# Game Engineering: 2D CS420-2010F-06

#### 2D Math

**David Galles** 

Department of Computer Science University of San Francisco

#### 06-0: Back to Basics

- A Vector is a displacement
- Vector has both *direction* and *length*
- Can also think of a vector as a position (really a displacement from the origin)
- Can be written as a row or column vector
  - Differnence can be important for multiplication

## 06-1: Vector Operations

#### Multiplying by a scalar

- To multiply a vector  $\mathbf{v}$  by a scalar s, multiply each component of the vector by s
- Effect is scaling the vector multiplying by 2 maintains the direction of the vector, but makes the length twice as long

### 06-2: Vector Operations

- Multiplying by a scalar
  - Multiplying a vector by -1 flips the direction of the vector
  - Multiplying a vector by -2 both flips the direction, and scales the vector

### 06-3: Scaling a Vector



## 06-4: Length

• Vector has both direction and length



# 06-5: Length

• Vector  $\mathbf{v} = [v_x, v_y]$ 

• Length of v:

$$||\mathbf{v}|| = \sqrt{v_x^2 + v_y^2}$$



# 06-6: Normalizing a Vector

- Normalize a vector by setting its length to 1, but maintining its direction.
- Multiply by 1/length
- $\mathbf{v}_{norm} = \frac{\mathbf{v}}{||\mathbf{v}||}$
- Of course, v can't be the zero vector
  - Zero vector is the only vector without a direction

### 06-7: Vector Addition

- Add two vectors by adding their components
- $[u_x, u_y] + [v_x, v_y] = [u_x + v_x, u_y + v_y]$



### 06-8: Vector Subtraction

- Vector subtraction is the same as multiplying by -1 and adding
- $\mathbf{v_1}-\mathbf{v_2}$  is the displacement from the point at  $\mathbf{v_2}$  to the point at  $\mathbf{v_1}$ 
  - *not* the displacement from  $v_1$  to  $v_2$

#### **06-9: Vector Subtraction**



### 06-10: Point Distance

- We can use subtraction and length to find the distance between two points
- Represent points as vectors displacement from the origin
- Distance from v to u is ||v u|| = ||u v||
  - Where  $||\mathbf{v}||$  is the length of the vector  $\mathbf{v}$ .

#### 06-11: Point Distance

- Point  $p_1$ : [1, 7]
- Point  $p_2$ : [4, 3]
- Distance between  $p_1$  and  $p_2$ ?

#### 06-12: Point Distance

• 
$$p_1 - p_2 = [1, 7]$$

- Point  $p_2$ : [4,3]
- Distance between  $p_1$  and  $p_2$

• 
$$[1,7] - [4,3] = [-3,4]$$

• 
$$\sqrt{(-3)^2 + 4^2} = 5$$

# 06-13: Dot Product

• 
$$a = [a_x, a_y]$$
  
•  $b = [b_x, b_y]$   
•  $a \cdot b = a_x * b_x + a_y * b_y$ 

### 06-14: Dot Product

#### $\overline{a \cdot b} = ||a|| * ||b|| * \cos \theta$



#### 06-15: Dot Product

$$\theta = \arccos\left(\frac{a \cdot b}{||a||||b||}\right)$$

If a and b are unit vectors:

 $\theta = \arccos\left(a \cdot b\right)$ 

### 06-16: Dot Product

- If we don't need the exact angle, we can just use the sign
  - If  $\theta < 90$ ,  $\cos \theta > 0$
  - If  $\theta = 90$ ,  $\cos \theta = 0$
  - If  $90 < \theta < 180$ ,  $\cos \theta < 0$
- Since  $a \cdot b = ||a||||b|| \cos \theta$ :
  - If  $a \cdot b > 0$ ,  $\theta < 90(\frac{\pi}{2})$
  - If  $a \cdot b = 0$ ,  $\theta = 90(\frac{\pi}{2})$
  - If  $a \cdot b < 0$ ,  $90 < \theta < 180$ 
    - $\frac{\pi}{2} < \theta < \pi$

# 06-17: Projecting Vectors



# 06-18: Projecting Vectors



# 06-19: Projecting Vectors



#### 06-20: Projecting Vectors



# 06-21: Projecting Vectors

• Given a vector v, and a unit vector n, find the projection of v onto n

• length of projection *l*:

$$\cos \theta = \frac{l}{||v||}$$
$$l = \cos \theta ||v||$$
$$= \cos \theta ||v|| * ||n||$$
$$= v \cdot n$$

Since n is a unit vector, projection = length \* n
(v · n) \* n

# 06-22: Projecting Vectors

- Given vectors v and n, we want to decompose v into two vectors,  $v_{\parallel}$  and  $v_{\perp}$ 
  - $v_{\parallel}$  is parallel to n
  - $v_{\perp}$  is perpendicular to n
  - $v = v_{\parallel} + v_{\perp}$

# 06-23: Projecting Vectors



### 06-24: Projecting Vectors

•  $v_{\parallel}$  is just the projection of v onto n

$$v_{\parallel} = (v \cdot n) * n$$

(if n is not a unit vector, then we will need to normalize)

$$v_{\parallel} = \left(v \cdot \frac{n}{||n||}\right) * \frac{n}{||n||}$$
$$= \frac{v \cdot n}{||n||^2} n$$

#### 06-25: Projecting Vectors

2

• Once we have  $v_{\parallel}$ , finding  $v_{\perp}$  is easy, since  $v = v_{\parallel} + v_{\perp}$ 

$$egin{array}{rcl} v_{\parallel}+v_{\perp}&=&v\ &v_{\perp}&=&v-v_{\parallel}\ &v_{\perp}&=&v-nrac{v\cdot n}{||n||^2} \end{array}$$

### 06-26: Projecting Vectors

 Sanity Check: What happens if we try to find the componets of the vector [v<sub>1</sub>, v<sub>2</sub>] that are parallel and perpendicular to the x-axis and y-axis – what should we get?

# 06-27: Projecting Vectors

- Sanity Check: What happens if we try to find the componets of the vector  $[v_x, v_y]$  that are parallel and perpendicular to the x-axis and y-axis what should we get?
  - $[v_x, 0]$  and  $[0, v_y]$
- Let's make sure that's what we get!
- Start with the component parallel to x-axis

# 06-28: Projecting Vectors

• Component of  $[v_x, v_y]$  that is parallel to the x-axis:

• Length of component parallel to x-axis:

•  $v \cdot n = [v_x, v_y] \cdot [1, 0] = v_x * 1 + v_y * 0 = v_x$ 

Component parallel to x-axis:

• 
$$(v \cdot n) * n = v_x * [1, 0] = [v_x, 0]$$

# 06-29: Projecting Vectors

• Component of  $[v_x, v_y]$  that is perpendicular to the x-axis:

• 
$$v_{\perp} = v - v_{\parallel}$$

• 
$$v_\perp = [v_x, v_y] - [v_x, 0]$$

• 
$$v_{\perp} = [0, v_y]$$

# 06-30: Matrices

#### • A 2x2 matrix M:

$$\mathbf{M} = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

 A diagonal matrix is a square matrix with non-diagonal elements equal to zero

$$\mathbf{M} = \begin{bmatrix} m_{11} & 0 \\ 0 & m_{22} \end{bmatrix}$$

• The *Identity Matrix* is a diagonal matrix with all diagonal elements = 1

$$\mathbf{I_3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

#### 06-33: Matrices

- Matrices and vectors
  - Vectors are a special case of matrices
  - Row vectors (as we've seen so far) [x, y]
  - Column vectors :  $\begin{vmatrix} x \\ y \end{vmatrix}$

### 06-34: Matrices

#### • Transpose

- Written  $\mathbf{M}^{\mathbf{T}}$
- Exchange rows and colums

$$\left[\begin{array}{cc}a&b\\c&d\end{array}\right]^{T} = \left[\begin{array}{cc}a&c\\b&d\end{array}\right]$$

#### 06-35: Transpose

- The transpose of a row vector is a column vector
- For any matrix M,  $(M^T)^T = M$
- For a diagonal matrix D,  $D^T = ?$

# 06-36: Matrix Multiplication

- Multiplying a Matrix by a scalar
  - Multiply each element in the Matrix by the scalar
  - Just like multiplying a vector by a scalar

$$k\mathbf{M} = k \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} km_{11} & km_{12} \\ km_{21} & km_{22} \end{bmatrix}$$

# 06-37: Matrix Multiplication

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

# 06-38: Matrix Multiplication



 $C_{11} = a_{11}b_{11} + a_{12}b_{21}$ 

# 06-39: Matrix Multiplication



 $C_{21} = a_{21}b_{11} + a_{22}b_{21}$ 

# 06-40: Matrix Multiplication



 $C_{12} = a_{11}b_{12} + a_{12}b_{22}$ 

# 06-41: Matrix Multiplication



 $C_{22} = a_{21}b_{12} + a_{22}b_{22}$ 

# 06-42: Matrix Multiplication

- Vectors are special cases of matrices
- Multiplying a vector and a matrix is just like multiplying two matrices

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} xm_{11} + ym_{21} & xm_{12} + ym_{22} \end{bmatrix}$$

# 06-43: Matrix Multiplication

- Vectors are special cases of matrices
- Multiplying a vector and a matrix is just like multiplying two matrices

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} xm_{11} + ym_{12} \\ xm_{21} + ym_{22} \end{bmatrix}$$

# 06-44: Matrix Multiplication

• Note that the following multiplications are not legal:

$$\left[\begin{array}{c} x\\ y\end{array}\right] \left[\begin{array}{c} m_{11} & m_{12}\\ m_{21} & m_{22}\end{array}\right]$$

$$\left[\begin{array}{ccc} m_{11} & m_{12} \\ m_{21} & m_{22} \end{array}\right] \left[\begin{array}{ccc} x & y \end{array}\right]$$

# 06-45: Matrix Multiplication

- Matrix Multiplicaton is not commutative: AB ≠ BA (at least not for all A and B – is it true for at least one A and B?)
- Matrix Multiplication is associative: (AB)C = A(BC)
- Transposing product is the same as the product of the transpose, in reverse order:  $(AB)^T = B^T A^T$

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \neq \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix}$$

# 06-46: Matrix Multiplication

#### • Identity Matrix *I*:

- AI = A (for appropriate I)
- IA = A (for appropriate I)

|   | $m_{1}$ | 11 | $m_{ m c}$ | 21          |    | 1                   | 0        | ] |
|---|---------|----|------------|-------------|----|---------------------|----------|---|
| L | $m_{1}$ | 12 | $m_{ m j}$ | 22          |    | - 0                 | 1        |   |
| ļ | . 1     | 0  |            | $\int m$    | 11 | r                   | $n_{21}$ |   |
|   | 0       | 1  |            | $\boxed{m}$ | 12 | $\overline{\gamma}$ | 122      |   |

# 06-47: Matrix Multiplication

#### • Identity Matrix *I*:

- AI = A (for appropriate I)
- IA = A (for appropriate I)

$$\left[\begin{array}{cc} x & y \end{array}\right] \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] = \left[\begin{array}{cc} x & y \end{array}\right]$$

# 06-48: Matrix Multiplication

#### • Identity Matrix *I*:

- AI = A (for appropriate I)
- IA = A (for appropriate I)

$$\left[\begin{array}{rrr}1&0\\0&1\end{array}\right]\left[\begin{array}{r}x\\y\end{array}\right] = \left[\begin{array}{r}x\\y\end{array}\right]$$

#### 06-49: Row vs. Column Vectors

- A vector can be reresented as a row vector or a column vector
- This makes a difference when using matrices
  - Row: vA, Column Av
- It gets even more fun when using matrices to do several transformations of a vector:
  - Row vABC, Column CBAv (note that to get the same transformation, you need to take the transpose of A, B, and C when swapping between row and column vectors

#### 06-50: Row vs. Column Vectors

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} xa + yc & xb + yd \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} = (xa + yc)e + (xb + yd)g \quad (xa + yc)f + (xb + yd)h$$
$$\begin{bmatrix} e & g \\ f & h \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} ax + cy \\ bx + dy \end{bmatrix} =$$

 $\begin{bmatrix} e(ax + cy) + g(ax + cy) \\ f(ax + cy) + h(ax + yd) \end{bmatrix}$