
Game Engineering: 2D
CS420-2010F-06

2D Math
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

06-0: Back to Basics

A Vector is a displacement

Vector has both direction and length

Can also think of a vector as a position (really a
displacement from the origin)

Can be written as a row or column vector
Differnence can be important for multiplication

06-1: Vector Operations

Multiplying by a scalar
To multiply a vector v by a scalar s, multiply
each component of the vector by s

Effect is scaling the vector – multiplying by 2
maintains the direction of the vector, but makes
the length twice as long

06-2: Vector Operations

Multiplying by a scalar
Multiplying a vector by -1 flips the direction of
the vector
Multiplying a vector by -2 both flips the
direction, and scales the vector

06-3: Scaling a Vector

V 2V

(1/2)V
-V

06-4: Length

Vector has both direction and length

Direction

Le
ng

th

06-5: Length

Vector v = [vx, vy]

Length of v:

||v|| =
√

v2

x + v2

y

a

b
a + b
2 2

06-6: Normalizing a Vector

Normalize a vector by setting its length to 1, but
maintining its direction.

Multiply by 1/length

vnorm = v

||v||

Of course, v can’t be the zero vector
Zero vector is the only vector without a direction

06-7: Vector Addition

Add two vectors by adding their components

[ux, uy] + [vx, vy] = [ux + vx, uy + vy]

v2

v1

v2

v1

v1+v2

06-8: Vector Subtraction

Vector subtraction is the same as multiplying by -1
and adding

v1 − v2 is the displacement from the point at v2 to
the point at v1

not the displacement from v1 to v2

06-9: Vector Subtraction

v2

v1 -v2
v1

v1-v2

v2

v1

v1-v2

06-10: Point Distance

We can use subtraction and length to find the
distance between two points

Represent points as vectors – displacement from
the origin

Distance from v to u is ||v − u|| = ||u − v||

Where ||v|| is the length of the vector v.

06-11: Point Distance

Point p1: [1, 7]

Point p2: [4, 3]

Distance between p1 and p2?

06-12: Point Distance

p1 − p2 = [1, 7]

Point p2: [4, 3]

Distance between p1 and p2

[1, 7] − [4, 3] = [−3, 4]
√

(−3)2 + 42 = 5

06-13: Dot Product

a = [ax, ay]

b = [bx, by]

a · b = ax ∗ bx + ay ∗ by

06-14: Dot Product

a · b = ||a|| ∗ ||b|| ∗ cos θ

θa

b

06-15: Dot Product

θ = arccos

(

a · b

||a||||b||

)

If a and b are unit vectors:

θ = arccos (a · b)

06-16: Dot Product

If we don’t need the exact angle, we can just use
the sign

If θ < 90, cos θ > 0

If θ = 90, cos θ = 0

If 90 < θ < 180, cos θ < 0

Since a · b = ||a||||b|| cos θ:

If a · b > 0, θ < 90(π

2
)

If a · b = 0, θ = 90(π

2
)

If a · b < 0, 90 < θ < 180
π

2
< θ < π

06-17: Projecting Vectors

v

n

06-18: Projecting Vectors

v

n

06-19: Projecting Vectors

v

v
proj

06-20: Projecting Vectors

Θ

length of projection

||
v|

|

cos Θ =length of projection
||v||

06-21: Projecting Vectors

Given a vector v, and a unit vector n, find the
projection of v onto n

length of projection l:

cos θ =
l

||v||

l = cos θ||v||

= cos θ||v|| ∗ ||n||

= v · n

Since n is a unit vector, projection = length * n

(v · n) ∗ n

06-22: Projecting Vectors

Given vectors v and n, we want to decompose v
into two vectors, v‖ and v⊥

v‖ is parallel to n

v⊥ is perpendicular to n

v = v‖ + v⊥

06-23: Projecting Vectors

v

n

v

n

v

vv

06-24: Projecting Vectors

v‖ is just the projection of v onto n

v‖ = (v · n) ∗ n

(if n is not a unit vector, then we will need to normalize)

v‖ = (v ·
n

||n||
) ∗

n

||n||

=
v · n

||n||2
n

06-25: Projecting Vectors

Once we have v‖, finding v⊥ is easy, since
v = v‖ + v⊥

v‖ + v⊥ = v

v⊥ = v − v‖

v⊥ = v − n
v · n

||n||2

06-26: Projecting Vectors

Sanity Check: What happens if we try to find the
componets of the vector [v1, v2] that are parallel
and perpendicular to the x-axis and y-axis – what
should we get?

06-27: Projecting Vectors

Sanity Check: What happens if we try to find the
componets of the vector [vx, vy] that are parallel
and perpendicular to the x-axis and y-axis – what
should we get?

[vx, 0] and [0, vy]

Let’s make sure that’s what we get!

Start with the component parallel to x-axis

06-28: Projecting Vectors

Component of [vx, vy] that is parallel to the x-axis:
Length of component parallel to x-axis:

v · n = [vx, vy] · [1, 0] = vx ∗ 1 + vy ∗ 0 = vx

Component parallel to x-axis:
(v · n) ∗ n = vx ∗ [1, 0] = [vx, 0]

06-29: Projecting Vectors

Component of [vx, vy] that is perpendicular to the
x-axis:

v⊥ = v − v‖

v⊥ = [vx, vy] − [vx, 0]

v⊥ = [0, vy]

06-30: Matrices

A 2x2 matrix M :

M =

[

m11 m12

m21 m22

]

06-31: Matrices

A diagonal matrix is a square matrix with
non-diagonal elements equal to zero

M =

[

m11 0

0 m22

]

06-32: Matrices

The Identity Matrix is a diagonal matrix with all
diagonal elements = 1

I3 =





1 0 0

0 1 0

0 0 1





06-33: Matrices

Matrices and vectors
Vectors are a special case of matrices
Row vectors (as we’ve seen so far) [x, y]

Column vectors :

[

x

y

]

06-34: Matrices

Transpose

Written M
T

Exchange rows and colums

[

a b

c d

]T

=

[

a c

b d

]

06-35: Transpose

The transpose of a row vector is a column vector

For any matrix M , (MT)T = M

For a diagonal matrix D, DT = ?

06-36: Matrix Multiplication

Multiplying a Matrix by a scalar
Multiply each element in the Matrix by the
scalar
Just like multiplying a vector by a scalar

kM = k

[

m11 m12

m21 m22

]

=

[

km11 km12

km21 km22

]

06-37: Matrix Multiplication

a a11 12

a a21 22

b b11 12

b b21 22

c c11 12

c c21 22

=

06-38: Matrix Multiplication

a a11 12

a a21 22

b b11 12

b b21 22

c c11 12

c c21 22

=

c11 a11= b11 + a12 b21

06-39: Matrix Multiplication

a a11 12

a a21 22

b b11 12

b b21 22

c c11 12

c c21 22

=

c21 a21= b11 + a22 b21

06-40: Matrix Multiplication

a a11 12

a a21 22

b b11 12

b b21 22

c c11 12

c c21 22

=

c12 a11= b12 + a12 b22

06-41: Matrix Multiplication

a a11 12

a a21 22

b b11 12

b b21 22

c c11 12

c c21 22

=

c22 a21= b12 + a22 b22

06-42: Matrix Multiplication

Vectors are special cases of matrices

Multiplying a vector and a matrix is just like
multiplying two matrices

h

x y

i

2

4

m11 m12

m21 m22

3

5 =

h

xm11 + ym21 xm12 + ym22

i

06-43: Matrix Multiplication

Vectors are special cases of matrices

Multiplying a vector and a matrix is just like
multiplying two matrices

2

4

m11 m12

m21 m22

3

5

2

4

x

y

3

5 =

2

4

xm11 + ym12

xm21 + ym22

3

5

06-44: Matrix Multiplication

Note that the following multiplications are not legal:

2

4

x

y

3

5

2

4

m11 m12

m21 m22

3

5

2

4

m11 m12

m21 m22

3

5

h

x y

i

06-45: Matrix Multiplication

Matrix Multiplicaton is not commutative: AB 6= BA
(at least not for all A and B – is it true for at least
one A and B?)

Matrix Multiplication is associative:
(AB)C = A(BC)

Transposing product is the same as the product of
the transpose, in reverse order: (AB)T = BTAT

2

4

m11 m12

m21 m22

3

5

2

4

x

y

3

5 6=
h

x y

i

2

4

m11 m12

m21 m22

3

5

06-46: Matrix Multiplication

Identity Matrix I:
AI = A (for appropriate I)
IA = A (for appropriate I)

2

4

m11 m21

m12 m22

3

5

2

4

1 0

0 1

3

5

2

4

1 0

0 1

3

5

2

4

m11 m21

m12 m22

3

5

06-47: Matrix Multiplication

Identity Matrix I:
AI = A (for appropriate I)
IA = A (for appropriate I)

h

x y

i

2

4

1 0

0 1

3

5 =
h

x y

i

06-48: Matrix Multiplication

Identity Matrix I:
AI = A (for appropriate I)
IA = A (for appropriate I)

2

4

1 0

0 1

3

5

2

4

x

y

3

5 =

2

4

x

y

3

5

06-49: Row vs. Column Vectors

A vector can be reresented as a row vector or a
column vector

This makes a difference when using matrices
Row: vA, Column Av

It gets even more fun when using matrices to do
several transformations of a vector:

Row vABC, Column CBAv (note that to get
the same transformation, you need to take the
transpose of A, B, and C when swapping
between row and column vectors

06-50: Row vs. Column Vectors

h

x y

i

2

4

a b

c d

3

5

2

4

e f

g h

3

5 =

h

xa + yc xb + yd

i

2

4

e f

g h

3

5 =

h

(xa + yc)e + (xb + yd)g (xa + yc)f + (xb + yd)h
i

2

4

e g

f h

3

5

2

4

a c

b d

3

5

2

4

x

y

3

5 =

2

4

e f

g h

3

5

2

4

ax + cy

bx + dy

3

5 =

2

4

e(ax + cy) + g(ax + cy)

f(ax + cy) + h(ax + yd)

3

5

	{small lecturenumber -	heblocknumber :} Back to Basicsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Vector Operationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Vector Operationsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Scaling a Vectoraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Lengthaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Normalizing a Vectoraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Vector Additionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Vector Subtractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Vector Subtractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Point Distanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Point Distanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Point Distanceaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dot Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dot Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dot Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Dot Productaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Projecting Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matricesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matricesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matricesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matricesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matricesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Transposeaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Matrix Multiplicationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Row vs. Column Vectorsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Row vs. Column Vectorsaddtocounter {blocknumber}{1}

