Game Engineering: 2D CS420-2010F-06

2D Math

David Galles

Department of Computer Science University of San Francisco

06-0: Back to Basics

- A Vector is a displacement
- Vector has both direction and length
- Can also think of a vector as a position (really a displacement from the origin)
- Can be written as a row or column vector
- Differnence can be important for multiplication

06-1: Vector Operations

- Multiplying by a scalar
- To multiply a vector v by a scalar s, multiply each component of the vector by s
- Effect is scaling the vector - multiplying by 2 maintains the direction of the vector, but makes the length twice as long

06-2: Vector Operations

- Multiplying by a scalar
- Multiplying a vector by -1 flips the direction of the vector
- Multiplying a vector by -2 both flips the direction, and scales the vector

06-3: Scaling a Vector

06-4: Length

- Vector has both direction and length

06.-5: Length

- Vector $\mathbf{v}=\left[v_{x}, v_{y}\right]$
- Length of v :

$$
\|\mathbf{v}\|=\sqrt{v_{x}^{2}+v_{y}^{2}}
$$

06-6: Normalizing a Vector

- Normalize a vector by setting its length to 1 , but maintining its direction.
- Multiply by $1 /$ length
- $\mathrm{v}_{\text {norm }}=\frac{\mathrm{v}}{\|\mathrm{v}\|}$
- Of course, v can't be the zero vector
- Zero vector is the only vector without a direction

067: Vector Addition

- Add two vectors by adding their components
- $\left[u_{x}, u_{y}\right]+\left[v_{x}, v_{y}\right]=\left[u_{x}+v_{x}, u_{y}+v_{y}\right]$

06-8: Vector Subtraction

- Vector subtraction is the same as multiplying by -1 and adding
- $\mathbf{v}_{1}-\mathbf{v}_{\mathbf{2}}$ is the displacement from the point at $\mathbf{v}_{\mathbf{2}}$ to the point at v_{1}
- not the displacement from \mathbf{v}_{1} to $\mathbf{v}_{\mathbf{2}}$

06-9: Vector Subtraction

06-10: Point Distance

- We can use subtraction and length to find the distance between two points
- Represent points as vectors - displacement from the origin
- Distance from \mathbf{v} to \mathbf{u} is $\|\mathbf{v}-\mathbf{u}\|=\|\mathbf{u}-\mathbf{v}\|$
- Where $\|\mathrm{v}\|$ is the length of the vector v .

06-11: Point Distance

- Point p_{1} : $[1,7]$
- Point $p_{2}:[4,3]$
- Distance between p_{1} and p_{2} ?

06-12: Point Distance

- $p_{1}-p_{2}=[1,7]$
- Point p_{2} : $[4,3]$
- Distance between p_{1} and p_{2}
- $[1,7]-[4,3]=[-3,4]$
- $\sqrt{(-3)^{2}+4^{2}}=5$

06-13: Dot Product

$$
\begin{aligned}
& a=\left[a_{x}, a_{y}\right] \\
& \text { - } b=\left[b_{x}, b_{y}\right] \\
& a \cdot b=a_{x} * b_{x}+a_{y} * b_{y}
\end{aligned}
$$

06-14: Dot Product

$$
a \cdot b=\|a\| *\|b\| * \cos \theta
$$

06-15: Dot Product

$$
\theta=\arccos \left(\frac{a \cdot b}{\|a|\||b||}\right)
$$

If a and b are unit vectors:

$$
\theta=\arccos (a \cdot b)
$$

06-16: Dot Product

- If we don't need the exact angle, we can just use the sign
- If $\theta<90, \cos \theta>0$
- If $\theta=90, \cos \theta=0$
- If $90<\theta<180, \cos \theta<0$
- Since $a \cdot b=\| a| || | b| | \cos \theta$:
- If $a \cdot b>0, \theta<90\left(\frac{\pi}{2}\right)$
- If $a \cdot b=0, \theta=90\left(\frac{\pi}{2}\right)$
- If $a \cdot b<0,90<\theta<180$
- $\frac{\pi}{2}<\theta<\pi$

06-18: Projecting Vectors

06-19: Projecting Vectors

06-20: Projecting Vectors

length of projection

$$
\cos \Theta=\frac{\text { length of projection }}{||v||}
$$

06-21: Projecting Vectors

- Given a vector v, and a unit vector n, find the projection of v onto n
- length of projection l :

$$
\begin{aligned}
\cos \theta & =\frac{l}{\|v\|} \\
l & =\cos \theta\|v\| \\
& =\cos \theta\|v\| *\|n\| \\
& =v \cdot n
\end{aligned}
$$

- Since n is a unit vector, projection = length * n
- $(v \cdot n) * n$

06-22: Projecting Vectors

- Given vectors v and n, we want to decompose v into two vectors, $v_{\|}$and v_{\perp}
- $v_{\|}$is parallel to n
- v_{\perp} is perpendicular to n
- $v=v_{\|}+v_{\perp}$

06-23: Projecting Vectors

06-24: Projecting Vectors

- $v_{\|}$is just the projection of v onto n

$$
v_{\|}=(v \cdot n) * n
$$

(if n is not a unit vector, then we will need to normalize)

$$
\begin{aligned}
v_{\|} & =\left(v \cdot \frac{n}{\|n\|}\right) * \frac{n}{\|n\|} \\
& =\frac{v \cdot n}{\|n\|^{2}} n
\end{aligned}
$$

06-25: Projecting Vectors

- Once we have $v_{\|}$, finding v_{\perp} is easy, since $v=v_{\|}+v_{\perp}$

$$
\begin{aligned}
v_{\|}+v_{\perp} & =v \\
v_{\perp} & =v-v_{\|} \\
v_{\perp} & =v-n \frac{v \cdot n}{\|n\|^{2}}
\end{aligned}
$$

06-26: Projecting Vectors

- Sanity Check: What happens if we try to find the componets of the vector $\left[v_{1}, v_{2}\right]$ that are parallel and perpendicular to the x -axis and y -axis - what should we get?

06-27: Projecting Vectors

- Sanity Check: What happens if we try to find the componets of the vector $\left[v_{x}, v_{y}\right]$ that are parallel and perpendicular to the x -axis and y -axis - what should we get?
- $\left[v_{x}, 0\right]$ and $\left[0, v_{y}\right]$
- Let's make sure that's what we get!
- Start with the component parallel to x-axis

06-28: Projecting Vectors

- Component of $\left[v_{x}, v_{y}\right]$ that is parallel to the x -axis:
- Length of component parallel to x-axis:
- $v \cdot n=\left[v_{x}, v_{y}\right] \cdot[1,0]=v_{x} * 1+v_{y} * 0=v_{x}$
- Component parallel to x-axis:
- $(v \cdot n) * n=v_{x} *[1,0]=\left[v_{x}, 0\right]$

06-29: Projecting Vectors

- Component of $\left[v_{x}, v_{y}\right]$ that is perpendicular to the x-axis:
- $v_{\perp}=v-v_{\|}$
- $v_{\perp}=\left[v_{x}, v_{y}\right]-\left[v_{x}, 0\right]$
- $v_{\perp}=\left[0, v_{y}\right]$

06-30: Matrices

- A 2×2 matrix M :

$$
\mathbf{M}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]
$$

06-31: Matrices

- A diagonal matrix is a square matrix with non-diagonal elements equal to zero

$$
\mathbf{M}=\left[\begin{array}{cc}
m_{11} & 0 \\
0 & m_{22}
\end{array}\right]
$$

06-32: Matrices

- The Identity Matrix is a diagonal matrix with all diagonal elements = 1

$$
\mathbf{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

06-33: Matrices

- Matrices and vectors
- Vectors are a special case of matrices
- Row vectors (as we've seen so far) $[x, y]$
- Column vectors : $\left[\begin{array}{l}x \\ y\end{array}\right]$

06-34: Matrices

- Transpose
- Written M^{T}
- Exchange rows and colums

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]
$$

06-35: Transpose

- The transpose of a row vector is a column vector
- For any matrix $M,\left(M^{T}\right)^{T}=M$
- For a diagonal matrix $D, D^{T}=$?

06-36: Matrix Multiplication

- Multiplying a Matrix by a scalar
- Multiply each element in the Matrix by the scalar
- Just like multiplying a vector by a scalar

$$
k \mathbf{M}=k\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]=\left[\begin{array}{ll}
k m_{11} & k m_{12} \\
k m_{21} & k m_{22}
\end{array}\right]
$$

06-37: Matrix Multiplication

$$
\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]
$$

06-38: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{c}_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]} \\
& c_{11}=a_{11} b_{11}+a_{12} b_{21}
\end{aligned}
$$

06-39: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]} \\
& c_{21}=a_{21} b_{11}+a_{22} b_{21}
\end{aligned}
$$

06-40: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]} \\
& c_{12}=a_{11} b_{12}+a_{12} b_{22}
\end{aligned}
$$

06-41: Matrix Multiplication

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right]} \\
& c_{22}=a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

06-42: Matrix Multiplication

- Vectors are special cases of matrices
- Multiplying a vector and a matrix is just like multiplying two matrices

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]=
$$

$$
\left[\begin{array}{ll}
x m_{11}+y m_{21} & x m_{12}+y m_{22}
\end{array}\right]
$$

06-43: Matrix Multiplication

- Vectors are special cases of matrices
- Multiplying a vector and a matrix is just like multiplying two matrices

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x m_{11}+y m_{12} \\
x m_{21}+y m_{22}
\end{array}\right]
$$

06-44: Matrix Multiplication

- Note that the following multiplications are not legal:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
x & y
\end{array}\right]}
\end{aligned}
$$

06-45: Matrix Multiplication

- Matrix Multiplicaton is not commutative: $A B \neq B A$ (at least not for all A and B - is it true for at least one A and B ?)
- Matrix Multiplication is associative:
$(A B) C=A(B C)$
- Transposing product is the same as the product of the transpose, in reverse order: $(A B)^{T}=B^{T} A^{T}$

$$
\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \neq\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]
$$

06-46: Matrix Multiplication

- Identity Matrix I:
- $A I=A$ (for appropriate I)
- $I A=A$ (for appropriate I)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
m_{11} & m_{21} \\
m_{12} & m_{22}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
m_{11} & m_{21} \\
m_{12} & m_{22}
\end{array}\right]}
\end{aligned}
$$

06-47: Matrix Multiplication

- Identity Matrix I :
- $A I=A$ (for appropriate I)
- $I A=A$ (for appropriate I)

$$
\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
x & y
\end{array}\right]
$$

06-48: Matrix Multiplication

- Identity Matrix I:
- $A I=A$ (for appropriate I)
- $I A=A$ (for appropriate I)

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

06-49: Row vs. Column Vectors

- A vector can be reresented as a row vector or a column vector
- This makes a difference when using matrices
- Row: vA, Column Av
- It gets even more fun when using matrices to do several transformations of a vector:
- Row vABC, Column CBAv (note that to get the same transformation, you need to take the transpose of A, B, and C when swapping between row and column vectors

06.50: Row vs. Column Vectors

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & y
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
x a+y c & x b+y d
\end{array}\right]\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
(x a+y c) e+(x b+y d) g & (x a+y c) f+(x b+y d) h
\end{array}\right]} \\
& {\left[\begin{array}{ll}
e & g \\
f & h
\end{array}\right]\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=} \\
& {\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]\left[\begin{array}{l}
a x+c y \\
b x+d y
\end{array}\right]=} \\
& {\left[\begin{array}{l}
e(a x+c y)+g(a x+c y) \\
f(a x+c y)+h(a x+y d)
\end{array}\right]}
\end{aligned}
$$

