07-0: Representing Polygons

- We want to represent a simple polygon
 - Triangle, rectangle, square, etc
 - Assume for the moment our game only uses these simple shapes
 - No curves for the moment ...
- How could we represent one of those polygons?

07-1: Representing Polygons

- We want to represent a simple polygon
 - Triangle, rectangle, square, etc
 - Assume for the moment our game only uses these simple shapes
 - No curves for the moment ...
- How could we represent one of those polygons?
 - List of points, starting with some arbitrary point, moving "clockwise" around the polygon

07-2: Representing Polygons

07-3: Representing Polygons

• How could we represent a simple circle?

07-4: Representing Polygons

- How could we represent a simple circle?
 - Center position (Vector)
 - Radius (scalar)

07-5: Modifying Polygons

- What if we wanted to modify a polygon
 - Translation, rotation, scaling, etc
- Start with an easy one how can we translate (move) a polygon?

07-6: Translating Polygon

- To translate a polygon, all we need to do is translate each one of its points
 - Move a polygon over 1 unit, up 0.5 units
 - Add (1, 0.5) to each point
 - Points are just translations from origin

07-7: Translating Polygon

1

2

, 1

-1

07-8: Rotation

- Rotations are a bit tricky
- Start with a simnplier case
 - Rotate a point around the origin

- Rotate the point (0,x) counterclockwise around the origin by Θ degrees
- What is the new point?

07-10: **Rotation**

$$\frac{1}{x} = \frac{y}{1}$$

$$\cos \Theta = \frac{x}{1}$$

$$x = 1 \cos \Theta$$

- Rotate the point (0,x) counterclockwise around the origin by Θ degrees
- What is the new point?

07-11: Rotation

- Original point is at (x, 1)
 - distance from the origin l = x
- New x position = $x \cos \Theta$
- New y postion = $x \sin \Theta$

Was easy beacuse the disance from the origin l was easy to calculate. What if original point was not on an axis? 07-12: **Rotation**

- Rotating a point *not* on an axis
- Use polar coordinates!

07-13: Rotation

- Using polar coordinates for rotation sounds kind of like cheating
 - Of course it is easy to rotate in polar coordinates!

- Translation is harder though ...
- (Probably) don't want to write all our game logic using polar coordinates
 - Depends on the game ...
- Transform into polar coordinates, do rotation, transform back. Hope everything simplifies nicely!

07-14: Rotation

07-15: Rotation

- Conversion from Polar coordinates to Cartesian coordinates
 - Given a point (r, Θ) in Polar coordinates, how can we create a point (x, y) in Cartesian coordinates?

07-16: **Polar** \Rightarrow **Cartesian**

07-17: Rotation

- Point p_1 at (r, Θ_1) , rotate p_1 by Θ
- New point p_2 at $(r, \Theta_1 + \Theta)$
- In Cartesian coordinates:

07-18: Rotation

- Point p_1 at (r, Θ_1) , rotate p_1 by Θ
- New point p_2 at $(r, \Theta_1 + \Theta)$
- In Cartesian coordinates:

- $x = r\cos(\Theta_1 + \Theta)$
- $y = r\sin(\Theta_1 + \Theta)$
- How do we compute $\sin(\Theta_1 + \Theta)$?

07-20: sin(x+y)

07-21: cos(x+y)

07-22: sin(x+y)

07-28: cos(x+y)

07-32: Back to Rotation!

- $x_{new} = r\cos(\Theta_1 + \Theta)$
- $x_{new} = r((\cos \Theta_1)(\cos \Theta) (\sin \Theta_1)(\sin \Theta))$

07-33: Back to Rotation!

- $x_{new} = r\cos(\Theta_1 + \Theta)$
- $x_{new} = r((\cos \Theta_1)(\cos \Theta) (\sin \Theta_1)(\sin \Theta))$

• $x_{new} = (r(\cos \Theta_1)) \cos \Theta - (r(\sin \Theta_1)) \sin \Theta$

07-34: Back to Rotation!

- $x_{new} = r\cos(\Theta_1 + \Theta)$
- $x_{new} = r((\cos \Theta_1)(\cos \Theta) (\sin \Theta_1)(\sin \Theta))$
- $x_{new} = (r(\cos \Theta_1)) \cos \Theta (r(\sin \Theta_1)) \sin \Theta$
- $x_{new} = x \cos \Theta y \sin \Theta$

07-35: Back to Rotation!

- $y_{new} = r\sin(\Theta_1 + \Theta)$
- $y_{new} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$

07-36: Back to Rotation!

- $y_{new} = r\sin(\Theta_1 + \Theta)$
- $y_{new} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$
- $y_{new} = (r(\cos \Theta_1)) \sin \Theta + (r(\sin \Theta_1)) \cos \Theta$

07-37: Back to Rotation!

- $y_{new} = r\sin(\Theta_1 + \Theta)$
- $y_{new} = r((\cos \Theta_1)(\sin \Theta) + (\sin \Theta_1)(\cos \Theta))$
- $y_{new} = (r(\cos \Theta_1)) \sin \Theta + (r(\sin \Theta_1)) \cos \Theta$
- $y_{new} = x \sin \Theta + y \cos \Theta$

07-38: Back to Rotation!

- Given a point (x, y), we can rotate it around the origin as follows:
 - $x_{new} = x \cos \Theta y \sin \Theta$
 - $y_{new} = x \sin \Theta + y \cos \Theta$
- We can do this with a matrix multiplication

07-39: Back to Rotation!

$$[x, y] \qquad \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}$$
$$= [x \cos \Theta - y \sin \Theta, x \sin \Theta + y \cos \Theta]$$

07-40: Rotating Objects

- Polygon, consisting of a list of points
- Rotate the polygon by angle Θ around origin

07-41: Rotating Objects

- Polygon, consisting of a list of points
- Rotate the polygon by angle Θ around origin
- Rotate each point individually around the origin
 - Done with a matrix multiplication

07-42: Rotating Objects

- Original Polygon: $p_0, p_1 \dots p_n$
- New Polygon: p_0M, p_1M, \dots, p_nM

• where
$$M = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}$$

07-43: Rotating Objects

07-44: Rotating Objects

07-45: Rotating Objects

07-46: Rotating Objects

• How can we rotate an object around some point *other* than the origin?

07-47: Rotating Objects

- How can we rotate an object around some point *other* than the origin?
 - Translate to the origin
 - Rotate
 - Translate back

07-48: Rotating Objects

Rotate $\pi/4$ around (1,0)

Translate to origin, Rotate $\pi/4$ around (0,0), Translate back

07-49: Multiple Cooridinate Systems

- World Space
- Camera (Screen) Space
- Inertial Space
- Object Space

07-50: World Space

- Define an origin for your world
 - Could be in the middle of your world, in one corner, etc
- Define each object's position in the world as an offset from thhis point

07-51: Camera (screen) Space

- Position that object appears on the screen
- Not always the same as world space!
 - Could have a much larger world, that screen scrolls across
 - "zoom in"

07-52: Camera (screen) Space

World space

07-53: Camera (screen) Space World Space

07-54: Camera (screen) Space

- You could calculate everything in Camera space ...
 - Moving camera becomes difficult need to move all objects in the world along with the camrea
 - Objects are moving on their own, need to combine movements
 - Zooming in becomes problematic

07-55: Object Space

- New Coordinate system based on the object
- Origin is at the base (or center) of the objet
- Axes are nicely aligned

07-56: Intertial Space

- Halfway betwen object space and world space
- Axes parallel to world space
- Origin same as object space

- Our character is wearing a red hat
- The hat is at position (0,100) in object space
- What is the position of the hat in world space?
- To make life easier, we will think about rotating the axes, instead of moving the objects

15

07-65: Changing Coordinate Spaces

- Rotate axes to the left 45 degrees
 - Hat rotates the right 45 degrees, from (0,100) to (-70, 70)
- Translate axes to the left 150, and down 50
 - Hat rotates to the right 150 and up 50, to (80, 120)

07-66: Changing Coordinate Spaces Objects

- More complicated object made of multiple elements
 - Several polygons, circles
- Define in Object Space origin the center of the object

- We store the rotation and translation of entire object
- When we want to know the points of any sub-object in world space
 - Doing collision, for instance
- Rotate and then translate the points of the subobject

07-71: Composite Objects

- Want to know the position of the 4 points of the blue rectangle in world space
- Local space positions are p_1, p_2, p_3, p_4
- World space postions are:

07-72: Composite Objects

- Want to know the position of the 4 points of the blue rectangle in world space
- Local space positions are p_1, p_2, p_3, p_4

• World space postions are:

new
$$p_1 = p_1 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150]$$

new $p_2 = p_2 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150]$
new $p_3 = p_3 \begin{bmatrix} \cos(-45) & \sin(-45) \\ -\sin(-45) & \cos(-45) \end{bmatrix} + [150, 150]$
... etc

07-73: Other Transformations

07-74: Other Transformations

07-75: Other Transformations

07-76: Other Transformations

07-77: Uniform Scaling

• A matrix of the form:

$$\left[\begin{array}{cc}k&0\\0&k\end{array}\right]$$

will uniformly scale an object. What happens if k = 1? k > 1? 0 < k < 1?

07-78: Nonuniform Scaling

- A matrix can also be used to scale in different amounts on different axes.
- Object will be stretched / distorted

07-79: Nonuniform Scaling

07-80: Nonuniform Scaling

07-81: Nonuniform Scaling

07-82: Nonuniform Scaling

07-83: Combining Transforms

• What would happen to a point that was transformed twice?

$$[x,y] \begin{bmatrix} \cos \Theta_1 & \sin \Theta_1 \\ -\sin \Theta_1 & \cos \Theta_1 \end{bmatrix} \begin{bmatrix} \cos \Theta_2 & \sin \Theta_2 \\ -\sin \Theta_2 & \cos \Theta_2 \end{bmatrix}$$

07-84: Combining Transforms

• What would happen to a point that was transformed twice?

$$\begin{pmatrix} [x,y] \begin{bmatrix} \cos \Theta_1 & \sin \Theta_1 \\ -\sin \Theta_1 & \cos \Theta_1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} \cos \Theta_2 & \sin \Theta_2 \\ -\sin \Theta_2 & \cos \Theta_2 \end{bmatrix} = \\ [x,y] \begin{pmatrix} \begin{bmatrix} \cos \Theta_1 & \sin \Theta_1 \\ -\sin \Theta_1 & \cos \Theta_1 \end{bmatrix} \begin{bmatrix} \cos \Theta_2 & \sin \Theta_2 \\ -\sin \Theta_2 & \cos \Theta_2 \end{bmatrix} \end{pmatrix}$$

07-85: Combining Transforms

$$\begin{bmatrix} \cos \Theta_1 & \sin \Theta_1 \\ -\sin \Theta_1 & \cos \Theta_1 \end{bmatrix} \begin{bmatrix} \cos \Theta_2 & \sin \Theta_2 \\ -\sin \Theta_2 & \cos \Theta_2 \end{bmatrix} = \begin{bmatrix} \cos \Theta_1 \cos \Theta_2 - \sin \Theta_1 \sin \Theta_2 & \cos \Theta_1 \sin \Theta_2 + \sin \Theta_1 \cos \Theta_2 \\ -\sin \Theta_1 \cos \Theta_2 - \cos \Theta_1 \sin \Theta_2 & -\sin \Theta_1 \sin \Theta_2 + \cos \Theta_1 \cos \Theta_2 \end{bmatrix} =$$

07-86: Combining Transforms

$$\begin{bmatrix} \cos \Theta_{1} & \sin \Theta_{1} \\ -\sin \Theta_{1} & \cos \Theta_{1} \end{bmatrix} \begin{bmatrix} \cos \Theta_{2} & \sin \Theta_{2} \\ -\sin \Theta_{2} & \cos \Theta_{2} \end{bmatrix} = \\ \begin{bmatrix} \cos \Theta_{1} \cos \Theta_{2} - \sin \Theta_{1} \sin \Theta_{2} & \cos \Theta_{1} \sin \Theta_{2} + \sin \Theta_{1} \cos \Theta_{2} \\ -\sin \Theta_{1} \cos \Theta_{2} - \cos \Theta_{1} \sin \Theta_{2} & -\sin \Theta_{1} \sin \Theta_{2} + \cos \Theta_{1} \cos \Theta_{2} \end{bmatrix} = \\ \begin{bmatrix} \cos(\Theta_{1} + \Theta_{2}) & \sin(\Theta_{1} + \Theta_{2}) \\ -\sin(\Theta_{1} + \Theta_{2}) & \cos(\Theta_{1} + \Theta_{2}) \end{bmatrix}$$

07-87: Combining Transforms

• We can also combine scaling and rotating

$$[x,y] \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$

• With uniform scaling, we get the same result if we scale, then rotate as if we rotated, and then scaled.

07-88: Combining Transforms

$$\begin{bmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix} = \begin{bmatrix} \cos\Theta & \sin\Theta \\ -\sin\Theta & \cos\Theta \end{bmatrix} \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
$$= \begin{bmatrix} k\cos\Theta & k\sin\Theta \\ -k\sin\Theta & k\cos\Theta \end{bmatrix}$$

07-89: Combining Transforms

07-92: Non-Uniform Scale, Rotate

07-93: Non-Uniform Scale, Rotate

07-94: Other Transformations

• How would the following matrix transform an object?

Γ	$^{-1}$	0]
L	0	1	

07-96: Reflection

07-97: Reflection

- Reflecting an object twice around the same axis brings and object back to its original state
- Reflecting around the y-axis and then reflecting around the x-axis is the same as ...

07-99: Reflection

• How could we reflect an object around its own center line, instead of around the x- or y- axis?

07-100: Reflection

- How could we reflect an object around its own center line, instead of around the x- or y- axis?
 - Translate and rotate the object so that its own center line is the same as the x- or y- axis
 - Reflect
 - Translate, rotate back
- If the centerline of an object is either the x- or y- axis in object space, this is easier ...

07-101: Shearing

• How would the following matrix transform an object?

$$\left[\begin{array}{rrr}1&0\\1&1\end{array}\right]$$

07-102: Shearing

07-104: Shearing

- Shearing an object is the same as:
 - Rotating the object
 - Non-uniform scale
 - Rotating back (not by the same angle)

07-105: Shearing

07-106: Linear Transforms

- Matrix operations represent linear transformation of objects
- Number of points in in a line before the transformation, still be in a line after the transformation
 - Line may be stretched and rotated, still be a line

07-107: Linear Transforms

- This gives us a handy way of seeing how a matrix will transform an object
 - See how the matrix will transform the axes [1,0], [0,1]
 - Object will be transformed in the same way

How will this transform an object

07-108: Linear Transforms

07-109: Linear Transforms

How will this transform an object

07-110: Linear Transforms

How will this transform an object

07-111: Linear Transforms

How will this transform an object

0 0 \0 /

07-113: Linear Transforms

07-112: Linear Transforms

= - (Area of Parallelogram)

07-117: **Determinant** 07-118: **Determinant**

- Signed area of parallelogram
 - If transformation includes a reflection, then ...

07-119: Determinant

- Signed area of parallelogram
 - If transformation includes a reflection, then
 - Determinant is negative

р 1

07-120: Determinant

- Signed area of parallelogram
 - If is a pure rotation (no scale, no shear, no rotation) ...

07-121: Determinant

- Signed area of parallelogram
 - If is a pure rotation (no scale, no shear, no rotation) ...
 - Determinant = 1
 - (Other direction is not always true..)

07-122: Translation

- We can implement rotation / scale / reflection / shearing using matrix operations
- What about translation?

07-123: Translation

• Can't translate an object using a 2x2 matrix

р 2

- Consider a point at the origin
 - How will a point a the origin be modified by a matrix?

07-124: Translation

- Can't translate an object using a 2x2 matrix
- Consider a point at the origin
 - How will a point a the origin be modified by a matrix?
 - Not changed by *any* matrix!

07-125: Translation

- Matrices can only do linear transformations
- Translation is not a linear transformation
 - Can't use matrices to do translation
 - ... Unless we cheat a little!

07-126: Translation

- We can use matrices to do translation as long as we use something different than 2x2 matrices
 - Add a dummy value to the end of all points (always 1)
 - Add a new row / column to matrix

$$[x, y, 1] \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] = [x, y, 1]$$

07-127: Translation

$$[x, y, 1] \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \delta_x & \delta_y & 1 \end{array} \right] =$$

07-128: Translation

$$[x,y,1] \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \delta_x & \delta_y & 1 \end{array} \right] = [x+\delta_x,y+\delta_y,1]$$

07-129: Translation

• Adding rotation

$$\begin{bmatrix} x, y \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} xa + yc, xb + yd \end{bmatrix}$$
$$\begin{bmatrix} x, y, 1 \end{bmatrix} \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} xa + yc, xb + yd, 1 \end{bmatrix}$$

07-130: Translation

$$[x, y, 1] \begin{bmatrix} a & b & 0 \\ c & d & 0 \\ \delta_x & \delta_y & 1 \end{bmatrix} = [xa + yc + \delta_x, xb + yd + \delta_y, 1]$$

• So, we can use a matrix to do both rotation and translation

07-131: Translation

$$\begin{bmatrix} \cos\Theta & \sin\Theta & 0\\ -\sin\Theta & \cos\Theta & 0\\ \delta_x & \delta_y & 1 \end{bmatrix}$$

- First, rotate counter-clockwise by Θ
- Then translate by $[\delta_x, \delta_y]$

07-132: Combining Transforms

- Let's look at an example
 - First rotate by $\pi/2$ (90 degrees) counterclockwise
 - Then translate x by +1

07-134: Combining Transforms

- Another example
 - First translate x by +1
 - Then rotate by $\pi/2$ (90 degrees) counterclockwise

• Same as rotating, and then moving up + y

07-137: Combining Transforms

• Rotating by $\pi/4$, then translating 1 unit +x

[$\cos \Theta - \sin \Theta = 0$	$\sin \Theta$ $\cos \Theta$ 0	0 0 1		1 0 1	$ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} $	0 0 1	=	$\begin{bmatrix} \cos \Theta \\ -\sin \Theta \\ 1 \end{bmatrix}$	$\sin \Theta$ $\cos \Theta$ 0	0 0 1] =	$\begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 1 \end{bmatrix}$	$\frac{1/\sqrt{2}}{1/\sqrt{2}}$ 0	$ \begin{array}{c} 0 \\ 0 \\ 1 \end{array} $]
---	---------------------------------	-------------------------------------	-------------	--	-------------	--	-------------	---	--	-------------------------------------	-------------	-----	--	--------------------------------------	--	---

07-138: Combining Transforms

• Translating 1 unit +x, then rotating by $\pi/4$

1	0	0]	$\cos \Theta$	$\sin \Theta$	0	л г	$\cos \Theta$	$\sin \Theta$	0 -	1 Г	$1/\sqrt{2}$	$1/\sqrt{2}$	0 -
0	1	0	$-\sin\Theta$	$\cos \Theta$	0	=	$-\sin\Theta$	$\cos \Theta$	0		$-1/\sqrt{2}$	$1/\sqrt{2}$	0
1	0	1	L o	0	1	JL	$\cos \Theta$	$\sin \Theta$	1 -	JL	$1/\sqrt{2}$	$1/\sqrt{2}$	1.

• Same as rotating $\pi/4$ counterclockwise, and then translating over (+x) $1/\sqrt{2}$ and up (+y) $1/\sqrt{2}$

07-139: Non-Standard Axes

- We want to rotate around an axis that does not go through the origin
- Rotate around point at 1,0
- Create the approprate 3x3 vector

07-140: Non-Standard Axes

Rotate $\pi/4$ around (1,0)

- First, translate to the origin
- Then, do the rotation

• Finally, translate back

$$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{array}\right]$$

07-145: Non-Standard Axes

• Final matrix:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & -1/\sqrt{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{2} & -1/\sqrt{2} & 1 \end{bmatrix}$$

07-146: Non-Standard Axes

Rotate $\pi/4$ around (1,0)

Translate to origin, Rotate $\pi/4$ around (0,0), Translate back

07-147: Non-Standard Axes

Rotate $\pi/4$ around (1,0)

Rotate p/4 around (0,0), then translate over $1 - 1 / \sqrt{2}$ and down $1 / \sqrt{2}$

07-148: Non-Standard Axes

- Note that the *rotation* component (upper left 2x2 matrix) is the same as if we were rotating around the origin
- Only the *position* component is altered.
- In general, whenever we do a rotation and a number of translations, the rotation component will be unchanged

07-149: Linear Transforms?

- Matricies can only do linear transformations
- Translation is *not* a linear transform
- ... but we are using matrices to do translation
 - What's up?

07-150: Homogeneous Space

- We are no longer working in 2D, we are now working in 3D
 - Extra 3rd parameter, that is always == 1
- We can extend our definition to allow the 3rd parameter to be some value other than 1
 - Need to be able to convert back to 2D space

07-151: 3D Homogeneous Space

- To convert a point (x, y, w) in 3D Homogeneous space into 2D (x, y) space:
 - Place a plane at w = 1
 - (x, y, w) maps to the (x, y) position on the plane where the ray (x, y, w) intersects the plane

07-154: **3D Homogeneous Space**

- Converting from a point in 3D homogeneous space to 2D space is easy
 - Divide the x and y coordinates by w
 - What happens when w = 0?

07-155: 3D Homogeneous Space

- Converting from a point in 3D homogeneous space to 2D space is easy
 - Divide the x and y coordinates by w
 - What happens when w = 0?
 - "Point at infinity"

• Direction, but not a magnitude

07-156: 3D Homogeneous Space

- For a given (x, y, w) point in 3D Homogeneous space, there is a single corresponding point in "standard" 2D space
 - Though when w = 0, we are in a bit of a special case
- For a single point in "standard" 2D space, there are an infinite number of corresponding points in 3D Homogeneous space

07-157: Translation

- We are still doing a linear trasformation of the 3D vector
- We are *shearing* the 3D space
- The resulting projection back to 2D is seen as a translation

07-158: Translation

2D Shape

Transform to 3D Homogenous Space

Shear operation in 3D space

Back to 2D

07-159: Inverse

• Finding inverse of 2x2 matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

07-160: Inverse

- A matrix is signular if it does not have an inverse
 - determinant = 0

• Why does this make sense, geometrically?

07-161: Orthogonal Matrices

- A matrix **M** is orthogonal if:
 - $\mathbf{M}\mathbf{M}^T = \mathbf{I}$
 - $\mathbf{M}^T = \mathbf{M}^{-1}$
- Orthogonal matrices are handy, because they are easy to invert
- Is there a geometric interpretation of orthogonality?

07-162: Orthogonal Matrices

$$\mathbf{M}\mathbf{M}^{T} = \mathbf{I}$$

$$\begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} \begin{bmatrix} m_{11} & m_{21} \\ m_{12} & m_{22} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Do all the multiplications ... 07-163: **Orthogonal Matrices**

$$m_{11}m_{11} + m_{12}m_{12} = 1$$

$$m_{11}m_{21} + m_{12}m_{22} = 0$$

$$m_{21}m_{11} + m_{22}m_{12} = 0$$

$$m_{21}m_{21} + m_{22}m_{22} = 1$$

• Hmmm... that doesn't seem to help much

07-164: Orthogonal Matrices

- Recall that rows of matrix are basis after rotation
 - $\mathbf{v}_x = [m_{11}, m_{12}]$
 - $\mathbf{v}_y = [m_{21}, m_{22}]$
- Let's rewrite the previous equations in terms of \mathbf{v}_x and \mathbf{v}_y ...

07-165: Orthogonal Matrices

$m_{11}m_{11} + m_{12}m_{12}$	=1	$\mathbf{v}_x \cdot \mathbf{v}_x = 1$
$m_{11}m_{21} + m_{12}m_{22}$	= 0	$\mathbf{v}_x \cdot \mathbf{v}_y = 0$
$m_{21}m_{11} + m_{22}m_{12}$	= 0	$\mathbf{v}_y \cdot \mathbf{v}_x = 0$
$m_{21}m_{21} + m_{22}m_{22}$	= 1	$\mathbf{v}_{u} \cdot \mathbf{v}_{u} = 1$

07-166: Orthogonal Matrices

• What does it mean if $\mathbf{u} \cdot \mathbf{v} = 0$?

- (assuming both **u** and **v** are non-zero)
- What does it mean if $\mathbf{v} \cdot \mathbf{v} = 1$?

07-167: Orthogonal Matrices

- What does it mean if $\mathbf{u} \cdot \mathbf{v} = 0$?
 - (assuming both u and v are non-zero)
 - u and v are perpendicular to each other (orthogonal)
- What does it mean if $\mathbf{v} \cdot \mathbf{v} = 1$?
 - $||\mathbf{v}|| = 1$
- So, transformed basis vectors must be mutually perpendicular unit vectors

07-168: Orthogonal Matrices

- If a transformation matrix is orthogonal,
 - Transformed basis vectors are mutually perpendicular unit vectors
- What kind of transformations are done by orthogonal matrices?

07-169: Orthogonal Matrices

- If a transformation matrix is orthogonal,
 - Transformed basis vectors are mutually perpendicular unit vectors
- What kind of transformations are done by orthogonal matrices?
 - Rotations & Reflections

07-170: Orthogonal Matrices

• Sanity check: Rotational matrices are orthoginal:

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$A = \begin{bmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{bmatrix}, A^{-1} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos(-\Theta) & \sin(-\Theta) \\ -\sin(-\Theta) & \cos(-\Theta) \end{bmatrix}$$

07-171: Examples

• An object's position has a rotational matrix M and a position p. A point $o_1 = [o_{1x}, o_{1y}]$ is in *object space* for the object, What is the position of the point in world space?

07-172: Examples

• An object's position has a rotational matrix M and a position p. A point $o_1 = [o_{1x}, o_{1y}]$ is in *object space* for the object, What is the position of the point in world space?

Position in world space: $o_1M + p$ 07-173: **Examples**

• An object's position has a rotational matrix M and a position p. A point $w_1 = [w_{1x}, w_{1y}]$ is in world space. What is the position of the point in objet space

07-174: Examples

• An object's position has a rotational matrix M and a position p. A point $w_1 = [w_{1x}, w_{1y}]$ is in world space. What is the position of the point in objet space

Position in object space: $(w_1 - p)M^T$ 07-175: **Examples**

- Origin of screen is at position $[c_x, c_y]$ in world space
- Object is a point $[p_x, p_y]$ in world space
- World has +x to right, +y up
- Screen has +x to right, +y down
- What is the position of p in screen space?

07-176: Examples

07-177: Examples

07-179: **Examples**

- Coversion from +y up to +y down
 - Points and rectangles easy to convert
 - Sprites would require a reflection
 - Can use SpriteEffects to reflect sprites
 - Best to stay in "reflected" space

07-180: Objects with Sprites

07-181: Objects with Sprites

07-182: Objects with Sprites

42

SpriteHalfHeight

• Center of the sprite is at [SpriteHalfWidth,SpriteHalfHeight] from top left corner of sprite

07-183: Objects with Sprites

• Boundary box locations are stored as edge points of each rectangle (4 points per)

07-184: Objects with Sprites

• Object is located at position [x, y] and has rotation Θ clockwise (since +x is right, +y is down)

CS420-2010F-07

07-185: Objects with Sprites

- When dealing with the object in game logic (collistions, etc), we need to know the positions of each of the points of each rectangle in world space.
- If a vertex has position p in local (object) space, what is its position in world space?

07-186: Objects with Sprites

- When dealing with the object in game logic (collistions, etc), we need to know the positions of each of the points of each rectangle in world space.
- If a vertex has position p in local (object) space, what is its position in world space?

•
$$p \begin{vmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{vmatrix} + [x, y]$$

07-187: Objects with Sprites

• To draw the sprite on the screen:

```
SpriteBatch sb
Vector2 pos = new Vector2(x,y);
Vector2 center = new Vector2(SpriteHalfWidh, SpriteHalfHeihgt);
sb.Draw(texture, pos, null, Color.White, theta, center, 1.0f,
SpriteBffects.None, 0.0f);
```

07-188: Examples

- Object1 has rotational matrix M_1 and position p_1
- Object2 has rotational matrix M_2 and position p_2
- Point q_1 is at postion $[q_{1x}, q_{1y}]$ in the object space of Object1
- Point q_2 is at positio $[q_{2x}, q_{2y}]$ in the object space of Object 2
- What is the vector from q_1 to q_2 in the object space of q_1 ?

07-189: Examples

07-190: **Examples** 07-191: **Examples**

- First, find the position of point q_2 in the local space of Object1.
- What's the best way to do this?

07-192: Examples

- First, find the position of point q_2 in the local space of Object1.
- What's the best way to do this?
 - Go through the world space
 - Find the position of q_2 in world space, translate to object space

07-193: Examples

• Position of q_2 in world space:

 $q_2M_2 + p_2$

- Position of q_2 in Object1's local space $(q_2(global) - p_1)M_1^T = (q_2M_2 + p_2 - p_1)M_1^T$
- Vector from q_1 to q_2 in local space of Object 1:

07-194: Examples

• Position of q_2 in world space:

 $q_2M_2 + p_2$

- Position of q_2 in Object1's local space $(q_2(global) - p_1)M_1^T = (q_2M_2 + p_2 - p_1)M_1^T$
- Vector from q_1 to q_2 in local space of Object 1: $(q_2M_2 + p_2 - p_1)M_1^T - q_1$

07-195: Examples

- Given a transformation matrix
- $\left[\begin{array}{cc}a&b\\c&d\end{array}\right]$
- How can we determine if this is a "pure rotation" no scale, shear, reflection

07-196: Examples

• Matrix is pure rotation if:

Γ	a	b	
L	c	d	

- a = d
- -c = b
- sin(arccos(a)) = b
- What if we don't have access to arccos, sin?

07-197: Examples

• Matrix is pure rotation if:

Γ	a	b	
	c	d	

- ac + bd = 0 [a,b] and [c,d] are perpendicular
- a*a + b*b = 1 [a,b] is unit vector
- $c^*c + d^*d = 1$ [c,d] is unit vector
- a*d c*b = 1 No reflection

07-198: Examples

- Spaceship, in local space looks down x axis
- Position $[p_x, p_y]$
- Orientation: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
- Place an enemy 10 units directly in front of spaceship, pointing straight back at it
- What is position and orientation of the new spaceship?

07-199: Examples

- Spaceship, in local space looks down x axis
- Position $[p_x, p_y]$

- Orientation: $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$
- Place an enemy 10 units directly in front of spaceship, pointing straight back at it
- What is position and orientation of the new spaceship?

• Position =
$$[p_x, p_y] + 10 * [a, b]$$

• Orientation:
$$\begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix}$$

07-200: Examples