
CS420-2010F-07 Objects in 2D 1

07-0: Representing Polygons

• We want to represent a simple polygon

• Triangle, rectangle, square, etc

• Assume for the moment our game only uses these simple shapes

• No curves for the moment ...

• How could we represent one of those polygons?

07-1: Representing Polygons

• We want to represent a simple polygon

• Triangle, rectangle, square, etc

• Assume for the moment our game only uses these simple shapes

• No curves for the moment ...

• How could we represent one of those polygons?

• List of points, starting with some arbitrary point, moving “clockwise” around the polygon

07-2: Representing Polygons

1

1

1

-1-2

-2

2

(1,1), (1,-1), (-1,-1), (-1,1)

07-3: Representing Polygons

• How could we represent a simple circle?

07-4: Representing Polygons

• How could we represent a simple circle?

• Center position (Vector)

• Radius (scalar)

CS420-2010F-07 Objects in 2D 2

07-5: Modifying Polygons

• What if we wanted to modify a polygon

• Translation, rotation, scaling, etc

• Start with an easy one – how can we translate (move) a polygon?

07-6: Translating Polygon

• To translate a polygon, all we need to do is translate each oneof its points

• Move a polygon over 1 unit, up 0.5 units

• Add (1, 0.5) to each point

• Points are just translations from origin

07-7: Translating Polygon

1

1

1

-1-2

-2

2

(1,1), (1,-1), (-1,-1), (-1,1)

1

1

1

-1-2

-2

2

Translate over 1, up 0.5
Add (1,0.5) to each point in polygon
(2,1.5), (2,-0.5), (0,-.5), (-0,1.5)

07-8: Rotation

• Rotations are a bit tricky

• Start with a simnplier case

• Rotate a point around the origin

07-9: Rotation

Θ

CS420-2010F-07 Objects in 2D 3

• Rotate the point (0,x) counterclockwise around the origin by Θ degrees

• What is the new point?

07-10:Rotation

Θ y

x

sin Θ =

l

y

l

cos Θ = x
l

= l sin Θ

 = l cos Θ

y

x

• Rotate the point (0,x) counterclockwise around the origin by Θ degrees

• What is the new point?

07-11:Rotation

• Original point is at(x, 1)

• distance from the originl = x

• New x position =x cosΘ

• New y postion =x sin Θ

Was easy beacuse the disance from the originl was easy to calculate. What if original point was not on an axis?
07-12:Rotation

• Rotating a pointnot on an axis

• Use polar coordinates!

r

Θ

07-13:Rotation

• Using polar coordinates for rotation sounds kind of like cheating

• Of course it is easy to rotate in polar coordinates!

CS420-2010F-07 Objects in 2D 4

• Translation is harder though ...

• (Probably) don’t want to write all our game logic using polarcoordinates

• Depends on the game ...

• Transform into polar coordinates, do rotation, transform back. Hope everything simplifies nicely!

07-14:Rotation

Θ1

r

Θ2

Θ

Rotate point at (r,Θ1) Θ degrees
counterclockwise

New point (r, Q2) = (r, Θ1 + Θ)

07-15:Rotation

• Conversion from Polar coordinates to Cartesian coordinates

• Given a point(r, Θ) in Polar coordinates, how can we create a point(x, y) in Cartesian coordinates?

07-16:Polar ⇒ Cartesian

Θ

r
y

x

y = r sin Θ

x = r cos Θ

07-17:Rotation

• Pointp1 at (r, Θ1), rotatep1 by Θ

• New pointp2 at (r, Θ1 + Θ)

• In Cartesian coordinates:

07-18:Rotation

• Pointp1 at (r, Θ1), rotatep1 by Θ

• New pointp2 at (r, Θ1 + Θ)

• In Cartesian coordinates:

CS420-2010F-07 Objects in 2D 5

• x = r cos(Θ1 + Θ)

• y = r sin(Θ1 + Θ)

• How do we computesin(Θ1 + Θ)?

07-19:sin(x+y)

x
y

A

B

C

D

E

sin(x+y) =

O

07-20:sin(x+y)

x
y

A

B

C

D

E

sin(x+y) = (AB + BC) / OA

O

07-21:cos(x+y)

x
y

A

B

C

D

E

sin(x+y) = (AB + BC) / OA

= (AB + DE) / OA

= AB / OA + DE / OA

O

07-22:sin(x+y)

x
y

A

B

C

D

E

sin(x+y) = (AB + BC) / OA

= (AB + DE) / OA

= AB / OA + DE / OA

O

= (AB / OA) (AD / AD) + (DE / OA)(OD / OD)

07-23:sin(x+y)

CS420-2010F-07 Objects in 2D 6

x
y

A

B

C

D

E

sin(x+y) = (AB + BC) / OA

= (AB + DE) / OA

= AB / OA + DE / OA

O

= (AB / OA) (AD / AD) + (DE / OA)(OD / OD)

= (AB / AD) (AD / OA) + (DE / OD)(OD / OA)

07-24:sin(x+y)

x
y

A

B

C

D

E

sin(x+y) = (AB + BC) / OA

= (AB + DE) / OA

= AB / OA + DE / OA

O

= (AB / OA) (AD / AD) + (DE / OA)(OD / OD)

= (AB / AD) (AD / OA) + (DE / OD)(OD / OA)

= (cos x)(sin y) + (sin x)(cos y)

07-25:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) =

O

07-26:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

07-27:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

= (OE - CE) / OA

CS420-2010F-07 Objects in 2D 7

07-28:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

= (OE - CE) / OA

= (OE - BD) / OA

07-29:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

= (OE - CE) / OA

= (OE - BD) / OA

= OE / OA - BD / OA

07-30:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

= (OE - CE) / OA

= (OE - BD) / OA

= OE / OA - BD / OA

= (OE/OA)(OD/OD) - (BD/OA)(AD/AD)

= (OE/OD)(OD/OA) - (BD/AD)(AD/OA)

07-31:cos(x+y)

x
y

A

B

C

D

E

cos(x+y) = OC / OA

O

= (OE - CE) / OA

= (OE - BD) / OA

= OE / OA - BD / OA

= (OE/OA)(OD/OD) - (BD/OA)(AD/AD)

= (OE/OD)(OD/OA) - (BD/AD)(AD/OA)

= (cos x)(cos y) - (sin x)(sin y)

07-32:Back to Rotation!

• xnew = r cos(Θ1 + Θ)

• xnew = r((cos Θ1)(cos Θ) − (sin Θ1)(sin Θ))

07-33:Back to Rotation!

• xnew = r cos(Θ1 + Θ)

• xnew = r((cos Θ1)(cos Θ) − (sin Θ1)(sin Θ))

CS420-2010F-07 Objects in 2D 8

• xnew = (r(cos Θ1)) cos Θ − (r(sin Θ1)) sin Θ

07-34:Back to Rotation!

• xnew = r cos(Θ1 + Θ)

• xnew = r((cos Θ1)(cos Θ) − (sin Θ1)(sin Θ))

• xnew = (r(cos Θ1)) cos Θ − (r(sin Θ1)) sin Θ

• xnew = x cosΘ − y sin Θ

07-35:Back to Rotation!

• ynew = r sin(Θ1 + Θ)

• ynew = r((cos Θ1)(sin Θ) + (sin Θ1)(cosΘ))

07-36:Back to Rotation!

• ynew = r sin(Θ1 + Θ)

• ynew = r((cos Θ1)(sin Θ) + (sin Θ1)(cosΘ))

• ynew = (r(cos Θ1)) sin Θ + (r(sin Θ1)) cosΘ

07-37:Back to Rotation!

• ynew = r sin(Θ1 + Θ)

• ynew = r((cos Θ1)(sin Θ) + (sin Θ1)(cosΘ))

• ynew = (r(cos Θ1)) sin Θ + (r(sin Θ1)) cosΘ

• ynew = x sin Θ + y cosΘ

07-38:Back to Rotation!

• Given a point(x, y), we can rotate it around the origin as follows:

• xnew = x cosΘ − y sin Θ

• ynew = x sin Θ + y cosΘ

• We can do this with a matrix multiplication

07-39:Back to Rotation!

[x, y]

[

cosΘ sin Θ
− sinΘ cosΘ

]

= [x cosΘ − y sinΘ, x sin Θ + y cosΘ]

07-40:Rotating Objects

• Polygon, consisting of a list of points

• Rotate the polygon by angleΘ around origin

CS420-2010F-07 Objects in 2D 9

Θ Θ

07-41:Rotating Objects

• Polygon, consisting of a list of points

• Rotate the polygon by angleΘ around origin

• Rotate each point individually around the origin

• Done with a matrix multiplication

07-42:Rotating Objects

• Original Polygon:p0, p1 . . . pn

• New Polygon:p0M, p1M, . . . pnM

• whereM =

[

cosΘ sin Θ
− sin Θ cosΘ

]

07-43:Rotating Objects

cos 45 sin 45
-sin 45 cos 45

07-44:Rotating Objects

Θ
cos 45 sin 45
-sin 45 cos 45

07-45:Rotating Objects

CS420-2010F-07 Objects in 2D 10

Θ

Θ

cos 45 sin 45
-sin 45 cos 45

07-46:Rotating Objects

• How can we rotate an object around some pointother than the origin?

Θ Θ

07-47:Rotating Objects

• How can we rotate an object around some pointother than the origin?

• Translate to the origin

• Rotate

• Translate back

07-48:Rotating Objects

CS420-2010F-07 Objects in 2D 11

Rotate π/4 around (1,0)

Translate to origin, Rotate π/4 around (0,0), Translate back

07-49:Multiple Cooridinate Systems

• World Space

• Camera (Screen) Space

• Inertial Space

• Object Space

07-50:World Space

• Define an origin for your world

• Could be in the middle of your world, in one corner, etc

• Define each object’s position in the world as an offset from thhis point

07-51:Camera (screen) Space

• Position that object appears on the screen

• Not always the same as world space!

• Could have a much larger world, that screen scrolls across

• “zoom in”

07-52:Camera (screen) Space

CS420-2010F-07 Objects in 2D 12

World space

Screen Space

07-53:Camera (screen) Space

World Space

Screen Space

Position (20,50) in Screen Space

Position (30, 75) in World Space
07-54:Camera (screen) Space

• You could calculate everything in Camera space ...

• Moving camera becomes difficult – need to move all objects in the world along with the camrea

• Objects are moving on their own, need to combine movements

• Zooming in becomes problematic

07-55:Object Space

• New Coordinate system based on the object

• Origin is at the base (or center) of the objet

• Axes are nicely aligned

07-56: Intertial Space

CS420-2010F-07 Objects in 2D 13

• Halfway betwen object space and world space

• Axes parallel to world space

• Origin same as object space

07-57: Inertial Space Object Space

+x

+y

07-58: Inertial Space

+y

World Space

Ob
je
ct
 S
pa
ce

+y

07-59: Inertial Space

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

Inertial Space

+x

+y

07-60:Changing Coordinate Spaces

• Our character is wearing a red hat

• The hat is at position (0,100) in object space

• What is the position of the hat in world space?

• To make life easier, we will think about rotating the axes, instead of moving the objects

CS420-2010F-07 Objects in 2D 14

07-61: Changing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

07-62: Chang-

ing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y

Rotate axis clockwise 45 degrees

07-63: Changing Coordinate

CS420-2010F-07 Objects in 2D 15

Spaces

+x

+y

World Space

Object Space
(now Inertial Space)

+x

+yTranslate axes
to the left & down

07-64:Changing Coordinate Spaces

+y

World Space

Object Space
(now World Space)

+x

+y

07-65:Changing Coordinate Spaces

• Rotate axes to the left 45 degrees

• Hat rotates the the right 45 degrees, from (0,100) to (-70, 70)

• Translate axes to the left 150, and down 50

• Hat rotates to the right 150 and up 50, to (80, 120)

07-66:Changing Coordinate Spaces

+x

+y

World Space

Ob
je
ct
 S
pa
ce

+x

+y
(0,100) Object space

(80,120) world space

07-67:Composite
Objects

• More complicated object – made of multiple elements

• Several polygons, circles

• Define in Object Space – origin the center of the object

CS420-2010F-07 Objects in 2D 16

07-68:Composite Objects

Poly1: (-30,30), (30,30), (30,20), (-30,20)

Poly2: (-5,20), (5,20), (5,-20), (-5,-20)

Poly3: (-30,-20), (30,-20), (30,-30), (-30,-30)

07-69:Composite Objects World Space

Rotated -45 degrees
Translated by [150, 150]

07-70:Composite Objects

• We store the rotation and translation of entire object

• When we want to know the points of any sub-object in world space

• Doing collision, for instance

• Rotate and then translate the points of the subobject

07-71:Composite Objects

• Want to know the position of the 4 points of the blue rectanglein world space

• Local space positions arep1, p2, p3, p4

• World space postions are:

07-72:Composite Objects

• Want to know the position of the 4 points of the blue rectanglein world space

• Local space positions arep1, p2, p3, p4

CS420-2010F-07 Objects in 2D 17

• World space postions are:

newp1 = p1

[

cos(−45) sin(−45)
− sin(−45) cos(−45)

]

+ [150, 150]

newp2 = p2

[

cos(−45) sin(−45)
− sin(−45) cos(−45)

]

+ [150, 150]

newp3 = p3

[

cos(−45) sin(−45)
− sin(−45) cos(−45)

]

+ [150, 150]

... etc

07-73:Other Transformations

2 0
0 2

Transform with:

07-74:Other Transformations

2 0
0 2

Transform with:

07-75:Other Transformations

2 0
0 2

Transform with:

07-76:Other Transformations

2 0
0 2

Transform with:

CS420-2010F-07 Objects in 2D 18

07-77:Uniform Scaling

• A matrix of the form:

[

k 0
0 k

]

will uniformly scale an object. What happens ifk = 1? k > 1? 0 < k < 1?

07-78:Nonuniform Scaling

• A matrix can also be used to scale in different amounts on different axes.

• Object will be stretched / distorted

07-79:Nonuniform Scaling

1 0
0 2

Transform with:

07-80:Nonuniform Scaling

1 0
0 2

Transform with:

07-81:Nonuniform Scaling

3 0
0 2

Transform with:

07-82:Nonuniform Scaling

CS420-2010F-07 Objects in 2D 19

3 0
0 2

Transform with:

07-83:Combining Transforms

• What would happen to a point that was transformed twice?

[x, y]

[

cosΘ1 sinΘ1

− sinΘ1 cosΘ1

] [

cosΘ2 sin Θ2

− sinΘ2 cosΘ2

]

07-84:Combining Transforms

• What would happen to a point that was transformed twice?

(

[x, y]

[

cosΘ1 sin Θ1

− sinΘ1 cosΘ1

]) [

cosΘ2 sin Θ2

− sinΘ2 cosΘ2

]

=

[x, y]

([

cosΘ1 sinΘ1

− sinΘ1 cosΘ1

] [

cosΘ2 sin Θ2

− sinΘ2 cosΘ2

])

07-85:Combining Transforms

[

cos Θ1 sin Θ1

− sin Θ1 cos Θ1

] [

cos Θ2 sin Θ2

− sin Θ2 cos Θ2

]

=

[

cos Θ1 cos Θ2 − sin Θ1 sin Θ2 cos Θ1 sin Θ2 + sin Θ1 cos Θ2

− sin Θ1 cosΘ2 − cosΘ1 sin Θ2 − sin Θ1 sin Θ2 + cosΘ1 cos Θ2

]

=

07-86:Combining Transforms

[

cos Θ1 sin Θ1

− sin Θ1 cos Θ1

] [

cos Θ2 sin Θ2

− sin Θ2 cos Θ2

]

=

[

cos Θ1 cos Θ2 − sin Θ1 sin Θ2 cos Θ1 sin Θ2 + sin Θ1 cos Θ2

− sin Θ1 cosΘ2 − cosΘ1 sin Θ2 − sin Θ1 sin Θ2 + cosΘ1 cos Θ2

]

=

[

cos(Θ1 + Θ2) sin(Θ1 + Θ2)
− sin(Θ1 + Θ2) cos(Θ1 + Θ2)

]

07-87:Combining Transforms

• We can also combine scaling and rotating

[x, y]

[

cosΘ sin Θ
− sinΘ cosΘ

] [

k 0
0 k

]

• With uniform scaling, we get the same result if we scale, thenrotate as if we rotated, and then scaled.

CS420-2010F-07 Objects in 2D 20

07-88:Combining Transforms

[

cosΘ sin Θ
− sinΘ cosΘ

] [

k 0
0 k

]

=

[

cosΘ sin Θ
− sinΘ cosΘ

] [

k 0
0 k

]

=

[

k cosΘ k sinΘ
−k sin Θ k cosΘ

]

07-89:Combining Transforms

2 0
0 2

Transform with:

cos 45 sin 45

 -sin 45 cos 45

Transform with:

2 0
0 2

cos 45 sin 45

 -sin 45 cos 45

07-90:Non-Uniform Scale, Rotate

1 0
0 2

cos 45 sin 45

 -sin 45 cos 45

07-91:Non-Uniform Scale, Rotate

1 0
0 2

cos 45 sin 45

 -sin 45 cos 45

07-92:Non-Uniform Scale, Rotate

CS420-2010F-07 Objects in 2D 21

1 0
0 2

cos 45 sin 45

 -sin 45 cos 45

07-93:Non-Uniform Scale, Rotate

1 0
0 2

cos 45 sin 45

 -sin 45 cos 45

07-94:Other Transformations

• How would the following matrix transform an object?

[

−1 0
0 1

]

07-95:Reflection

x

y

-1 0
 0 1

07-96:Reflection

x

y

x

y

-1 0
 0 1

07-97:Reflection

• Reflecting an object twice around the same axis brings and object back to its original state

• Reflecting around the y-axis and then reflecting around the x-axis is the same as ...

CS420-2010F-07 Objects in 2D 22

07-98:Reflection

x

y

x

y

x

y

07-99:Reflection

• How could we reflect an object around its own center line, instead of around the x- or y- axis?

07-100:Reflection

• How could we reflect an object around its own center line, instead of around the x- or y- axis?

• Translate and rotate the object so that its own center line isthe same as the x- or y- axis

• Reflect

• Translate, rotate back

• If the centerline of an object is either the x- or y- axis in object space, this is easier ...

07-101:Shearing

• How would the following matrix transform an object?

[

1 0
1 1

]

07-102:Shearing

x

y

1 0
1 1

07-103:Shearing

CS420-2010F-07 Objects in 2D 23

x

y

x

y

1 0
1 1

07-104:Shearing

• Shearing an object is the same as:

• Rotating the object

• Non-uniform scale

• Rotating back (not by the same angle)

07-105:Shearing

x

y

x

y

x

y

x

y

Rotate clockwise 45

Non-uniform scale
(strech x, shrink y)

Rotate counter-
clockwise (~32)

07-106:Linear Transforms

• Matrix operations represent linear transformation of objects

• Number of points in in a line before the transformation, still be in a line after the transformation

• Line may be stretched and rotated, still be a line

07-107:Linear Transforms

• This gives us a handy way of seeing how a matrix will transforman object

• See how the matrix will transform the axes [1,0], [0,1]

• Object will be transformed in the same way

CS420-2010F-07 Objects in 2D 24

07-108:Linear Transforms

2

2

2

2

2

2

2

2

-

How will this transform an object

07-109:Linear Transforms

How will this transform an object

x-axis

y-axis

2

2

2

2

2

2

- 2

2

07-110:Linear Transforms

How will this transform an object

x-axis

y-axis

2

2

2

2

2

2

- 2

2

CS420-2010F-07 Objects in 2D 25

07-111:Linear Transforms

How will this transform an object

2

2

- 2

2

2 2

07-112:Linear Transforms

How will this transform an object

x-axis

y-axis
2

2

- 2

2

2 2

07-113:Linear Transforms

How will this transform an object

1 0.1

0.1 1

CS420-2010F-07 Objects in 2D 26

07-114:Linear Transforms

How will this transform an object

x-axis

y-axis

1 0.1

0.1 1

07-115:Determinant

• Determinant of 2x2 matrix:
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= ad − cb

07-116:Determinant

p
1

p
2

p
1

p
2

p
2

p
1
+

p1 p1

p2 p2

x

x

y

y

= Area of Parallelogram

CS420-2010F-07 Objects in 2D 27

07-117:Determinant

p
2

p
1

p
2

p
1

p
2

p
1
+

p1 p1

p2 p2

x

x

y

y

= - (Area of Parallelogram)

07-118:Determinant

• Signed area of parallelogram

• If transformation includes a reflection, then ...

07-119:Determinant

• Signed area of parallelogram

• If transformation includes a reflection, then

• Determinant is negative

07-120:Determinant

• Signed area of parallelogram

• If is a pure rotation (no scale, no shear, no rotation) ...

07-121:Determinant

• Signed area of parallelogram

• If is a pure rotation (no scale, no shear, no rotation) ...

• Determinant = 1

• (Other direction is not always true..)

07-122:Translation

• We can implement rotation / scale / reflection / shearing using matrix operations

• What about translation?

07-123:Translation

• Can’t translate an object using a 2x2 matrix

CS420-2010F-07 Objects in 2D 28

• Consider a point at the origin

• How will a point a the origin be modified by a matrix?

07-124:Translation

• Can’t translate an object using a 2x2 matrix

• Consider a point at the origin

• How will a point a the origin be modified by a matrix?

• Not changed byany matrix!

07-125:Translation

• Matrices can only do linear transformations

• Translation is not a linear transformation

• Can’t use matrices to do translation

• ... Unless we cheat a little!

07-126:Translation

• We can use matrices to do translation – as long as we use something different than 2x2 matrices

• Add a dummy value to the end of all points (always 1)

• Add a new row / column to matrix

[x, y, 1]





1 0 0
0 1 0
0 0 1



 = [x, y, 1]

07-127:Translation

[x, y, 1]





1 0 0
0 1 0
δx δy 1



 =

07-128:Translation

[x, y, 1]





1 0 0
0 1 0
δx δy 1



 = [x + δx, y + δy, 1]

07-129:Translation

• Adding rotation

[x, y]

[

a b
c d

]

= [xa + yc, xb + yd]

[x, y, 1]





a b 0
c d 0
0 0 1



 = [xa + yc, xb + yd, 1]

07-130:Translation

[x, y, 1]





a b 0
c d 0
δx δy 1



 = [xa + yc + δx, xb + yd + δy, 1]

CS420-2010F-07 Objects in 2D 29

• So, we can use a matrix to do both rotation and translation

07-131:Translation





cosΘ sin Θ 0
− sinΘ cosΘ 0

δx δy 1





• First, rotate counter-clockwise byΘ

• Then translate by[δx, δy]

07-132:Combining Transforms

• Let’s look at an example

• First rotate byπ/2 (90 degrees) counterclockwise

• Then translatex by +1

Rotate π/2 Translate
+1 x

07-133:Combining Transforms
[

cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

][

1 0 0

0 1 0

1 0 1

]

=

[

cos Θ sin Θ 0

− sin Θ cos Θ 0

1 0 1

]

=

[

0 1 0

−1 0 0

1 0 1

]

07-134:Combining Transforms

• Another example

• First translatex by +1

• Then rotate byπ/2 (90 degrees) counterclockwise

Rotate π/2
Translate
+1 x

07-135:Combining Transforms
[

1 0 0

0 1 0

1 0 1

][

cos Θ sinΘ 0

− sin Θ cos Θ 0

0 0 1

]

=

[

cos Θ sin Θ 0

− sin Θ cos Θ 0

cos Θ sin Θ 1

]

=

[

0 1 0

−1 0 0

0 1 1

]

• Same as rotating, and then moving up+y

CS420-2010F-07 Objects in 2D 30

07-136:Combining Transforms

Rotate π/4 Translate
+1 x

Rotate π/4Translate
+1 x

07-137:Combining Transforms

• Rotating byπ/4, then translating 1 unit+x

[

cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

][

1 0 0

0 1 0

1 0 1

]

=

[

cos Θ sin Θ 0

− sin Θ cos Θ 0

1 0 1

]

=

[

1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

1 0 1

]

07-138:Combining Transforms

• Translating 1 unit+x, then rotating byπ/4

[

1 0 0

0 1 0

1 0 1

][

cos Θ sin Θ 0

− sin Θ cos Θ 0

0 0 1

]

=

[

cos Θ sin Θ 0

− sin Θ cos Θ 0

cos Θ sin Θ 1

]

=

[

1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

1/
√

2 1/
√

2 1

]

• Same as rotatingπ/4 counterclockwise, and then translating over (+x)1/
√

2 and up (+y)1/
√

2

07-139:Non-Standard Axes

• We want to rotate around an axis that does not go through the origin

• Rotate around point at 1,0

• Create the approprate 3x3 vector

07-140:Non-Standard Axes

CS420-2010F-07 Objects in 2D 31

Rotate π/4 around (1,0)

07-141:Non-Standard Axes

• First, translate to the origin

• Then, do the rotation

• Finally, translate back

07-142:Non-Standard Axes

• First, translate to the origin




1 0 0
0 1 0

−1 0 1





• Then, do the rotation

• Finally, translate back

07-143:Non-Standard Axes

• First, translate to the origin

• Then, do the rotation




cosΘ sin Θ 0
− sinΘ cosΘ 0

0 0 1



 =





1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0
0 0 1





• Finally, translate back

07-144:Non-Standard Axes

• First, translate to the origin

• Then, do the rotation

CS420-2010F-07 Objects in 2D 32

• Finally, translate back




1 0 0
0 1 0
1 0 1





07-145:Non-Standard Axes

• Final matrix:




1 0 0
0 1 0

−1 0 1









1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0
0 0 1









1 0 0
0 1 0
1 0 1









1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

−1/
√

2 −1/
√

2 1









1 0 0
0 1 0
1 0 1









1/
√

2 1/
√

2 0

−1/
√

2 1/
√

2 0

1 − 1/
√

2 −1/
√

2 1





07-146:Non-Standard Axes
Rotate π/4 around (1,0)

Translate to origin, Rotate π/4 around (0,0), Translate back

07-147:Non-Standard Axes

CS420-2010F-07 Objects in 2D 33

Rotate p/4 around (0,0), then translate over
1 - 1 / 2 and down 1/ 2

Rotate π/4 around (1,0)

07-148:Non-Standard Axes

• Note that therotation component (upper left 2x2 matrix) is the same as if we were rotating around the origin

• Only theposition component is altered.

• In general, whenever we do a rotation and a number of translations, the rotation component will be unchanged

07-149:Linear Transforms?

• Matricies can only do linear transformations

• Translation isnot a linear transform

• ... but we are using matrices to do translation

• What’s up?

07-150:Homogeneous Space

• We are no longer working in 2D, we are now working in 3D

• Extra 3rd parameter, that is always == 1

• We can extend our definition to allow the 3rd parameter to be some value other than 1

• Need to be able to convert back to 2D space

07-151:3D Homogeneous Space

• To convert a point(x, y, w) in 3D Homogeneous space into 2D(x, y) space:

• Place a plane atw = 1

• (x, y, w) maps to the(x, y) position on the plane where the ray(x, y, w) intersects the plane

CS420-2010F-07 Objects in 2D 34

07-152:3D Homogeneous Space x

y

w

w=1

(x,y,w)

07-153:3D Homogeneous Space x

y

w

w=1

(x,y,w)

(x/w,y/w)

07-154:3D Homogeneous Space

• Converting from a point in 3D homogeneous space to 2D space iseasy

• Divide thex andy coordinates byw

• What happens whenw = 0?

07-155:3D Homogeneous Space

• Converting from a point in 3D homogeneous space to 2D space iseasy

• Divide thex andy coordinates byw

• What happens whenw = 0?

• “Point at infinity”

CS420-2010F-07 Objects in 2D 35

• Direction, but not a magnitude

07-156:3D Homogeneous Space

• For a given(x, y, w) point in 3D Homogeneous space, there is a single corresponding point in “standard” 2D
space

• Though whenw = 0, we are in a bit of a special case

• For a single point in “standard” 2D space, there are an infinite number of corresponding points in 3D Homoge-
neous space

07-157:Translation

• We are still doing a linear trasformation of the 3D vector

• We areshearing the 3D space

• The resulting projection back to 2D is seen as a translation

07-158:Translation

x

y

w

x

y

x

y

w

x

y

2D Shape Transform to 3D Homogenous Space

Shear operation in 3D space Back to 2D

07-159:Inverse

• Finding inverse of 2x2 matrix

A =

[

a b
c d

]

A−1 =
1

detA

[

d −b
−c a

]

07-160:Inverse

• A matrix is signular if it does not have an inverse

• determinant = 0

CS420-2010F-07 Objects in 2D 36

• Why does this make sense, geometrically?

07-161:Orthogonal Matrices

• A matrix M is orthogonal if:

• MM
T = I

• M
T = M

−1

• Orthogonal matrices are handy, because they are easy to invert

• Is there a geometric interpretation of orthogonality?

07-162:Orthogonal Matrices

MM
T = I

[

m11 m12

m21 m22

] [

m11 m21

m12 m22

]

=

[

1 0
0 1

]

Do all the multiplications ...
07-163:Orthogonal Matrices

m11m11 + m12m12 = 1

m11m21 + m12m22 = 0

m21m11 + m22m12 = 0

m21m21 + m22m22 = 1

• Hmmm... that doesn’t seem to help much

07-164:Orthogonal Matrices

• Recall that rows of matrix are basis after rotation

• vx = [m11, m12]

• vy = [m21, m22]

• Let’s rewrite the previous equations in terms ofvx andvy ...

07-165:Orthogonal Matrices

m11m11 + m12m12 = 1 vx · vx = 1

m11m21 + m12m22 = 0 vx · vy = 0

m21m11 + m22m12 = 0 vy · vx = 0

m21m21 + m22m22 = 1 vy · vy = 1

07-166:Orthogonal Matrices

• What does it mean ifu · v = 0?

CS420-2010F-07 Objects in 2D 37

• (assuming bothu andv are non-zero)

• What does it mean ifv · v = 1?

07-167:Orthogonal Matrices

• What does it mean ifu · v = 0?

• (assuming bothu andv are non-zero)

• u andv are perpendicular to each other (orthogonal)

• What does it mean ifv · v = 1?

• ||v|| = 1

• So, transformed basis vectors must be mutually perpendicular unit vectors

07-168:Orthogonal Matrices

• If a transformation matrix is orthogonal,

• Transformed basis vectors are mutually perpendicular unitvectors

• What kind of transformations are done by orthogonal matrices?

07-169:Orthogonal Matrices

• If a transformation matrix is orthogonal,

• Transformed basis vectors are mutually perpendicular unitvectors

• What kind of transformations are done by orthogonal matrices?

• Rotations & Reflections

07-170:Orthogonal Matrices

• Sanity check: Rotational matrices are orthoginal:

A =

[

a b
c d

]

, A−1 =
1

det A

[

d −b
−c a

]

A =

[

cosΘ sinΘ
− sinΘ cosΘ

]

, A−1 =

[

cosΘ − sinΘ
sinΘ cosΘ

]

=

[

cos(−Θ) sin(−Θ)
− sin(−Θ) cos(−Θ)

]

07-171:Examples

• An object’s position has a rotational matrixM and a positionp. A point o1 = [o1x, o1y] is in object space for
the object, What is the position of the point in world space?

CS420-2010F-07 Objects in 2D 38

x y

07-172:Examples

• An object’s position has a rotational matrixM and a positionp. A point o1 = [o1x, o1y] is in object space for
the object, What is the position of the point in world space?

x y

Position in world space:o1M + p
07-173:Examples

• An object’s position has a rotational matrixM and a positionp. A point w1 = [w1x, w1y] is in world space.
What is the position of the point in objet space

x

y

07-174:Examples

• An object’s position has a rotational matrixM and a positionp. A point w1 = [w1x, w1y] is in world space.
What is the position of the point in objet space

CS420-2010F-07 Objects in 2D 39

x

y

Position in object space:(w1 − p)MT

07-175:Examples

• Origin of screen is at position[cx, cy] in world space

• Object is a point[px, py] in world space

• World has+x to right,+y up

• Screen has+x to right,+y down

• What is the position ofp in screen space?

07-176:Examples

+x

+Y
+x

+y

[cx, cy]

[px, py]

07-177:Examples

CS420-2010F-07 Objects in 2D 40

+x

+Y
+x

+y

[cx, cy]

[px, py]

[px, py] − [cx, cy]

[

1 0
0 −1

]

07-178:Examples

+x

+Y
+x

+y

[cx, cy]

[px, py]

[px − cx, cy − py]
07-179:Examples

• Coversion from +y up to +y down

• Points and rectangles easy to convert

• Sprites would require a reflection

• Can use SpriteEffects to reflect sprites

• Best to stay in “reflected” space

07-180:Objects with Sprites

CS420-2010F-07 Objects in 2D 41

07-181:Objects with Sprites

+X

+y

07-182:Objects with Sprites

CS420-2010F-07 Objects in 2D 42

• Center of the sprite is at [SpriteHalfWidth,SpriteHalfHeight] from top left corner of sprite +y

SpriteHalfWidth

SpriteHalfHeight

07-183:Objects with Sprites

• Boundary box locations are stored as edge points of each rectangle (4 points per)

+X

+y

07-184:Objects with Sprites

• Object is located at position[x, y] and has rotationΘ clockwise (since +x is right, +y is down)

Θ

+y

CS420-2010F-07 Objects in 2D 43

07-185:Objects with Sprites

• When dealing with the object in game logic (collistions, etc), we need to know the positions of each of the points
of each rectangle in world space.

• If a vertex has positionp in local (object) space, what is its position in world space?

07-186:Objects with Sprites

• When dealing with the object in game logic (collistions, etc), we need to know the positions of each of the points
of each rectangle in world space.

• If a vertex has positionp in local (object) space, what is its position in world space?

• p

[

cosΘ sinΘ
− sinΘ cosΘ

]

+ [x, y]

07-187:Objects with Sprites

• To draw the sprite on the screen:

SpriteBatch sb
Vector2 pos = new Vector2(x,y);
Vector2 center = new Vector2(SpriteHalfWidh, SpriteHalfHeihgt);
sb.Draw(texture, pos, null, Color.White, theta, center, 1.0f,

SpriteEffects.None, 0.0f);

07-188:Examples

• Object1 has rotational matrixM1 and positionp1

• Object2 has rotational matrixM2 and positionp2

• Pointq1 is at postion[q1x, q1y] in the object space of Object1

• Pointq2 is at positio[q2x, q2y] in the object space of Object 2

• What is the vector fromq1 to q2 in the object space ofq1?

07-189:Examples
+x

+Y
q1
x

q1
y

q2x

q2y

[p1x, p1y]

[p2x, p2y]

CS420-2010F-07 Objects in 2D 44

07-190:Examples
+x

+Y
q1
x

q1
y

q2x

q2y

[p1x, p1y]

[p2x, p2y]

x

y

07-191:Examples

• First, find the position of pointq2 in the local space of Object1.

• What’s the best way to do this?

07-192:Examples

• First, find the position of pointq2 in the local space of Object1.

• What’s the best way to do this?

• Go through the world space

• Find the position ofq2 in world space, translate to object space

07-193:Examples

• Position ofq2 in world space:

q2M2 + p2

• Position ofq2 in Object1’s local space

(q2(global)− p1)M
T
1

= (q2M2 + p2 − p1)M
T
1

• Vector fromq1 to q2 in local space of Object 1:

07-194:Examples

• Position ofq2 in world space:

q2M2 + p2

• Position ofq2 in Object1’s local space

(q2(global)− p1)M
T
1

= (q2M2 + p2 − p1)M
T
1

• Vector fromq1 to q2 in local space of Object 1:

(q2M2 + p2 − p1)M
T
1 − q1

CS420-2010F-07 Objects in 2D 45

07-195:Examples

• Given a transformation matrix

[

a b
c d

]

• How can we determine if this is a “pure rotation” – no scale, shear, reflection

07-196:Examples

• Matrix is pure rotation if:

[

a b
c d

]

• a = d

• -c = b

• sin(arccos(a)) = b

• What if we don’t have access to arccos, sin?

07-197:Examples

• Matrix is pure rotation if:

[

a b
c d

]

• ac + bd = 0 [a,b] and [c,d] are perpendicular

• a*a + b*b = 1 [a,b] is unit vector

• c*c + d*d = 1 [c,d] is unit vector

• a*d - c*b = 1 No reflection

07-198:Examples

• Spaceship, in local space looks down x axis

• Position[px, py]

• Orientation:

[

a b
c d

]

• Place an enemy 10 units directly in front of spaceship, pointing straight back at it

• What is position and orientation of the new spaceship?

07-199:Examples

• Spaceship, in local space looks down x axis

• Position[px, py]

CS420-2010F-07 Objects in 2D 46

• Orientation:

[

a b
c d

]

• Place an enemy 10 units directly in front of spaceship, pointing straight back at it

• What is position and orientation of the new spaceship?

• Position =[px, py] + 10 ∗ [a, b]

• Orientation:

[

−a −b
−c −d

]

07-200:Examples

