
CS420-2010F-02 Intro to CSharp 1

02-0: C++ v. Java

• We will be coding in C# for this class

• Java is very similar to C#, with some exceptions:

• Minor, syntactic differences

• Performance optimizations in C#

• Static compilation vs. virtual functions

02-1: Hello World in C#

• Other than output library differences, and Main starting with a capital “M”, C# and Java “Hello World” are the
same

class Hello
{

public static void Main(string[] args)
{

Console.WriteLine("Hello World!");
}

}

02-2: Compilaition Units

• Java:

• Each class is in its own file

• Class name == file name

• Can have main in each class for testing

• C#

• Many classes in each file

• Can be named anything

• Can have Main in each class for testing

• But, at compile time, need to specify which Main to use

02-3: Compilaition Units Program MyProgram.cs

class C1
{

public static void Main(string args[])
{

System.Console.WriteLine("In C1");
}

}
class C2
{

public static void Main(string args[])
{

System.Console.WriteLine("In C2");
}

}

02-4: Compilation Unit

% csc.exe /main:C1 myProgram.cs
% csc.exe /main:C2 myProgram.cs

02-5: Inheritance Syntax

• C# uses C++-style inheritance syntax:



CS420-2010F-02 Intro to CSharp 2

class Point
{

// Body of Point
}

class Circle : Point
{

// Body of Circle
}

02-6: C# Inheritance

• Like Java, single inheritance only

• Also like java, can implement multiple interfaces

• Most of the gains of multiple inheritance

• Don’t have the downsides of multiple inheritance (what are they?)

02-7: Inheritance Syntax

• Use the same syntax for inheriting and implementing interfaces

• By convention, interface names start with “I”

class MySubClass : MySuperClass, IComparable
{

// Body of Point
}

class Circle : Point
{

// Body of Circle
}

02-8: Inheritance Syntax

• Advantange of Java synatx over C# syntax for inheritance / implementing interfaces?

• Why does C# use the syntax that it does?

02-9: Namespaces

• You’re using a large library of code in your project

• You define a new class “foo”

• The class “foo” already in the library

• Oops!

• What can you do?

02-10:Namespaces

• You’re using a large library of code in your project

• You define a new class “foo”

• The class “foo” already in the library

• What can you do?

• Create long names for each of your classes

• Namespaces!



CS420-2010F-02 Intro to CSharp 3

02-11:Namespaces

• Enclose your class in a namespace

namespace <name>
{

// class definition
}

02-12:Namespaces

namespace Geom {

class Point
{

public Point(float initialX = 0, float initialY = 0) { ... }
public float GetX() { ... }
public float GetY() { ... }
public void SetX(float newX) { ... }
public void SetY(float newY) { ... }
public void Print();

private float x;
private float y;

}
}

02-13:Namespaces

• Any class defined within the namespace “foo” can access any other class defined within the same namespace
(even from different files)

• Outside the namespace, you can access a class in a different namespace using the syntax<namespace>.<classname>

02-14:Namespaces

namespace Geom
{

class Rectangle
{

public Rectangle(float x1, float y1, float x2, float y2);
public Point GetUpperleft();
public Point GetLowerRight();

private Point mUpperLeft;
private Point mLowerRight;

}

}

02-15:Namespaces

class Rectangle
{
public:
Rectangle(float x1, float y1, float x2, float y2);
Geom.Point GetUpperleft();
Geom.Point GetLowerRight();

private:
Geom.Point mUpperLeft;
Geom.Point mLowerRight;

}

02-16:More Namespaces

• Namespaces can nest

namespace foo {
namespace bar {

class Myclass { ... }
}
class Myclass2
{



CS420-2010F-02 Intro to CSharp 4

public bar.Myclass c;
}

}
...
foo.bar.Myclass x;

02-17: “Using” Namespaces

• Many of the standard objects (Object, String) are in the System namespace

• System.String, System.Object

• UsingSystem. everywhere can get a little cumbersome

• We certainly don’t want to put our code in the System namespace!

• using to the rescue

02-18: “Using” Namespaces

using System;

class Example
{

public static void main(String args[])
{

Console.Writeline("Hello World");
}

}

using Microsoft.Xna.Framework;
using Microsoft.Xna.Framework.Storage;
using Microsoft.Xna.Framework.Input;
using Microsoft.Xna.Framework.Content;
using Microsoft.Xna.Framework.Graphics;

// Code can use classes/etc defined in each
// nested namespace

02-19:Namespaces

• C# Namespaces are very similar to C++ namespaces

• Somewhat similar to Java packages

• Java packages require mirrored directory structure

• No such requirement for C# (or C++) namespaces

• In general, C# (and C++) don’t require any relationship between filenames and filepaths (unlike Java)

02-20:Access Directives

• public: Anyone can access

• private: Can only be accessed within class

• protected: Like C++ protected, can be accessed within the class and within subclasses

• internal: Like java protected, can be accessed within the class, and from any class within the same assembly.

• Defaut == private

02-21:Stack vs. Heap

• Java:



CS420-2010F-02 Intro to CSharp 5

• Primitives (int, float, boolean) are stored on the stack

• Complex data structures (arrays, classes) are stored on theheap

• C#

• Primatives are stored on the stack

• strucs are stored on the stack

• Classes are stored on the heap

02-22:C# structs

• A C# struct is similar to a class, with a few exceptions:

• Structs are stored on the stack

• Default constructor “zeroes out” all fields – can’t overridethe default constructor (canwrite a consructor
that takes arguments)

• No inheritance for structs

• Even though you call new to “create” structs, they are not stored on the heap∗. Calling new on a struct
just calls the constructor on memory already allocated on the stack

02-23:C# structs
struct SPoint
{

public SPoint(int x, int y)
{

this.x = x;
thix.y = y;

}
public int x;
public int y;

}
class CPoint
{

public CPoint(int x, int y)
{

this.x = x;
thix.y = y;

}
public int x;
public int y;

}

02-24:C# structs

• Difference between SPoint and CPoint

• SPoints are stored on the stack, CPoints stored on the heap

• SPoints are passed by value (entire structure is copied), CPoints are called by reference (just a pointer is
passed)

• Can’t Inherit from SPoint (can from SClass)

02-25:C# structs
class Test
{

static void incrementX(SPoint p)
{

p.x++;
}
static void incrementX(CPoint p)
{

p.x++;
}

public static void Main(String args[])
{

SPoint p1 = new SPoint(1,1);
CPoint p2 = new CPoint(1,1);
increment(p1); increment(p2);
// Value of p1.x? p2.x?

}
}



CS420-2010F-02 Intro to CSharp 6

02-26:C# structs

• We can control the exact layout of fields in a C# struct

• Even have fields overlap (C unions)

using System.Runtime.InteropServices;
[StructLayout(LayoutKind.Explicit)]
struct TestUnion
{

[FieldOffset(0)]
public int intValue;
[FieldOffset(0)]
public double doubleValue;
[FieldOffset(0)]
public char charValue;

}

02-27:C# structs

• We can control the exact layout of fields in a C# struct

• Even have fields overlap (C unions)

using System.Runtime.InteropServices;
[StructLayout(LayoutKind.Explicit)]
struct TestUnion
{

[FieldOffset(0)]
public int int1Value;
[FieldOffset(4)]
public int int2Value
[FieldOffset(0)]
public double doubleValue;
[FieldOffset(8)]
public char charValue;

}

02-28:C# structs

• We can have structs within structs

struct Point
{

public float x;
public float y;

}

struct Rectangle
{

public Point upperLeft;
public Point lowerRight;

}

02-29:C# structs

• The following won’t compile – why not?

struct LinkedListNode
{

public LinkedListNode next;
public int data;

}

02-30:Getters and Setters

• Often a bad idea to give direct (public) access to instance variables

• Make instance variables private, create getters and setters to get and set the values

• C# provides some syntatic sugar for getters and setters, called Properties, thatlook like accessing public vari-
ables, but behave like method calls



CS420-2010F-02 Intro to CSharp 7

02-31:Properties

class GetSetTest
{

...
public float Height
{

get
{

return mHeight;
}
set
{

mHeight = value;
}

}
private float mHeight;

}
GetSetTest c = new GetSetTest();
x = c.Height;
c.Height = 3.0f;

02-32:Properties With Side Effects

class GetSetTest
{

...
public float Height
{

get
{

return mHeight;
}
set
{

mHeight = value;
mNumTimesSet++;

}
}
private float mHeight;
private mNumTimesSet;

}

02-33:Read only Properties

class ReadOnlyProperty
{

...
public float Height
{

get
{

return mHeight;
}

}
private float mHeight;

}

02-34:Write only Properties

class WriteOnlyProperty
{

...
public float Height
{

set
{

mHeight = value;
}

}
private float mHeight;

}

02-35:Auto-Implemented Properties

• Properties that just access variables (without side effects) are pretty verbose for what they do

• C# allows for autogenerated properties – you give the name ofthe property, and the variable is created and
manipulated behind the scenes

class AutoGenProperty
{

...
public float Height {get; set; }

}



CS420-2010F-02 Intro to CSharp 8

02-36:Virtual Functions

• In Java, all methods are virtual

• Every method call requries extra dereference

• Always get the correct method

• In C#, methods are, by default, static

• Determine atcompile timewhich code to call

• Advantages? Disadvantages?

02-37:Virtual Functions

class Base
{

public void p1() { printf("p1 in Base\n");}
public virtual void p2() { printf("p2 in Base\n");}

}

class Subclass : public Base
{

public void p1() { printf("p1 in Subclass\n");}
public override void p2() { printf("p2 in Subclass\n");}

}
// Some later block of code:
{

Base b1 = new Base();
Subclass s1 = new Subclass();
Base b2 = s1;
b1->p1(); b1->p2();
b2->p1(); b2->p2();
s1->p1(); s1->p2();

}

02-38:Pass by Reference

• C# allows you to pass a parameter byreference

• Actually pass a pointer to the object, instead of the object itself

02-39:Pass by Reference

void foo(int x, ref int y)
{

x++;
y++;

}

public static void Main(String args[])
{

int a = 3;
int b = 4;
foo(a, ref b);
Console.Writeline("a = " + a + " b = " + b)

}

Output:
a = 3, b = 5

02-40:C# Generics

• C# are nearly identical to Java generics from a user point of view

• Also very similar to C++ templates

• Implelmentation is different, (type erasure vs. code copying vs mixture), but that’s beyond the scope of
this class

• Stack.cs example

02-41:C# Enumerators (Iterators)



CS420-2010F-02 Intro to CSharp 9

• C# iterators are similar to Python iterators

• foreach statement, iterate over anything that implements System.Collections.IEnumerable

• Standard collections (including built-in arrays) all implement IEnumerable

int[] MyArray = {1, 2, 3, 4, 5};
foreach (int i in MyArray)
{

Console.WriteLine(i.ToString());
}

02-42:C# Enumerators (Iterators)

• The “foreach” construct is just a bit of syntactic sugar for aclass that implements a IEnumerable interface

• IEnumerable interface defines GetEnumerator method that returns an object that implements IEnumerator
interface

• IEnumerator defines Current, MoveNext, Reset

02-43:C# Enumerators (Iterators)

List<int> myList = new List<int>();
myList.Add(1); myList.Add(2); myList.Add(3);
IEnumerator<int> itr = myList.GetEnumerator();
whie(itr.MoveNext())
{

Console.WriteLine(itr.Current);
}

02-44:C# Enumerators (Iterators)

• To make your collection iteratable, needs to implement the IEnumerable inteface

• Systems.Collections.IEnumerator GetEnumerator()

• Interface Systems.Collections.IEnumerator:

• object Current get;

• bool MoveNext();

• void Reset();

• Pretty much how Java does iterators

02-45:Writing C# Enumerables

• Better way to write Enumerators:

• GetEnumerator contains a loop that goes through each element in the collection

• call “yield return” on each element

02-46:Writing C# Enumerables

using System.Collections;
class EnumTest : IEnumerable
{

// Constructor, etc
int[] data;

IEnumerator GetEnumerator()
{

for (int i = 0; i < data.Length; i++)
{

yield return data[i];
}

}
}



CS420-2010F-02 Intro to CSharp 10

02-47:Writing C# Enumerables

using System.Collections;
class EnumTest : IEnumerable
{

// Constructor, etc
int[] data1;
int[] data2;

IEnumerator GetEnumerator()
{

foreach (int elem in data1)
{

yield return elem;
}
foreach (int elem in data2)
{

yield return elem;
}

}
}

02-48:Writing C# Enumerables

• Binary Search Tree example

02-49:Unsafe Code

• Hard to write OS code in Java – don’t get direct access to memory

• Eas(ier) in C# – can useunsafecode

• C-style pointers

• Most run-time checks disabled

• Full Control to shoot yourself in the foot

• Only within code blocks marked as unsafe

02-50:Unsafe Code

• Within unsafe code you can play with C style pointers

• Take address of object

• Need to use fixed construct for address of elements on the heap

• Example: Unsafe.css

02-51:Unsafe Code

• All sorts of fun things you can do with unsafe:

static void Main(string[] args)
{

int* fib = stackalloc int[100];
int* p = fib;
*p++ = *p++ = 1;
for (int i=2; i<100; ++i, ++p)

*p = p[-1] + p[-2];
for (int i=0; i<10; ++i)

Console.WriteLine (fib[i]);
}

02-52:Static Classes

• If a class is declared “static”:

• Can only contain static members

• Cannot be instantiated



CS420-2010F-02 Intro to CSharp 11

• Cannot be subclassed

• Useful for creating libraries of functions, like Math

02-53:Static Classes

static class Math
{

const double pi = 3.1415926535
static double sin(double theta) { ... }
static double cos(double theta) { ... }
...

}

02-54:Operator Oveloading

• Let’s say you are writing a complex number class

• Want standard operations: addition, subtraction, etc

• Write methods for each operation that you want

• It would be nice to use built-in operators

Complex c1 = new Complex(1,2);
Complex c2 = new Complex(3,4);
Complex c3 = c1 + c2;

02-55:Operator Oveloading

• In C# you can overload operators

• Essentially just “syntactic sugar”

• Really handy for things like vector & matrix math

• math math libraries make heavy use of operator overloading

• See C# Complex code example

• Aside: Why no operator overloading in Java?

02-56:Constants

• Any instance variable that is declared const needs to be given a value at compile time

• const variables are implicity static

• Any instance variable that is declared readonly needs to be initialized in te constructor, can’t be changed

class Constants
{

const float pi = 3.14159f; // Implicitly static
static readonly float cake = 10;
readonly startTime;
public Constants()
{

sartTime = DateTime.Now.Millisecond;
}

}

02-57:#region

• Can denote code blocks that you want to be able to collapse andexpand in Visual Studio using #region

• Not terribly useful (and if you are using #region heavily, might be time to refactor your code!), but inserted in
some generated code



CS420-2010F-02 Intro to CSharp 12

#region helperFunctions
// Number of helper functions you want to be able to hide
#endregion

• Examples in visual studio

02-58:Delegates

• C# version of function pointers

• Used in (amoung other places) event driven programming

02-59:Delegates

class DelegateTest
{

delegate int inc(int x);

static int testDel(delegate inc, int val) {
return inc(val);

}
static int addOne(int x) {

return x + 1;
}
static int addTwo(int x) {

return x + 2;
}
static void Main(string[] args) {

console.WriteLine(testDel(new inc(addOne), 3));
console.WriteLine(testDel(new inc(addTwo), 3));

}
}

02-60:Delegates

• From website:

• TestDelegate.cs

• TestDelegate2.cs

• Delegates are not just function pointers – store the entire context of function being called

• Can pass non-static methods as delegates (C++ requires static)

• More memory overhead than C++ function pointers

02-61:Parallel constructs

• Come back to parallel constructs when we cover parallel programming, later in the semester

02-62:Odds & Ends

• Other minor differences between Java and C#

• If you come across an unfamiliar concept / keyword, google isyour friend

• Example: sealed


