
AI Programming
CS662-2013S-13

Statistical Natural Language Processing

David Galles

Department of Computer Science

University of San Francisco

http://www.cs.usfca.edu/galles

13-0: Outline

n-grams

Applications of n-grams

review - Context-free grammars

Probabilistic CFGs

Information Extraction

13-1: Advantages of IR approaches

Recall that IR-based approaches use the “bag of
words” model.

TFIDF is used to account for word frequency.

Takes information about common words into
account.

Can deal with grammatically incorrect
sentences.

Gives us a “degree of correctness”, rather than
just yes or no.

13-2: Disadvantges of IR

No use of structural information.

Not even co-occurrence of words

Can’t deal with synonyms or dereferencing
pronouns

Very little semantic analysis.

13-3: Advantages of classical NLP

Classical NLP approaches use a parser to
generate a parse tree.

This can then be used to transform knowledge into
a form that can be reasoned with.

Identifies sentence structure

Easier to do semantic interpretation

Can handle anaphora, synonyms, etc.

13-4: Disadvantages of class. NLP

Doesn’t take frequency into account

No way to choose between different parses for a
sentence

Can’t deal with incorrect grammar

Requires a lexicon.

Maybe we can incorporate both statistical
information and structure.

13-5: n-grams

The simplest way to add structure to our IR
approach is to count the occurrence not only of
single tokens, but of sequences of tokens.

So far, we’ve considered words as tokens.

A token is sometimes called a gram

an n-gram model considers the probability that a
sequence of n tokens occurs in a row.

More precisely, it is the probability
P(tokeni|tokeni−1, tokeni−2, ..., tokeni−n)

13-6: n-grams

We could also choose to count bigrams, or
2-grams.

The sentence “Every good boy deserves fudge”
contains the bigrams “every good”, “good boy”,
“boy deserves”, “deserves fudge”

We could continue this approach to 3-grams, or
4-grams, or 5-grams.

Longer n-grams give us more accurate information
about content, since they include phrases rather
than single words.

What’s the downside here?

13-7: Sampling theory

We need to be able to estimate the probability of each

n-gram occurring.

We could do this by collecting a corpus and counting

the distribution of words in the corpus.

If the corpus is too small, these counts may not be

reflective of an n-gram’s true frequency.

Many n-grams will not appear at all in our corpus.

For example, if we have a lexicon of 20,000 words, there

are:

20, 0002 = 400 million distinct bigrams

20, 0003 = 8 trillion distinct trigrams

20, 0004
= 1.6 × 1017 distinct 4-grams

13-8: Application: segmentation

One application of n-gram models is segmentation

Splitting a sequence of characters into tokens, or
finding word boundaries.

Speech-to-text systems

Chinese and Japanese

genomic data

Documents with other characters, such as
 representing space.

The algorithm for doing this is called Viterbi
segmentation

(Like parsing, it’s a form of dynamic
programming)

13-9: Viterbi segmentation

input: a string S, a 1-gram distribution P

n = length(S)

words = array[n+1]

best = array[n+1] = 0.0 * (n+1)

best[0] = 1.0

for i = 1 to n

for j = 0 to i - 1

word = S[j:i] ##get the substring from j to i

w = length(word)

if (P[word] x best[i - w] >= best[i])

best[i] = P[word] x best[i - w]

words[i] = word

now get best words

result = []

i = n

while i > 0

push words[i] onto result

i = i - len(words[i])

return result, best[i]

13-10: Example

Input ‘‘cattlefish’’ P(cat) = 0.1, P(cattle) = 0.3, P(fish) = 0.1.

all other 1-grams are 0.001.

best[0] = 1.0

i: 1, j: 0 word: ’c’. w = 1

0.001 * 1.0 >= 0.0

best[1] = 0.001

words[1] = ’c’

i = 2, j = 0 word = ’ca’, w = 2

0.001 * 1.0 >= 0.0

best[2] = 0.001

words[2] = ’ca’

i = 2, j = 1 word = ’a’, w = 1

0.001 * 0.001 < 0.001

13-11: Example

i = 3, j = 0, word=’cat’, w=3

0.1 * 1.0 > 0.0

best[3] = 0.1

words[3] = ’cat’

i = 3, j = 1, word = ’at’, w=2

0.001 * 0.001 < 0.1

i = 3, j = 2, word = ’t’, w=1

0.001 * 0.001 < 0.1

13-12: Example

i=4, j=0, word=’catt’, w=4

0.001 * 1.0 > 0.0

best[4] = 0.001

words[4] = ’catt’

i=4,j=1 word = ’att’, w=3

0.001 * 0.001 < 0.001

i=4, j=2, word=’tt’, w=2

0.001 * 0.001 < 0.001

i=4, j=3, word=’t’, w=1

0.001 * 0.1 < 0.001

13-13: Example

i=5, j=0, word=’cattl’, w=5

0.001 * 1.0 > 0.0

best[5] = 0.001

word[5] = ’cattl’

i=5, j=1, word=’attl’, w=4

0.001 * 0.001 < 0.001

i=5, j=2, word=’ttl’, w=3

0.001 * 0.001 < 0.001

i=5, j=3, word=’tl’, w=2

0.001 * 0.1 < 0.001

i=5, j=4, word=’l’, w=1

0.001 * 0.001 < 0.001

13-14: Example

i=6, j=0, word=’cattle’, w=6

0.3 * 1.0 > 0.0

word[6] = ’cattle’

best[6] = 0.3

etc ...

13-15: Example

best: [1.0 0.001 0.001 0.1 0.001 0.001 0.3 0.001 0.001 0.2]

words: [’c’ ’ca’ ’cat’ ’catt’ ’cattl’ ’cattle’ ’cattlef’ ’cattlefi’

’cattlefis’ ’fish’]

i = 10

push ’fish’ onto result

i = i-4

push ’cattle’ onto result

i = 0

13-16: What’s going on here?

The Viterbi algorithm is searching through the
space of all combinations of substrings.

States with high probability mass are pursued.

The ’best’ array is used to prevent the algorithm
from repeatedly expanding portions of the search
space.

This is an example of dynamic programming (like
chart parsing)

13-17: Application: language detec-
tion

n-grams have also been successfully used to
detect the language a document is in.

Approach: consider letters as tokens, rather than
words.

Gather a corpus in a variety of different languages
(Wikipedia works well here.)

Process the documents, and count all two-grams.

Estimate probabilities for Language L with
count

#o f 2−grams
Call this PL

Assumption: different languages have
characteristic two-grams.

13-18: Application: language detec-
tion

To classify a document by language:

Find all two-grams in the document. Call this
set T.

For each language L, the likelihood that the
document is of language L is:
PL(t1) × PL(t2) × ... × PL(tn)

The language with the highest likelihood is the
most probable language.

(this is a form of Bayesian inference - we’ll
spend more time on this later in the
semester.)

13-19: Going further

n-grams and segmentation provide some
interesting ideas:

We can combine structure with statistical
knowledge.

Probabilities can be used to help guide search

Probabilities can help a parser choose between
different outcomes.

But, no structure used apart from colocation.

Maybe we can apply these ideas to grammars.

13-20: Reminder: CFGs

Recall context-free grammars from the last lecture

Single non-terminal on the left, anything on the
right.

S -> NP VP

VP -> Verb | Verb PP

Verb -> ’run’ | ’sleep’

We can construct sentences that have more than
one legal parse.

“Squad helps dog bite victim”

CFGs don’t give us any information about which
parse to select.

13-21: Probabalistic CFGs

A probabalisitc CFG is just a regular CFG with
probabilities attached to the right-hand sides of
rules.

The have to sum up to 1

They indicate how often a particular non-terminal
derives that right-hand side.

13-22: Example

S -> NP VP (1.0)

PP -> P NP (1.0)

VP -> V NP (0.7)

VP -> VP PP (0.3)

P -> with (1.0)

V -> saw (1.0)

NP -> NP PP (0.4)

NP -> astronomers (0.1)

NP -> stars (0.18)

NP -> saw (0.04)

NP -> ears (0.18)

NP -> telescopes (0.1)

13-23: Disambiguation

The probability of a parse tree being correct is just
the product of each rule in the tree being derived.

This lets us compare two parses and say which is
more likely.

13-24: Disambiguation

astronomers

S (1.0)

NP(0.1) VP (0.7)

V (1.0) NP (0.4)

saw NP (0.18) PP(1.0)

stars P(1.0) NP(0.18)

with ears

P1 = 1.0*0.1*0.7*1.0*0.4*0.18*1.0*1.0*0.18 = 0.0009072

astronomers

S (1.0)

NP(0.1)

VP (0.7)

V (1.0)

saw

NP (0.18)

PP(1.0)

stars

P(1.0) NP(0.18)

with ears

P1 = 1.0*0.1*0.3*0.7*1.0*0.18*1.0*1.0*0.18 = 0.00068

VP (0.3)

13-25: Faster Parsing

We can also use probabilities to speed up parsing.

Recall that both top-down and chart pasring
proceed in a primarily depth-first fashion.

They choose a rule to apply, and based on its
right-hand side, they choose another rule.

Probabilities can be used to better select which
rule to apply, or which branch of the search tree to
follow.

This is a form of best-first search.

13-26: Information Extraction

An increasingly common application of parsing is
information extraction.

This is the process of creating structured
information (database or knowledge base entries)
from unstructured text.

13-27: Information Extraction

Example:

Suppose we want to build a price comparison
agent that can visit sites on the web and find
the best deals on flatscreen TVs?

Suppose we want to build a database about
video games. We might do this by hand, or we
could write a program that could parse
wikipedia pages and insert knowledge such as
madeBy(Blizzard, WorldOfWarcraft) into a
knowledge base.

13-28: Extracting specific informa-
tion

A program that fetches HTML pages and extracts
specfic information is called a scraper.

Simple scrapers can be built with regular
expressions.

For example, prices typically have a dollar sign,
some digits, a period, and two digits.

$[0-9]+.[0-9]{2}

This approach will work, but it has several
limitations

Can only handle simple extractions

Brittle and page specific

13-29: Steps in information extrac-
tion

A more robust system will need to take advantage
of sentence structure.

A typical system will have the following
components:

Sentence segmenter.

Tokenizer.

Part of speech tagger.

Chunker.

Named Entity detector.

Relation extractor.

13-30: POS tagging

There are a number of approaches to
part-of-speech tagging.

We can write rules based on a word’s structure.
(“-ed” is a past tense verb)

We can learn rules based on labeled data.
Most common tag - ZeroR.
We can use contextual information - n-grams.
We can combine them, and learn more
complex rules.

13-31: Chunking

A chunk is a larger part of a sentence, such as a
noun phrase.

This will help us identify entities and relations.

We can identify chunks with a chunk grammar:

NP : < DT >? < JJ > ∗ < NN >

Once we’ve tagged words with parts of speech, we
use a parser to identify chunks.

This can be done top-down or bottom up.

13-32: Named Entities

These are noun phrases that refer to specific
individuals, places, or organizations.

How can we identify them, and what type of entity
they are?

e.g. University of San Francisco: NP -
Organization, Barack Obama: NP - Person.

Maybe we have a gazetteer (lookup table), but
this is very brittle.

We can also build a classifier to label entities.

Input: token with a part-of-speech label

Output: whether it is a Named Entity, and its
type.

13-33: Relation extraction

Once we have Named Entities, we would like to
know relations between them.

In(USF, San Francisco)

We can write a set of augmented regular
expressions to do this.

<ORG>(.+)VP in(.+)<CITY> will match
<organization> verb-phrase in blah <city>.

There will be false positives; getting this highly
accurate takes some care.

We can trade off precision and accuracy here -
more restrictive regular expressions might miss
some relations, but avoid adding false positives.

13-34: Summary

We can combine the best of probabilistic and
classical NLP approaches.

n-grams take advantage of co-occurrence
information.

Segmenting, language detection

CFGs can be augmented with probabilities

Speeds parsing, deals with ambiguity.

Information extraction is an increasingly common
application.

Still no discussion of semantics; just increasingly
complex syntax processing.

	{small lecturenumber -	heblocknumber :} Outlineaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Advantages of IR approachesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disadvantges of IRaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Advantages of classical NLPaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disadvantages of class. NLPaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} n-gramsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} n-gramsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Sampling theoryaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Application: segmentationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Viterbi segmentationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} What's going on here?addtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Application: language detectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Application: language detectionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Going furtheraddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Reminder: CFGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Probabalistic CFGsaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Exampleaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disambiguationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Disambiguationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Faster Parsingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Extractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Information Extractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Extracting specific informationaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Steps in information extractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} POS taggingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Chunkingaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Named Entitiesaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Relation extractionaddtocounter {blocknumber}{1}
	{small lecturenumber -	heblocknumber :} Summaryaddtocounter {blocknumber}{1}

