
AI Programming
CS662-2008F-12

Natural Language Processing
David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

12-0: Speech Acts

Since the 1950s (Wittgenstein), communication
has been seen as a set of speech acts.

Communication as a form of action.

Acts include: query, inform, request, acknowledge,
promise

An agent has a goal that it needs to accomplish,
and selects speech acts that help it to acomplish
that goal.

12-1: Speech Acts

An agent has a speech act it wants to achieve

It must convert this, plus some internal knowledge,
into an utterance in a particular language.

This utterance is then transmitted to a hearer or
receiver.

The hearer must then translate this back into an
internal representation and reason about this new
knowledge.

12-2: Language

A language consists of a (possibly infinite) set of
strings.

These strings are constructed through the
concatenation of terminal symbols.

We’ll distinguish between formal languages and
natural languages

Formal languages have strict mathematical
definitions.

We can say unambiguously whether a string is a
legal utterance in that language.

SQL, first-order logic, Java, and Python are all
formal languages.

12-3: Natural Language

Natural languages do not have a strict
mathematical definition.

They have evolved through a community of usage.
English, Chinese, Japanese, Spanish, French,
etc.

Structure can be specified:
Prescriptively: What are the “correct” rules of
the language.
Descriptively: How is the language actually
used in practice?

We’ll attempt to treat natural languages as formal
languages, even though the match is inexact.

12-4: Grammars

A grammar is a set of rules that specifies the legal
structure of a language.

Each rule specifies how one or more symbols can
be rewritten.

Languages consist of terminal symbols, such
as “cat”, “the”, “ran”

These are our lexicon
and nonterminal symbols, such as NP, VP, or S.

12-5: Example Lexicon

Noun -> cat | dog | bunny | fish
InTansVerb -> sit | sleep | eat
TransVerb -> is
Adjective -> happy | sad | tired
Adverb -> happily | quietly
Gerund -> sleeping
Article -> the | a | an
Conjunction -> and | or | but

12-6: Example Grammar

S -> NP VP | S -> S Conjunction S
NP -> Noun | Article Noun
VP -> InTransVerb | TransVerb Adjective | InTransVerb
InTransVerb Gerund

12-7: Syntax and Semantics

The grammar of a language forms its syntax.
This describes the structure of a sentence, and
defines legal sentences.

The semantics of a sentence describes its actual
meaning.

This might be expressed in some sort of
internal representation, such as SQL, logic, or a
data structure.

The pragmatics of a sentence describes its
meaning in the context of a given situation.

“Class starts at 5:30” might have different
meanings depending on the context.

12-8: Classes of languages

We can characterize languages (and grammars) in
terms of the strings that can be constructed from
them.

Regular languages contain rules of the form
A → b|A → Bb

Equivalent to regular expressions or finite state
automata
Can’t represent (for example) balanced opening
and closing parentheses.

Context-free languages contain rules of the form
A → b|A → XY (one nonterminal on left, anything
on righthand side)

All programming languages are context free.
Natural languages are assumed to be context

12-9: Classes of languages

Context-sensitive languages contain rules of the
form ABC → AQC (righthand side must contain
at least as many symbols as left)

Some natural languages have context-sensitive
constructs

Recursively enumerable languages allow
unrestricted rules.

They are equivalent to Turing machines.

We’ll focus on context-free grammars.

12-10: Parsing

The first step in processing an utterance is parsing.

Parsing is determining the syntactic structure of a
sentence.

Parts of speech and sentence structure

This allows us to then try to assign meaning to
components.

Typically, parsing produces a parse tree.

12-11: Example

“The cat is sleeping”

S

NP VP

Article Noun IntransVerm Gerund

The cat is sleeping

12-12: Parsing as Search

Parsing can be thought of as search
Our search space is the space of all possible
parse trees

We can either start with the top of the tree and
build down, or with the leaves and build up.

12-13: Top-down parsing

Initial state: Tree consisting only of S.

Successor function: Returns all trees that can be
constructed by matching a rule in the grammar
with the leftmost nonterminal node.

Goal test: Leaves of tree correspond to input, no
uncovered nonterminals.

12-14: Example

[S: ?]

[S: [NP:?] [VP :?]]

[S: [Noun : ?] [VP : ?]] - dead end - backtrack.

[S: [[Article: ?] [Noun: ?]] [VP : ?]]

[S:[[Article: The] [Noun: ?]] [VP : ?]]

[S:[[Article: The] [Noun: cat]] [VP : ?]]

[S:[[Article: The] [Noun: cat]] [VP : [Verb : ?]] - dead end,backtrack.

[S:[[Article: The] [Noun: cat]] [VP : [[TransVerb: ?] [Adv: ?]]] -dead

end, backtrack.

[S:[[Article: The] [Noun: cat]] [VP : [[IntransVerb: ?] [Gerund:

?]]]

[S:[[Article: The] [Noun: cat]] [VP : [[IntransVerb: is] [Gerund:

?]]]

[S:[[Article: The] [Noun: cat]] [VP : [[IntransVerb: ?] [Gerund:

sleeping]]]

12-15: Top-down parsing

Top-down parsing has two significant weaknesses:
Doesn’t exploit sentence structure at upper
levels of the parse tree

Don’t look at the input at all until we’ve made
several choices
Can wind up doing unnecessary search

Can’t easily deal with left-recursive rules, such
as S → S Conj S

Can wind up infinitely re-expanding this rule, as
in DFS.

12-16: Bottom-up parsing

Bottom-up parsing takes the opposite approach:
Start with leaves of the tree.
Try to find right-hand sides of rules that match
leaves.
Work upward.

Start state: A tree with leaves filled in.

Successors: for each position in the tree, examine
each rule, and return new trees by substituting
right-hand sides for left-hand sides.

Goal test: a tree with the root S.

12-17: Example

Init: ’The cat is sleeping’ Succ: [[Art ’cat is sleeping’] ,

[‘the’ Noun ’is sleeping’] [’the cat’ InTransVerb ’sleeping’]]

S1: [Art ’cat is sleeping’] Succ: [[Art Noun ’is sleeping’] [Art

’cat’ InTransVerb ’sleeping’] [Art ’cat is’ Gerund]]

S2: [[Art Noun ’is sleeping’] Succ: [[NP ’is sleeping’] [Art Noun

IntransVerb ’sleeping’] [Art Noun ’is’ Gerund]]

S3: [NP ’is sleeping’] Succ: [[NP InTransVerb ’sleeping’] [NP ’is’

Gerund]]

S4: [NP InTransVerb ’sleeping’] Succ: [NP IntransVerb Gerund]

S5: [NP IntransVerb Gerund] Succ: [NP VP]

S6: [NP VP] Succ: [S]

12-18: Bottom-up parsing

While everything went fine in this simple example,
there can be problems:

Words might match multiple parts of speech
The same right-hand side can match many
left-hand sides
Partial parses that could never lead to a
complete sentence get expanded.

12-19: Efficient Parsing

Consider the following sentences from R & N:
“Have the students in section 2 of CS 662 take
the exam”
“Have the students in section 2 of CS 662 taken
the exam?”

If we parse this left-to-right (in a depth-first fashion)
we can’t tell whether it’s a command or a question
until we get to “take/taken”.

We might then backtrack and have to rediscover
that “the students in section 2 of CS662” is an NP
in either sentence.

We need to keep track of partial results so that we
don’t have to regenerate them each time.

12-20: Chart Parsing

We keep track of the partial results of our parse in
a data structure called a chart.

The chart is represented as a graph. An n-word
sentence produces a graph with n + 1 vertices
representing each gap before, between, or after a
word.

Edges are added to the chart as parses are
discovered for substrings.

Edges are denoted with the starting and ending
vertex, the parse discovered so far, and the parse
needed to complete the string.

12-21: Example

The cat is sleeping0 1 2 3 4

[0,2 S=> NP. VP] [2,4 VP=> Verb Gerund]

The edge from 0 to 2 is denoted with [S -> NP .
VP]. This says that this edge matches an NP, and if
you could find a VP, the sentence would be parsed.

The edge from 2 to 4 is denoted with [VP -> Verb
Gerund .] This says that this substring contains a
successful parse of a VP as Verb and Gerund.

12-22: Chart Parsing

Chart parsing uses the best of both top-down and
bottom-up methods:

It starts top-down so as to take advantage of global
structure

It uses bottom-up only to extend existing partial
parses

It uses the chart to avoid repeated search

12-23: Chart Parsing

(Note: this algorithm differs a little from the one
presented in R&N. It scans the text first, rather
than interleaving.)

There are three basic methods:
AddEdge - this adds an edge to the chart and
then either tries to predict what will come next
(if there’s more after the dot) or to extend the
edge (if there’s not)
Predictor - adds an edge for each rule that
could yield the first token after the dot.
Extender - finds other edges that can be
extended with a completed edge.

12-24: Chart Parsing

chart(words) :

for word in words :

scanner(word)

addEdge([0,0,S’-> .S])

scanner(word) :

foreach rule with word on the rhs :

add an edge

addEdge(edge) :

if edge not in chart :

append edge to chart

if dot is at rhs :

extender(edge)

else :

predictor(edge)

12-25: Chart Parsing

predictor([i,j, X -> a . B c]) :
foreach rule that can predict B :

addEdge(rule)

extender(rule) :
foreach rule’ with rule as part of the rhs

replace rule’ with rule

12-26: Example

“The cat is sleeping”

To begin, add edges mapping each word to all
parts of speech that produce them.

Add an edge [0,0,S’->.S]

Since the . is not at the end, addEdge calls
predictor to find a rule with S on the LHS.

Predictor adds the edge [0,0,S -> . NP VP]

AddEdge calls predictor again to find a match for
NP.

Predictor adds edges [0,0,NP -> . Noun] and [0,0,
NP -> . Article Noun]

addEdge then calls extender, which adds the edge
[0,1, NP -> Article . Noun]

12-27: Example

addEdge then calls extender, which adds the edge
[0,2, NP -> Article Noun .]

addEdge then calls extender to add the edge [0,2,
S -> NP . VP]

addEdge then calls predictor to add the edges [2,2,
VP -> . InTransVerb], [2,2,VP -> . TransVerb
Adjective], [2,2,VP -> . InTransVerb Adverb],
[2,2,VP-> . InTransVerb Gerund]

12-28: Example

Extended adds the edge [2,3 VP -> IntransVerb .
Adverb] and [2,3 VP -> IntransVerb . Gerund]

Extender is called to add the edge [2,4, VP ->
InTransVerb Gerund .]

Extender is called to add the edge [S -> NP VP .]
We have a successful parse.

12-29: Example II

Noun -> cat | dog | bunny | fish

InTansVerb -> sits | sleeps | eats

TransVerb -> is

Adjective -> happy | sad | tired

Adverb -> happily | quietly

Gerund -> sleeping

Article -> the | a | an

Conjunction -> and | or | but

a dog sleeps quietly

12-30: Example II

S -> NP VP | S -> S Conjunction S
NP -> Noun | Article Noun
VP -> InTransVerb |

TransVerb Adjective |
InTransVerb Adverb |
InTransVerb Gerund

a dog sleeps quietly

12-31: Parsing is this hard?

Wait a minute ... is parsing really this hard?

Parsing is a key component of compiler design
Thousand-line programs are parsed quite
quickly
No searching required

12-32: Parsing is this hard?

Computer languages are very restricted
No ambiguity
Each “language fragment” always means the
same thing

We can create LL(1) grammars for most
programming languages

Possible to look at the first token, and know
which rule to apply
Take one of Prof Parr’s language classes, or
Compilers for much, much, more on parsing
computer languages

12-33: Parsing is this hard?

Natural Languages are not restricted at all

No set way to encode any specific meaning

Tremendously ambiguous
Even with unambiguous statements, often can’t
parse the first part of a sentence without seeing
all the tokens
Context matters, too! (that’s why people are
pretty good at functional parsing)

12-34: Why are we doing this?

So why go to all this effort?

We want to determine the meaning (or semantics)
of the sentence.

Constructing a parse tree allows us to transform it
into an internal representation that an agent can
work with.

12-35: Challenges with NLP

This is still a hard problem
A sentence may have multiple parses

“Squad helps dog bite victim.”
“Children cook and serve grandparents”

We need a complete lexicon for our language.
Figures of speech, such as analogy, metaphor,
and metonymy.

“Apple announced a new iPhone this
morning.”
“The White House supports the bill”

12-36: Next time ...

We’ll combine the statistical ideas from information
theory with the structured approach of NLP.

What’s the probability of a given parse?
Speeding up parsing
Dealing with incorrect grammar
What meaning is the most likely?
How should a phrase be segmented?

	{small lecturenumber -	heblocknumber :} Speech Actsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Speech Actsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Languageaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Natural Languageaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Grammarsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example Lexiconaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example Grammaraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Syntax and Semanticsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classes of languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Classes of languagesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Parsing as Searchaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Top-down parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Top-down parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bottom-up parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Bottom-up parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Efficient Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chart Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chart Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chart Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chart Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chart Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Example IIaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Parsing is this hard?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Parsing is this hard?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Parsing is this hard?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Why are we doing this?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Challenges with NLPaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Next time ...addtocounter {blocknumber}{1}

