CS420-2010F-02 Intro to CSharp 1

02-0: C++ v. Java

e We will be coding in C# for this class
e Javais very similar to C#, with some exceptions:

e Minor, syntactic differences
e Performance optimizations in C#
e Static compilation vs. virtual functions

02-1: Hello World in C#

e Other than output library differences, and Main startinthva capital “M”, C# and Java “Hello World” are the
same

class Hello
public static void Miin(string[] args)
Consol e. WiteLine("Hello Wrld!'");

}
02-2: Compilaition Units

e Java:

e Each class is in its own file
e Class name == file name
e Can have main in each class for testing

o C#

e Many classes in each file
e Can be named anything
e Can have Main in each class for testing
e But, at compile time, need to specify which Main to use

02-3: Compilaition Units Program MyProgram.cs

class CL
{

public static void Main(string args[])

System Consol e. WiteLine("In C1");
}

class @2
public static void Main(string args[])
System Consol e. Wi teLine("In C2");

}

02-4: Compilation Unit

% csc. exe /main: CL myProgram cs
% csc. exe /main: C2 myProgram cs

02-5: Inheritance Syntax

e C# uses C++-style inheritance syntax:

CS420-2010F-02 Intro to CSharp

class Point

/1 Body of Point

class Crcle : Point

/1 Body of Circle

02-6: C# Inheritance
e Like Java, single inheritance only
¢ Also like java, can implement multiple interfaces

e Most of the gains of multiple inheritance
e Don't have the downsides of multiple inheritance (what aey®)

02-7: Inheritance Syntax

e Use the same syntax for inheriting and implementing inter$a

e By convention, interface names start with “1”

class MySubCl ass : MySuperC ass, | Conparabl e

/1 Body of Point

class Crcle : Point

/1 Body of Circle

02-8: Inheritance Syntax

e Advantange of Java synatx over C# syntax for inheritanceleémenting interfaces?

e Why does C# use the syntax that it does?
02-9: Namespaces

e You're using a large library of code in your project
e You define a new class “foo”
e The class “foo” already in the library
e Oops!
e What can you do?

02-10: Namespaces

e You're using a large library of code in your project
e You define a new class “foo”

e The class “foo” already in the library

e What can you do?

e Create long names for each of your classes
e Namespaces!

CS420-2010F-02 Intro to CSharp 3

02-11:Namespaces

e Enclose your class in a namespace

nanespace <nane>

/'l class definition

}

02-12:Namespaces

namespace Geom {

class Point

{
public Point(float initialX =0, float initialY=10) { ... }
public float GetX() { ... }
public float GetY() { ... }
public void SetX(float newX) { ... }
public void SetY(float newy) { ... }

public void Print();
private float x;
private float y;

}
}

02-13:Namespaces

e Any class defined within the namespace “foo” can access drgr atass defined within the same namespace
(even from different files)

¢ Outside the namespace, you can access a class in a diffareaspace using the synteamanespace>. <cl assnanme>

02-14:Namespaces
nanespace Geom

class Rectangl e
public Rectangle(float x1, float yl, float x2, float y2);
public Point GetUpperleft();
public Point GetLowerRight();

private Point nUpperLeft;
private Point miowerRight;

02-15:Namespaces

class Rectangle
{
public:
Rectangl e(float x1, float yl1, float x2, float y2);
Geom Poi nt Get Upperleft();
Geom Poi nt Get Lower Ri ght () ;
private:
Geom Poi nt mpper Left;
Geom Poi nt mLower Ri ght ;
}

02-16: More Namespaces

e Namespaces can nest

nanespace foo {
nanespace bar {
class Myclass { ... }

}

cl ass Mycl ass?2

{

CS420-2010F-02 Intro to CSharp 4

public bar.Mcl ass c;

}
}

f 0o. bar. Mycl ass x;
02-17:"Using” Namespaces

e Many of the standard objects (Object, String) are in the&@ystamespace
e System.String, System.Object

e UsingSyst em everywhere can get a little cumbersome

e We certainly don’t want to put our code in the System nameslpac

e using to the rescue

02-18:“Using” Namespaces

using System
cl ass Exanple
public static void main(String args[])

Consol e. Witeline("Hello Wrld");
}
}

using M crosoft. Xna. Franewor k;

using M crosoft. Xna. Franewor k. St or age;
using M crosoft. Xna. Franework. | nput ;
using M crosoft. Xna. Franewor k. Cont ent ;
using M crosoft. Xna. Franewor k. G aphi cs;

Il Code can use classes/etc defined in each
/1 nested nanespace

02-19: Namespaces

e C# Namespaces are very similar to C++ namespaces
e Somewhat similar to Java packages

e Java packages require mirrored directory structure
e No such requirement for C# (or C++) namespaces
e In general, C# (and C++) don'’t require any relationship leemfilenames and filepaths (unlike Java)

02-20: Access Directives

e public: Anyone can access
e private: Can only be accessed within class
e protected: Like C++ protected, can be accessed within #esand within subclasses

e internal: Like java protected, can be accessed within thgscland from any class within the same assembly.

Defaut == private
02-21: Stack vs. Heap

e Java:

CS420-2010F-02 Intro to CSharp 5

e Primitives (int, float, boolean) are stored on the stack
e Complex data structures (arrays, classes) are stored tredpe

o C#

e Primatives are stored on the stack
e strucs are stored on the stack
e Classes are stored on the heap

02-22: C# structs

e A C# struct is similar to a class, with a few exceptions:

e Structs are stored on the stack

e Default constructor “zeroes out” all fields — can’t overritie default constructoc&nwrite a consructor
that takes arguments)

e No inheritance for structs

e Even though you call new to “create” structs, they are notastbon the heap Calling new on a struct
just calls the constructor on memory already allocated erstack

02-23: C# structs

struct SPoi nt
public SPoint(int x, int y)

this.x = x;
thix.y =vy;

public int x;
public int vy;

class CPoi nt

{
public CPoint(int x, int y)

public int x;
public int vy;
}

02-24: C# structs

o Difference between SPoint and CPoint

e SPoints are stored on the stack, CPoints stored on the heap

e SPoints are passed by value (entire structure is copied)in@Pare called by reference (just a pointer is
passed)

e Can't Inherit from SPoint (can from SClass)

02-25: C# structs

class Test

{

static void incrementX(SPoint p)

{
p. X++;

static void increnentX(CPoint p)

p. X++;

public static void Main(String args[])

SPoi nt pl = new SPoint(1,1);
CPoi nt p2 = new CPoint(1,1);
increment (pl); increnent(p2);
/1 Value of pl.x? p2.x?

CS420-2010F-02 Intro to CSharp 6

02-26: C# structs

e We can control the exact layout of fields in a C# struct

e Even have fields overlap (C unions)

using System Runti ne. | nteropServices;
[Struct Layout (Layout Ki nd. Explicit)]
struct TestUnion
{

[FieldOffset(0)]

public int intValue;

[FieldOffset(0)]

publi c doubl e doubl eVal ue;

[Fiel dof fset (0)]

public char charVal ue;

}

02-27: C# structs

e We can control the exact layout of fields in a C# struct

e Even have fields overlap (C unions)

using System Runti ne. | nteropServices;
[Struct Layout (Layout Ki nd. Explicit)]
struct Test Uni on
{

[Fiel dof fset (0)]

public int int1Val ue;

[Fiel dOffset(4)]

public int int2value

[Fiel dOffset(0)]

public doubl e doubl eval ue;

[Fiel dof fset (8)]

public char charVal ue;

}

02-28: C# structs

e \We can have structs within structs

struct Point
public float x;

public float y;
}

struct Rectangle
{
public Point upperlLeft;
public Point |owerRight;
}

02-29: C# structs

e The following won't compile — why not?

struct LinkedLi st Node

{
public LinkedLi st Node next;

public int data;
}

02-30: Getters and Setters

e Often a bad idea to give direct (public) access to instandalas
e Make instance variables private, create getters and séttget and set the values

e C# provides some syntatic sugar for getters and settetedd@toperties, thdbok like accessing public vari-
ables, but behave like method calls

CS420-2010F-02 Intro to CSharp 7

02-31: Properties
class Get Set Test

public float Height

get
{

}

set

return nHei ght;

nHei ght = val ue;
}

}
private float nHeight;
}
Get Set Test ¢ = new Get Set Test () ;

X = c. Height;
c. Height = 3.0f;

02-32: Properties With Side Effects
class Get Set Test

public float Height
get

return nHei ght;

nHei ght = val ue;
m\unili mesSet ++;

private float nHeight;
private mNunili nesSet ;

}

02-33: Read only Properties
class ReadOnl yProperty

public float Height

get
{

}

return nHei ght;

}
private float nHeight;
}

02-34: Write only Properties
class WiteOnl yProperty

public float Height
{

set

{
}

nmHei ght = val ue;

}
private float nHeight;
}

02-35: Auto-Implemented Properties

e Properties that just access variables (without side effece pretty verbose for what they do

e C# allows for autogenerated properties — you give the nambeoproperty, and the variable is created and
manipulated behind the scenes
cl ass AutoGenProperty
{

public float Height {get; set; }
}

CS420-2010F-02 Intro to CSharp 8

02-36: Virtual Functions

e |In Java, all methods are virtual

e Every method call requries extra dereference
e Always get the correct method

e In C#, methods are, by default, static

e Determine atompile timewhich code to call
e Advantages? Disadvantages?

02-37: Virtual Functions

class Base

public void pl() { printf("pl in Base\n");}
public virtual void p2() { printf("p2 in Base\n");}
}

class Subclass : public Base

public void p1() { printf("pl in Subclass\n");}
public override void p2() { printf("p2 in Subclass\n");}

Il Some later block of code:

{
Base bl = new Base();
Subcl ass s1 = new Subcl ass();
Base b2 = sl;
bl->pl(); bl->p2();
b2->p1(); b2->p2();
s1->pl(); s1->p2();

}

02-38: Pass by Reference

e C# allows you to pass a parameterrbference

e Actually pass a pointer to the object, instead of the objsetfi

02-39: Pass by Reference

void foo(int x, ref int vy)

X++;
Y+

}
public static void Main(String args[])
{

int a=3

int b =4;

foo(a, ref b);

Console. Witeline("a="+a+" b="+Db)

}

Qut put :
a=3 b=5

02-40: C# Generics

e C# are nearly identical to Java generics from a user poiniesf v
e Also very similar to C++ templates

e Implelmentation is different, (type erasure vs. code cogwyis mixture), but that's beyond the scope of
this class

e Stack.cs example

02-41: C# Enumerators (Iterators)

CS420-2010F-02 Intro to CSharp 9

e C# iterators are similar to Python iterators
o foreach statement, iterate over anything that implemeysges.Collections.IEnumerable

e Standard collections (including built-in arrays) all irmpient IEnumerable

int[] WAray = {1, 2, 3, 4, 5};
foreach (int i in MArray)

{
Consol e. Wi teLine(i.ToString());

}

02-42: C# Enumerators (Iterators)

e The “foreach” construct is just a bit of syntactic sugar fatass that implements a IEnumerable interface
e |IEnumerable interface defines GetEnumerator method thatnean object that implements IEnumerator
interface
¢ |[Enumerator defines Current, MoveNext, Reset

02-43: C# Enumerators (Iterators)

Li st<int> myList = new List<int>();

nmyLi st. Add(1); myList.Add(2); myList.Add(3);
| Enunerator<int> itr = nyList. GetEnunerator();
whi e(itr.MveNext())

Consol e. WiteLine(itr.Current);

}

02-44: C# Enumerators (Iterators)

e To make your collection iteratable, needs to implement Eraimerable inteface
e Systems.Collections.IEnumerator GetEnumerator()
¢ Interface Systems.Collections.|[Enumerator:

e object Current get;
e bool MoveNext();
¢ void Reset();

e Pretty much how Java does iterators
02-45: Writing C# Enumerables

e Better way to write Enumerators:

e GetEnumerator contains a loop that goes through each etémie collection
e call “yield return” on each element

02-46: Writing C# Enumerables

using System Col | ections;
class Enunifest : |Enumerable

{
/1 Constructor, etc
int[] data;
| Enunrer at or Get Enuner at or ()

for (int i =0; i < data.Length; i++)

yield return data[i];

CS420-2010F-02 Intro to CSharp

10

02-47:Writing C# Enumerables

using System Col | ecti ons;
class EnuniTest : |Enunerable

{

/1 Constructor, etc

int[] datal;

int[] data2;

| Enurrer at or Get Enuner at or ()
foreach (int elemin datal)

yield return el em

foreach (int elemin data2)

yield return elem

}
}

02-48: Writing C# Enumerables
e Binary Search Tree example

02-49: Unsafe Code

e Hard to write OS code in Java — don'’t get direct access to mgmor

e Eas(ier) in C# — can usensafecode

C-style pointers

Most run-time checks disabled

Full Control to shoot yourself in the foot
Only within code blocks marked as unsafe

02-50: Unsafe Code

e Within unsafe code you can play with C style pointers
e Take address of object
e Need to use fixed construct for address of elements on the heap

e Example: Unsafe.css

02-51: Unsafe Code

e All sorts of fun things you can do with unsafe:

static void Main(string[] args)

int* fib = stackalloc int[100];

int* p=fib;

*pHt = kpet = 1

for (int i=2; i<100; ++i, ++p)
*p =p[-1] + p[-2];

for (int i=0; i<10; ++i)
Consol e. WiteLine (fib[i]);

02-52: Static Classes

e |f aclass is declared “static”:

e Can only contain static members
e Cannot be instantiated

CS420-2010F-02 Intro to CSharp 11

e Cannot be subclassed
e Useful for creating libraries of functions, like Math

02-53: Static Classes

static class Math
const double pi = 3.1415926535

static double sin(double theta) { ... }
static double cos(double theta) { ... }

}

02-54: Operator Oveloading

e Let’s say you are writing a complex number class

e Want standard operations: addition, subtraction, etc
¢ Write methods for each operation that you want

e It would be nice to use built-in operators

Conpl ex ¢l = new Conpl ex(1,2);
Conpl ex ¢2 = new Conpl ex(3, 4);
Conplex ¢3 = cl1 + c2;

02-55: Operator Oveloading

e In C# you can overload operators

Essentially just “syntactic sugar”

Really handy for things like vector & matrix math
e math math libraries make heavy use of operator overloading

e See C# Complex code example

Aside: Why no operator overloading in Java?
02-56: Constants
¢ Any instance variable that is declared const needs to b@& givalue at compile time

e const variables are implicity static
e Any instance variable that is declared readonly needs taibalized in te constructor, can’t be changed

class Constants
{
const float pi = 3.14159f; // Inplicitly static
static readonly float cake = 10;
readonly startTine;
public Constants()
{

sartTime = DateTi me. Now. M | | i second;
}
}

02-57:#region

e Can denote code blocks that you want to be able to collapsex@ahd in Visual Studio using #region

e Not terribly useful (and if you are using #region heavilygmi be time to refactor your code!), but inserted in
some generated code

CS420-2010F-02 Intro to CSharp

12

#regi on hel per Functi ons
/1 Number of hel per functions you want to be able to hide
#endr egi on

e Examplesin visual studio

02-58: Delegates

e C# version of function pointers
e Used in (amoung other places) event driven programming

02-59: Delegates

cl ass Del egat eTest
del egate int inc(int x);

static int testDel (delegate inc, int val) {
return inc(val);

static int addOne(int x) {
return x + 1;

static int addTwo(int x) {
return x + 2;

}

static void Main(string[] args) {
consol e. Wi teLi ne(testDel (new i nc(addOne), 3));
consol e. Wi teLi ne(testDel (new i nc(addTwo), 3));

}

02-60: Delegates

e From website:

e TestDelegate.cs
e TestDelegate2?.cs

e Delegates are not just function pointers — store the enpinéext of function being called

e Can pass non-static methods as delegates (C++ require$ stat

e More memory overhead than C++ function pointers

02-61: Parallel constructs

e Come back to parallel constructs when we cover parallelfaroging, later in the semester

02-62: Odds & Ends

e Other minor differences between Java and C#

e If you come across an unfamiliar concept / keyword, googjeis friend

e Example: sealed

