Quadiree

3-22: Quadiree

N
N\

3-23: Quadtree

® Quick question: How would you extend this to 3D?

s-24: Octree

® Quick question: How would you extend this to 3D?
* Region of space is a cube instead of a square
e Divide cube into 8 subcubes
* Resultis an Octree

3-25: Octree

3-26: Quadtree

® Back to Quadtrees:
 Many different variants of Quadtrees

* We will be covering a specific varient that
stores AABB regions.

* Operations will be inserting an AABB, finding all
elements that intersect a given AABB, and
moving / resizing an AABB

3-27: Quadtree

® Quadtree definition:

e Each non-empty node in the quadtree stores:
- List of all regions stored at that node
« Four children, which divide the region into 4
equal quadrants

3-28: Quadtree

® Regions are stored in the lowest possible node In
which they can be completely contained (up to a
maxumum tree depth)

3-20: Quadtree

__

3-30: Quadtree

3-31: Quadtree

3-32: Quadtree

3-33: Quadtree

[N

[\

L]

3-34: Quadtree

AR

L]

L]

| 1]

| 1]

[\

3-35: Quadtree

AR

L]

L]

| 1]

| 1]

[\

3-36: Quadtree

ANRE

N
[1] /_» j
| //

3-37: Quadtree

[|

3-38: Quadtree

® Maximum Depth
 We may specify a maximum depth for our
quadtree

* Prevents creating a huge number of
iIntermediate nodes for very small objects

* We would need to tune the maximum depth for
our particular application

3-30: Quadtiree

////'DE Maxi mum Depth = 3

Inserting
El enent |

__

3-40: Quadtree

Ol Doesn’t overl ap, Maxi mum Depth = 3
but at maxi num dept h

‘_,//
"""" TN

s-41: Quadtree

£

No Maxi mum Dept h

s-42: Quadtree

® Implementation: Each Quadiree node stores:

* Area covered by this node (Rectangle, requires
2 points (or 4 numbers))

e List of all elements stored in this node
* Four child pointers (any of which could be null)

e Parent pointer
- Don’t need for inserting / finding elements
- Come in handy for moving, resizing elements

3-43: Quadtree

ont Pol nt er

tree regi ons
(Rect ange)
// \/ \/ \\\

Child Poilnters

s-44: Quadtree

blic class WorldElem

public Rectangle AABB { get { ... } }
// Other stuff

blic class QuadtreeNode

public
public
public
public
public
public
public

Rectangle Area { get; set; }
ArraylList<WorldElem> mWorldElems;

QuadtreeNode
QuadtreelNode
QuadtreeNode
QuadtreelNode
QuadtreeNode

Parent { get; set; }

UpperLeft { get; set; }
UpperRight { get; set; }
LowerLeft { get; set; }
LowerRight { get; set; }

s-45: Intersecting

® How would you create a list of all elements that
intersect a particular region?

id Intersect(QuadtreeNode t, Rectangle region,

ref ArrayList<WorldElem> intersecting)

s-46: Intersecting

® Quadtrees are recursive data structures,
manipulate them with recurisve functions

* Base case for finding intersections?
e Recursive case for finding intersection?

s-47: Intersecting

® Base case for finding intersections:
 Empty tree — no intersections

® Recursive case for finding intersection:
e Everything at the root node that intersects the
query region
* Plus result of recursive call to each of the 4
quadrants that intersect the query region

3-48: Quadtree

id Intersect(QuadtreeNode t, Rectangle region,

ref ArrayList<WorldElem> intersecting)

if (t !'= null)

{

foreach (WorldElem elem in t.mWorldElems)
{
if elem overlaps with region

intersecting.Add(elem) ;

¥

if (region overlaps upper left quadrant of t.Area)
Intersect(t.UpperLeft, region, ref intersecting)

if (region overlaps upper right quadrant of t.Area)
Intersect(t.UpperRight, region, ref intersecting)

if (region overlaps lower left quadrant of t.Area)
Intersect(t.LowerLeft, region, ref intersecting)

if (region overlaps lower right quadrant of t.Area)

Intersect(t.LowerRight, region, ref intersecting)

3-49: Quadtree

® We used a ref parameter to give the output
 Why not return the list as a return value?
 Why not use an out parameter?

3-50: Quadtree

rayList<WorldElem> Intersect(QuadtreeNode t, Rectangle region)

if (t != null)
{
ArrayList<WorldElem> intersecting = new ArrayList<WorldElem>() ;
if (region overlaps upper left quadrant of t.Area)
intersecting.AddRange (Intersect (t.UpperLeft, region));
if (region overlaps upper right quadrant of t.Area)
intersecting.AddRange (Intersect (t.UpperRight, region));
if (region overlaps lower left quadrant of t.Area)
intersecting.AddRange (Intersect(t.LowerLeft, region));
if (region overlaps lower right quadrant of t.Area)
intersecting.AddRange (Intersect (t.LowerRight, region));
foreach (WorldElem elem in t.mWorldElems)
{
if elem overlaps with region
intersecting.Add(elem) ;

¥

return intersecting();

3-51: QuUadtree

rayLi st <Wor | dEl en> | ntersect (QuadtreeNode t,

if (t '=null)

{

ArraylLi st <Wor |l dEl en> i ntersecting = new ArrayLi st <Wor | dEl en»() ;

I f (region overlaps upper |eft quadrant of t.Area)
i ntersecti ng. AddRange(| ntersect (t. UpperlLeft, region));
I f (region overl aps upper right quadrant of t.Area)

I ntersecti ng. AddRange(I ntersect (t. UpperRi ght, region));

If (region overlaps |ower |eft quadrant of t.Area)
I ntersecti ng. AddRange(I ntersect(t.LowerLeft, region));
If (region overlaps |ower right quadrant of t.Area)

i ntersecti ng. AddRange(I ntersect(t. LowerRi ght, region));

foreach (WrldElemelemin t.mArl| dEl ens)

I f elemoverlaps with region
i ntersecting. Add(el em ;
}

return intersectina();

el se return new List<Wrl dEl en»(0);

Rect angl e regi on)

May create
new heap nenory

Sonewhat expensi ve

3-52: Quadtree

Doesn’t compile (why?)
id Intersect(QuadtreeNode t, Rectangle region,

out ArrayList<WorldElem> intersecting)

if (t !'= null)
{
foreach (WorldElem elem in t.mWorldElems)
{
if elem overlaps with region

intersecting.Add(elem) ;

if (region overlaps upper left quadrant of t.Area)
Intersect (t.UpperLeft, region, ref intersecting)
if (region overlaps upper right quadrant of t.Area)
Intersect (t.UpperRight, region, ref intersecting)
if (region overlaps lower left quadrant of t.Area)
Intersect(t.LowerLeft, region, ref intersecting)
if (region overlaps lower right quadrant of t.Area)

Intersect (t.LowerRight, region, ref intersecting)

3-53: Quadtree

® How do you insert something into a quadtree?
e Base case / Recursive case

3-54: QuUadtree

® Wha is the base case — when is it easy to insert an
element?

e Empty tree is not a base case! (why not?)

3-55: Quadtree

® Wha is the base case — when is it easy to insert an
element?

 Empty tree is not a base case! (why not?)
- If the tree is empty, may still need to build a
great number of tree nodes

3-56: QuUadtree

3-57: QuUadtree

3-58: Quadtree

| []

3-50: Quadtree Insertion

® Base case:

5-60: Quadtree Insertion

® Base case:

* Object you are inserting does not fit completely
In one of the subguadrents of the current node,
or we are already at maximum depth

* Add object to the root list

s-61: Quadtree Insertion

® Recursive Case:

5-62: Quadtree Insertion

® Recursive Case:

e Object you are inserting does fit completely in
one of the subqgquadrents of the current node,
not at maximum depth

* Add object to the appropriate subtree
* May need to create a new subtree

3-63: Quadtree Moving

® How can you move an element stored in a
quadtree?

e (Thatis, when you move an element, how can
you efficiently update its position in the
quadtree?)

® Assume that you have:

* A pointer to the object whose AABB has
changed

* A poiner to the quadtree node where this
element lives

s-64: Quadtree Moving

® |f the element is still in the correct location, do
gleligllale

* How do you know that the element is currently
in the correct location?

s-65: Quadtree Moving

® |f the element is still in the correct location, do
gleligllale

* How do you know that the element is currently

in the correct location?

- The AABB of the relocated node still fits
within the region of the node where it lives

- The AABB of the relocated node does not fit
completely within the region of any of the 4
quadrants (or the current node is already at
the maximum depth)

s-66: Quadtree Moving

® |f the element is not at the correct location, where
could it be, relative to the node where it currently
lives?

s-67: Quadtree Moving

s-68: Quadtree Moving

..

s-69: Quadtree Moving

s-70: Quadtree Moving

s-71: Quadtree Moving

................

s-72: Quadtree Moving

................................

s-73: Quadtree Moving

® \When an element has moved ...

s-74: Quadtree Moving

® \When an element e has moved from the note t:
e Remove element from the list at node t

 While t doesn’t contain e
- t =1.parent
 While e fits completely within one of the 4
quadants of t:
- t =t.quadrant // quadrant that e fits
completely inside

e [nserteinlist att

s-75: Quadtree Moving

® \When an element e has moved from the note t:
e Remove element from the list at node t

e \WWhile t doesn’t contain e
- 1 =t.parent

e |nsert e into tree rooted at t

s-76: Quadtree Moving

® What if the AABB for an object doesn’t just move,
but changes

* Object rotates, for insance

s-77: Quadtree Moving

® What if the AABB for an object doesn’t just move,
but changes

* Object rotates, for insance

® Exact same code will work
* Move up until you reach a node that completely
contains the object
* Move down until you reach a node that just
barely contains the object (won't fit in any
children of node)

s-78: Quadtree Moving

® Moving nodes may create empty subtrees
* Tiny object moves across the entire world

® Should we clean up the tree, removing unused
nodes?

s-79: Quadtree Moving

® Moving nodes may create empty subtrees
* Tiny object moves across the entire world
® Should we clean up the tree, removing unused
nodes?
* |t depends!

s-80: C# Memory Management

® C# Uses garbage collection

® Running garbage collection in the middle of a
frame can slow things down

® How can you prevent the garbage collector from
running?

s-81: C# Memory Management

® C# Uses garbage collection

® Running garbage collection in the middle of a
frame can slow things down

® How can you prevent the garbage collector from
running?
 Don't call new!

® |f we never remove parts of the tree, eventually the
tree will be complete, no more calls to new

s-82: Quadtree Memory

® |f we never remove empty subtrees when elements
move, eventually the tree will be complete

* No more calls to new — no garbage collection!
® Could also “Prefill” the tree
® Problems with this method?

s-83: Quadtree Memory

® |f we never remove empty subtrees when elements
move, eventually the tree will be complete

* No more calls to new — no garbage collection!
® Could also “Prefill” the tree

® Problems with this method?
e Could use too much memory
e Solution: Limit depth of the tree

	{small lecturenumber -	heblocknumber :} First-Pass Collisionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} First-Pass Collisionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} First-Pass Collisionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} First-Pass Collisionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} First-Pass Collisionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Gridaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Octreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Octreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intersectingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intersectingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Intersectingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtreeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Insertionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Insertionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Insertionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Insertionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Movingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Memory Managementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} C# Memory Managementaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Memoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Quadtree Memoryaddtocounter {blocknumber}{1}

